Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations

Most of our understanding of the atmosphere is based on observations and their comparison with model simulations. In middle atmosphere studies it is common practice to use an approach, where the model dynamics are at least partly based on temperature and wind fields from an external meteorological m...

Full description

Bibliographic Details
Main Authors: Kyrölä, E, Andersson, ME, Verronen, PT, Laine, M, Tukiainen, S, Marsh, DR
Format: Article in Journal/Newspaper
Language:English
Published: European Geosciences Union 2018
Subjects:
Online Access:https://eprints.whiterose.ac.uk/131560/
https://eprints.whiterose.ac.uk/131560/1/acp-18-5001-2018.pdf
id ftleedsuniv:oai:eprints.whiterose.ac.uk:131560
record_format openpolar
spelling ftleedsuniv:oai:eprints.whiterose.ac.uk:131560 2023-05-15T15:03:45+02:00 Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations Kyrölä, E Andersson, ME Verronen, PT Laine, M Tukiainen, S Marsh, DR 2018-04-12 text https://eprints.whiterose.ac.uk/131560/ https://eprints.whiterose.ac.uk/131560/1/acp-18-5001-2018.pdf en eng European Geosciences Union https://eprints.whiterose.ac.uk/131560/1/acp-18-5001-2018.pdf Kyrölä, E, Andersson, ME, Verronen, PT et al. (3 more authors) (2018) Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations. Atmospheric Chemistry and Physics, 18 (7). pp. 5001-5019. ISSN 1680-7316 cc_by_4 CC-BY Article NonPeerReviewed 2018 ftleedsuniv 2023-01-30T22:07:16Z Most of our understanding of the atmosphere is based on observations and their comparison with model simulations. In middle atmosphere studies it is common practice to use an approach, where the model dynamics are at least partly based on temperature and wind fields from an external meteorological model. In this work we test how closely satellite measurements of a few central trace gases agree with this kind of model simulation. We use collocated vertical profiles where each satellite measurement is compared to the closest model data. We compare profiles and distributions of O3, NO2 and NO3 from the Global Ozone Monitoring by Occultation of Stars instrument (GOMOS) on the Envisat satellite with simulations by the Whole Atmosphere Community Climate Model (WACCM). GOMOS measurements are from nighttime. Our comparisons show that in the stratosphere outside the polar regions differences in ozone between WACCM and GOMOS are small, between 0 and 6%. The correlation of 5-day time series show a very high 0.9-0.95. In the tropical region 10° S-10° N below 10hPa WACCM values are up to 20% larger than GOMOS. In the Arctic below 6 hPa WACCM ozone values are up to 20% larger than GOMOS. In the mesosphere between 0.04 and 1hPa the WACCM is at most 20% smaller than GOMOS. Above the ozone minimum at 0.01hPa (or 80km) large differences are found between WACCM and GOMOS. The correlation can still be high, but at the second ozone peak the correlation falls strongly and the ozone abundance from WACCM is about 60% smaller than that from GOMOS. The total ozone columns (above 50hPa) of GOMOS and WACCM agree within ±2% except in the Arctic where WACCM is 10% larger than GOMOS. Outside the polar areas and in the validity region of GOMOS NO2 measurements (0.3-37 hPa) WACCM and GOMOS NO2 agree within -5 to +25% and the correlation is high (0.7-0.95) except in the upper stratosphere at the southern latitudes. In the polar areas, where solar particle precipitation and downward transport from the thermosphere enhance NO2 abundance, large ... Article in Journal/Newspaper Arctic White Rose Research Online (Universities of Leeds, Sheffield & York) Arctic
institution Open Polar
collection White Rose Research Online (Universities of Leeds, Sheffield & York)
op_collection_id ftleedsuniv
language English
description Most of our understanding of the atmosphere is based on observations and their comparison with model simulations. In middle atmosphere studies it is common practice to use an approach, where the model dynamics are at least partly based on temperature and wind fields from an external meteorological model. In this work we test how closely satellite measurements of a few central trace gases agree with this kind of model simulation. We use collocated vertical profiles where each satellite measurement is compared to the closest model data. We compare profiles and distributions of O3, NO2 and NO3 from the Global Ozone Monitoring by Occultation of Stars instrument (GOMOS) on the Envisat satellite with simulations by the Whole Atmosphere Community Climate Model (WACCM). GOMOS measurements are from nighttime. Our comparisons show that in the stratosphere outside the polar regions differences in ozone between WACCM and GOMOS are small, between 0 and 6%. The correlation of 5-day time series show a very high 0.9-0.95. In the tropical region 10° S-10° N below 10hPa WACCM values are up to 20% larger than GOMOS. In the Arctic below 6 hPa WACCM ozone values are up to 20% larger than GOMOS. In the mesosphere between 0.04 and 1hPa the WACCM is at most 20% smaller than GOMOS. Above the ozone minimum at 0.01hPa (or 80km) large differences are found between WACCM and GOMOS. The correlation can still be high, but at the second ozone peak the correlation falls strongly and the ozone abundance from WACCM is about 60% smaller than that from GOMOS. The total ozone columns (above 50hPa) of GOMOS and WACCM agree within ±2% except in the Arctic where WACCM is 10% larger than GOMOS. Outside the polar areas and in the validity region of GOMOS NO2 measurements (0.3-37 hPa) WACCM and GOMOS NO2 agree within -5 to +25% and the correlation is high (0.7-0.95) except in the upper stratosphere at the southern latitudes. In the polar areas, where solar particle precipitation and downward transport from the thermosphere enhance NO2 abundance, large ...
format Article in Journal/Newspaper
author Kyrölä, E
Andersson, ME
Verronen, PT
Laine, M
Tukiainen, S
Marsh, DR
spellingShingle Kyrölä, E
Andersson, ME
Verronen, PT
Laine, M
Tukiainen, S
Marsh, DR
Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations
author_facet Kyrölä, E
Andersson, ME
Verronen, PT
Laine, M
Tukiainen, S
Marsh, DR
author_sort Kyrölä, E
title Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations
title_short Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations
title_full Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations
title_fullStr Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations
title_full_unstemmed Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations
title_sort middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: sd-waccm simulations compared to gomos observations
publisher European Geosciences Union
publishDate 2018
url https://eprints.whiterose.ac.uk/131560/
https://eprints.whiterose.ac.uk/131560/1/acp-18-5001-2018.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation https://eprints.whiterose.ac.uk/131560/1/acp-18-5001-2018.pdf
Kyrölä, E, Andersson, ME, Verronen, PT et al. (3 more authors) (2018) Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations. Atmospheric Chemistry and Physics, 18 (7). pp. 5001-5019. ISSN 1680-7316
op_rights cc_by_4
op_rightsnorm CC-BY
_version_ 1766335602557452288