Economic growth forecasting in Nordic countries : a comparative analysis between generalized autoregressive conditional heteroscedasticity models and nonlinear autoregressive neural network models

Advanced computational efficiency has made possible to utilize artificial neural networks (ANN) in economic forecasting. This thesis studies differences between hybrid autoregressive moving average with generalized autoregressive conditional heteroscedastic (ARMA-GARCH) -models and nonlinear autoreg...

Full description

Bibliographic Details
Main Author: Kauppinen, Markus
Other Authors: Lappeenrannan-Lahden teknillinen yliopisto LUT, Lappeenranta-Lahti University of Technology LUT
Format: Master Thesis
Language:English
Published: 2021
Subjects:
Online Access:https://lutpub.lut.fi/handle/10024/163077
_version_ 1835016661416017920
author Kauppinen, Markus
author2 Lappeenrannan-Lahden teknillinen yliopisto LUT
Lappeenranta-Lahti University of Technology LUT
author_facet Kauppinen, Markus
author_sort Kauppinen, Markus
collection Unknown
description Advanced computational efficiency has made possible to utilize artificial neural networks (ANN) in economic forecasting. This thesis studies differences between hybrid autoregressive moving average with generalized autoregressive conditional heteroscedastic (ARMA-GARCH) -models and nonlinear autoregressive neural network (NAR) - models in predicting quarterly real growth rate of GDP in five Nordic countries. Models are fitted to the in-the-sample subsample derived from the original time series data sample and values for next 20 timesteps are predicted and compared with the actual out-of-sample values derived from original time series data. Results indicate that there are slight differences in predicting capability among the models. In general, as a whole NAR -models could not outperform ARMA-GARCH -models. In case of Iceland NAR -models produced more accurate forecasts than ARMA-GARCH models and in case of Denmark NAR -models did perform better than the majority of ARMA-GARCH -models. For Norway and Sweden, the results are mixed; neither NAR -models nor ARMA-GARCH -models outperformed each other clearly, but NAR -models performed slightly worse in general. For Finland the results could not be derived due to characteristics of the time series data. Kehittynyt laskentateho on mahdollistanut keinotekoisten neuroverkkojen hyödyntämisen talouskasvun ennustamisessa. Tämä Pro Gradu -tutkielma tutkii eroavaisuuksia yhdistettyjen autoregressiivisten liukuvan keskiarvon ja yleistettyjen autoregressiivisien ehdollisesti heteroskedastisien -mallien (ARMA-GARCH), sekä epälineaarisien autoregressiivisten neuroverkkomallien (NAR) välillä kvartaalittaisen aidon talouskasvun ennustamisessa Pohjoismaissa. Mallit sovitetaan sisäiseen dataotokseen, joka on johdettu alkuperäisestä aikasarjadatasta, jonka jälkeen ennustetaan arvot 20:lle seuraavalle aika-arvolle. Ennustettuja arvoja verrataan alkuperäisestä aikasarjadatasta muodostetun vertailudatan kanssa. Tutkimuksen tulokset osoittavat, että mallien välillä on hienoja ...
format Master Thesis
genre Iceland
genre_facet Iceland
geographic Norway
geographic_facet Norway
id ftlappeenranta:oai:lutpub.lut.fi:10024/163077
institution Open Polar
language English
op_collection_id ftlappeenranta
op_relation https://lutpub.lut.fi/handle/10024/163077
op_rights fi=Kaikki oikeudet pidätetään.|en=All rights reserved.|
publishDate 2021
record_format openpolar
spelling ftlappeenranta:oai:lutpub.lut.fi:10024/163077 2025-06-15T14:31:01+00:00 Economic growth forecasting in Nordic countries : a comparative analysis between generalized autoregressive conditional heteroscedasticity models and nonlinear autoregressive neural network models Talouskasvun ennustaminen Pohjoismaissa : vertaileva analyysi yleistettyjen autoregressiivisien ehdollisesti heteroskedastisien mallien ja epälineaarisien autoregressiivisten neuroverkkomallien välillä Kauppinen, Markus Lappeenrannan-Lahden teknillinen yliopisto LUT Lappeenranta-Lahti University of Technology LUT 2021 117 fulltext https://lutpub.lut.fi/handle/10024/163077 eng eng https://lutpub.lut.fi/handle/10024/163077 fi=Kaikki oikeudet pidätetään.|en=All rights reserved.