凝固過程の動的挙動とその制御に関する研究

Solidification processes can be observed in a variety of fields of fields of engineering and geophysical phenomena. In metallurgy, for instance, the solidifying conditions of the melt determine the mechanical propertiesof the solid products. In semiconductor industry, integrated circuit devices requ...

Full description

Bibliographic Details
Main Authors: 木村 繁男, Kimura Shigeo
Format: Report
Language:Japanese
Published: 金沢大学工学部 2002
Subjects:
Online Access:http://hdl.handle.net/2297/46873
https://kanazawa-u.repo.nii.ac.jp/?action=repository_uri&item_id=34824
https://kanazawa-u.repo.nii.ac.jp/?action=repository_action_common_download&item_id=34824&item_no=1&attribute_id=26&file_no=1
id ftkanazawauninii:oai:kanazawa-u.repo.nii.ac.jp:00034824
record_format openpolar
spelling ftkanazawauninii:oai:kanazawa-u.repo.nii.ac.jp:00034824 2023-09-05T13:17:51+02:00 凝固過程の動的挙動とその制御に関する研究 木村 繁男 Kimura Shigeo 2002-03-01 http://hdl.handle.net/2297/46873 https://kanazawa-u.repo.nii.ac.jp/?action=repository_uri&item_id=34824 https://kanazawa-u.repo.nii.ac.jp/?action=repository_action_common_download&item_id=34824&item_no=1&attribute_id=26&file_no=1 ja jpn 金沢大学工学部 https://kaken.nii.ac.jp/search/?qm=70272953 https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-11650214/ https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-11650214/116502142001kenkyu_seika_hokoku_gaiyo/ https://kanazawa-u.repo.nii.ac.jp/?action=repository_uri&item_id=34824 http://hdl.handle.net/2297/46873 平成13(2001)年度 科学研究費補助金 基盤研究(C) 研究成果報告書 = 2001 Fiscal Year Final Research Report, 1999-2001, 2p.(2002-03-01) https://kanazawa-u.repo.nii.ac.jp/?action=repository_action_common_download&item_id=34824&item_no=1&attribute_id=26&file_no=1 凝固 相変化 非定常冷却温度 熱伝達 移動境界問題 自然対流 数値解析 多孔質 Solidification Phase Change Unsteady Cooling Temerature Heat Transfer Moving Boundary Natural Convection Numerical Analysis Porous Medium Research Paper 2002 ftkanazawauninii 2023-08-17T06:31:35Z Solidification processes can be observed in a variety of fields of fields of engineering and geophysical phenomena. In metallurgy, for instance, the solidifying conditions of the melt determine the mechanical propertiesof the solid products. In semiconductor industry, integrated circuit devices require the large single crystals by high perfection, containing a uniformly distributed dopant. Geophysical problems also involve solidification processes, such as freezing sea water in arctic region, lake freezing and formation of igneous intrusives. In the present research we particularly concern with a possible way to control the location of solid liquid interface and the speed of advancing solid front. In order to achieve this goal it is needed to adjust the cooling temperature with time. From a point of view of fluid mechanics and heat transfer, a liquid to solid phase change involves a coupling of heat conduction in the solid layer as well as convecting process in the liquid layer. In cha pters 1 and 2, we develop both one-dimensional and two-dimensional models for a solidifying problem when a liquid body is cooled from the top boundary. The cooling temperature is varied periodically with time, and the bottom temperature is kept constant. The one-dimensional and two-dimensional models are formulated and solved numerically in general. But, it is also shown that an analytical solution is possible for a special case, where the Stefan number is small and the solid-liquid boundary movement is slow enough in comparison with the thermal diffusion in the solid layer. In chapter 3 we carry out a corresponding experiment with an insulated box containing distilled water. Both analytical and numerical predictions agree well with the experimental results regarding the solidifying front movement. In chapter 4 the study has been extended to solidification in a liquid-saturated porous medium. In chapters 5 and 6 we conduct a fundamental study on porous media convection and mixed convection in a vertical channel. Both analyzes ... Report Arctic Kanazawa University Repository for Academic Resources (KURA) Arctic
institution Open Polar
collection Kanazawa University Repository for Academic Resources (KURA)
op_collection_id ftkanazawauninii
language Japanese
topic 凝固
相変化
非定常冷却温度
熱伝達
移動境界問題
自然対流
数値解析
多孔質
Solidification
Phase Change
Unsteady Cooling Temerature
Heat Transfer
Moving Boundary
Natural Convection
Numerical Analysis
Porous Medium
spellingShingle 凝固
相変化
非定常冷却温度
熱伝達
移動境界問題
自然対流
数値解析
多孔質
Solidification
Phase Change
Unsteady Cooling Temerature
Heat Transfer
Moving Boundary
Natural Convection
Numerical Analysis
Porous Medium
木村 繁男
Kimura Shigeo
凝固過程の動的挙動とその制御に関する研究
topic_facet 凝固
相変化
非定常冷却温度
熱伝達
移動境界問題
自然対流
数値解析
多孔質
Solidification
Phase Change
Unsteady Cooling Temerature
Heat Transfer
Moving Boundary
Natural Convection
Numerical Analysis
Porous Medium
description Solidification processes can be observed in a variety of fields of fields of engineering and geophysical phenomena. In metallurgy, for instance, the solidifying conditions of the melt determine the mechanical propertiesof the solid products. In semiconductor industry, integrated circuit devices require the large single crystals by high perfection, containing a uniformly distributed dopant. Geophysical problems also involve solidification processes, such as freezing sea water in arctic region, lake freezing and formation of igneous intrusives. In the present research we particularly concern with a possible way to control the location of solid liquid interface and the speed of advancing solid front. In order to achieve this goal it is needed to adjust the cooling temperature with time. From a point of view of fluid mechanics and heat transfer, a liquid to solid phase change involves a coupling of heat conduction in the solid layer as well as convecting process in the liquid layer. In cha pters 1 and 2, we develop both one-dimensional and two-dimensional models for a solidifying problem when a liquid body is cooled from the top boundary. The cooling temperature is varied periodically with time, and the bottom temperature is kept constant. The one-dimensional and two-dimensional models are formulated and solved numerically in general. But, it is also shown that an analytical solution is possible for a special case, where the Stefan number is small and the solid-liquid boundary movement is slow enough in comparison with the thermal diffusion in the solid layer. In chapter 3 we carry out a corresponding experiment with an insulated box containing distilled water. Both analytical and numerical predictions agree well with the experimental results regarding the solidifying front movement. In chapter 4 the study has been extended to solidification in a liquid-saturated porous medium. In chapters 5 and 6 we conduct a fundamental study on porous media convection and mixed convection in a vertical channel. Both analyzes ...
format Report
author 木村 繁男
Kimura Shigeo
author_facet 木村 繁男
Kimura Shigeo
author_sort 木村 繁男
title 凝固過程の動的挙動とその制御に関する研究
title_short 凝固過程の動的挙動とその制御に関する研究
title_full 凝固過程の動的挙動とその制御に関する研究
title_fullStr 凝固過程の動的挙動とその制御に関する研究
title_full_unstemmed 凝固過程の動的挙動とその制御に関する研究
title_sort 凝固過程の動的挙動とその制御に関する研究
publisher 金沢大学工学部
publishDate 2002
url http://hdl.handle.net/2297/46873
https://kanazawa-u.repo.nii.ac.jp/?action=repository_uri&item_id=34824
https://kanazawa-u.repo.nii.ac.jp/?action=repository_action_common_download&item_id=34824&item_no=1&attribute_id=26&file_no=1
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation https://kaken.nii.ac.jp/search/?qm=70272953
https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-11650214/
https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-11650214/116502142001kenkyu_seika_hokoku_gaiyo/
https://kanazawa-u.repo.nii.ac.jp/?action=repository_uri&item_id=34824
http://hdl.handle.net/2297/46873
平成13(2001)年度 科学研究費補助金 基盤研究(C) 研究成果報告書 = 2001 Fiscal Year Final Research Report, 1999-2001, 2p.(2002-03-01)
https://kanazawa-u.repo.nii.ac.jp/?action=repository_action_common_download&item_id=34824&item_no=1&attribute_id=26&file_no=1
_version_ 1776198864816046080