| NAR ARMA-GARCH ANN GDP economic growth forecasting comparative analysis talouskasvun ennustaminen vertaileva analyysi fi=Datatiede|en=Data science| fi=Liiketalous|en=Business economics| fi=School of Business and Management Kauppatieteet|en=School of Business and Management Business Administration| Pro gradu -tutkielma Master's thesis 2021 ftlappeenranta 2025-06-02T03:34:26Z Advanced computational efficiency has made possible to utilize artificial neural networks (ANN) in economic forecasting. This thesis studies differences between hybrid autoregressive moving average with generalized autoregressive conditional heteroscedastic (ARMA-GARCH) -models and nonlinear autoregressive neural network (NAR) - models in predicting quarterly real growth rate of GDP in five Nordic countries. Models are fitted to the in-the-sample subsample derived from the original time series data sample and values for next 20 timesteps are predicted and compared with the actual out-of-sample values derived from original time series data. Results indicate that there are slight differences in predicting capability among the models. In general, as a whole NAR -models could not outperform ARMA-GARCH -models. In case of Iceland NAR -models produced more accurate forecasts than ARMA-GARCH models and in case of Denmark NAR -models did perform better than the majority of ARMA-GARCH -models. For Norway and Sweden, the results are mixed; neither NAR -models nor ARMA-GARCH -models outperformed each other clearly, but NAR -models performed slightly worse in general. For Finland the results could not be derived due to characteristics of the time series data. Kehittynyt laskentateho on mahdollistanut keinotekoisten neuroverkkojen hyödyntämisen talouskasvun ennustamisessa. Tämä Pro Gradu -tutkielma tutkii eroavaisuuksia yhdistettyjen autoregressiivisten liukuvan keskiarvon ja yleistettyjen autoregressiivisien ehdollisesti heteroskedastisien -mallien (ARMA-GARCH), sekä epälineaarisien autoregressiivisten neuroverkkomallien (NAR) välillä kvartaalittaisen aidon talouskasvun ennustamisessa Pohjoismaissa. Mallit sovitetaan sisäiseen dataotokseen, joka on johdettu alkuperäisestä aikasarjadatasta, jonka jälkeen ennustetaan arvot 20:lle seuraavalle aika-arvolle. Ennustettuja arvoja verrataan alkuperäisestä aikasarjadatasta muodostetun vertailudatan kanssa. Tutkimuksen tulokset osoittavat, että mallien välillä on hienoja ... Master Thesis Iceland Unknown Norway
spellingShingle NAR
ARMA-GARCH
ANN
GDP
economic growth forecasting
comparative analysis
talouskasvun ennustaminen
vertaileva analyysi
fi=Datatiede|en=Data science|
fi=Liiketalous|en=Business economics|
fi=School of Business and Management
Kauppatieteet|en=School of Business and Management
Business Administration|
Kauppinen, Markus
Economic growth forecasting in Nordic countries : a comparative analysis between generalized autoregressive conditional heteroscedasticity models and nonlinear autoregressive neural network models
title Economic growth forecasting in Nordic countries : a comparative analysis between generalized autoregressive conditional heteroscedasticity models and nonlinear autoregressive neural network models
title_full Economic growth forecasting in Nordic countries : a comparative analysis between generalized autoregressive conditional heteroscedasticity models and nonlinear autoregressive neural network models
title_fullStr Economic growth forecasting in Nordic countries : a comparative analysis between generalized autoregressive conditional heteroscedasticity models and nonlinear autoregressive neural network models
title_full_unstemmed Economic growth forecasting in Nordic countries : a comparative analysis between generalized autoregressive conditional heteroscedasticity models and nonlinear autoregressive neural network models
title_short Economic growth forecasting in Nordic countries : a comparative analysis between generalized autoregressive conditional heteroscedasticity models and nonlinear autoregressive neural network models
title_sort economic growth forecasting in nordic countries : a comparative analysis between generalized autoregressive conditional heteroscedasticity models and nonlinear autoregressive neural network models
topic NAR
ARMA-GARCH
ANN
GDP
economic growth forecasting
comparative analysis
talouskasvun ennustaminen
vertaileva analyysi
fi=Datatiede|en=Data science|
fi=Liiketalous|en=Business economics|
fi=School of Business and Management
Kauppatieteet|en=School of Business and Management
Business Administration|
topic_facet NAR
ARMA-GARCH
ANN
GDP
economic growth forecasting
comparative analysis
talouskasvun ennustaminen
vertaileva analyysi
fi=Datatiede|en=Data science|
fi=Liiketalous|en=Business economics|
fi=School of Business and Management
Kauppatieteet|en=School of Business and Management
Business Administration|
url https://lutpub.lut.fi/handle/10024/163077