Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw

Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Voigt, Carolina, Marushchak, Maija, Mastepanov, Mikhail, Lamprecht, Richard E., Christensen, Torben R., Dorodnikov, Maxim, Jackowicz‐Korczyński, Marcin, Lindgren, Amelie, Lohila, Annalea, Nykänen, Hannu, Oinonen, Markku, Oksanen, Timo, Palonen, Vesa, Treat, Claire C., Martikainen, Pertti J., Biasi, Christina
Format: Article in Journal/Newspaper
Language:English
Published: Wiley-Blackwell Publishing Ltd. 2019
Subjects:
CO2
Online Access:http://urn.fi/URN:NBN:fi:jyu-201904162198
id ftjyvaeskylaenun:oai:jyx.jyu.fi:123456789/63578
record_format openpolar
spelling ftjyvaeskylaenun:oai:jyx.jyu.fi:123456789/63578 2024-02-04T09:56:46+01:00 Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw Voigt, Carolina Marushchak, Maija Mastepanov, Mikhail Lamprecht, Richard E. Christensen, Torben R. Dorodnikov, Maxim Jackowicz‐Korczyński, Marcin Lindgren, Amelie Lohila, Annalea Nykänen, Hannu Oinonen, Markku Oksanen, Timo Palonen, Vesa Treat, Claire C. Martikainen, Pertti J. Biasi, Christina 2019 application/pdf 1746-1764 fulltext http://urn.fi/URN:NBN:fi:jyu-201904162198 eng eng Wiley-Blackwell Publishing Ltd. Global Change Biology 1354-1013 5 25 10.1111/gcb.14574 Voigt, C., Marushchak, M., Mastepanov, M., Lamprecht, R. E., Christensen, T. R., Dorodnikov, M., Jackowicz‐Korczyński, M., Lindgren, A., Lohila, A., Nykänen, H., Oinonen, M., Oksanen, T., Palonen, V., Treat, C. C., Martikainen, P. J., & Biasi, C. (2019). Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Global Change Biology , 25 (5), 1746-1764. https://doi.org/10.1111/gcb.14574 CONVID_28890098 TUTKAID_80477 URN:NBN:fi:jyu-201904162198 http://urn.fi/URN:NBN:fi:jyu-201904162198 In Copyright © 2019 John Wiley & Sons Ltd. openAccess http://rightsstatements.org/page/InC/1.0/?language=en greenhouse gas climate warming permafrost-carbon-feedback CO2 methane oxidation mesocosm kasvihuonekaasut metaani hiilidioksidi kasvihuoneilmiö hiilen kierto ikirouta article http://purl.org/eprint/type/JournalArticle http://purl.org/coar/resource_type/c_2df8fbb1 acceptedVersion A1 2019 ftjyvaeskylaenun 2024-01-11T00:03:55Z Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m−2 day−1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m−2 day−1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales. ... Article in Journal/Newspaper Arctic Arctic permafrost JYX - Jyväskylä University Digital Archive Arctic Global Change Biology 25 5 1746 1764
institution Open Polar
collection JYX - Jyväskylä University Digital Archive
op_collection_id ftjyvaeskylaenun
language English
topic greenhouse gas
climate warming
permafrost-carbon-feedback
CO2
methane oxidation
mesocosm
kasvihuonekaasut
metaani
hiilidioksidi
kasvihuoneilmiö
hiilen kierto
ikirouta
spellingShingle greenhouse gas
climate warming
permafrost-carbon-feedback
CO2
methane oxidation
mesocosm
kasvihuonekaasut
metaani
hiilidioksidi
kasvihuoneilmiö
hiilen kierto
ikirouta
Voigt, Carolina
Marushchak, Maija
Mastepanov, Mikhail
Lamprecht, Richard E.
Christensen, Torben R.
Dorodnikov, Maxim
Jackowicz‐Korczyński, Marcin
Lindgren, Amelie
Lohila, Annalea
Nykänen, Hannu
Oinonen, Markku
Oksanen, Timo
Palonen, Vesa
Treat, Claire C.
Martikainen, Pertti J.
Biasi, Christina
Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
topic_facet greenhouse gas
climate warming
permafrost-carbon-feedback
CO2
methane oxidation
mesocosm
kasvihuonekaasut
metaani
hiilidioksidi
kasvihuoneilmiö
hiilen kierto
ikirouta
description Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m−2 day−1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m−2 day−1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales. ...
format Article in Journal/Newspaper
author Voigt, Carolina
Marushchak, Maija
Mastepanov, Mikhail
Lamprecht, Richard E.
Christensen, Torben R.
Dorodnikov, Maxim
Jackowicz‐Korczyński, Marcin
Lindgren, Amelie
Lohila, Annalea
Nykänen, Hannu
Oinonen, Markku
Oksanen, Timo
Palonen, Vesa
Treat, Claire C.
Martikainen, Pertti J.
Biasi, Christina
author_facet Voigt, Carolina
Marushchak, Maija
Mastepanov, Mikhail
Lamprecht, Richard E.
Christensen, Torben R.
Dorodnikov, Maxim
Jackowicz‐Korczyński, Marcin
Lindgren, Amelie
Lohila, Annalea
Nykänen, Hannu
Oinonen, Markku
Oksanen, Timo
Palonen, Vesa
Treat, Claire C.
Martikainen, Pertti J.
Biasi, Christina
author_sort Voigt, Carolina
title Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_short Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_full Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_fullStr Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_full_unstemmed Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
title_sort ecosystem carbon response of an arctic peatland to simulated permafrost thaw
publisher Wiley-Blackwell Publishing Ltd.
publishDate 2019
url http://urn.fi/URN:NBN:fi:jyu-201904162198
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
permafrost
genre_facet Arctic
Arctic
permafrost
op_relation Global Change Biology
1354-1013
5
25
10.1111/gcb.14574
Voigt, C., Marushchak, M., Mastepanov, M., Lamprecht, R. E., Christensen, T. R., Dorodnikov, M., Jackowicz‐Korczyński, M., Lindgren, A., Lohila, A., Nykänen, H., Oinonen, M., Oksanen, T., Palonen, V., Treat, C. C., Martikainen, P. J., & Biasi, C. (2019). Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Global Change Biology , 25 (5), 1746-1764. https://doi.org/10.1111/gcb.14574
CONVID_28890098
TUTKAID_80477
URN:NBN:fi:jyu-201904162198
http://urn.fi/URN:NBN:fi:jyu-201904162198
op_rights In Copyright
© 2019 John Wiley & Sons Ltd.
openAccess
http://rightsstatements.org/page/InC/1.0/?language=en
container_title Global Change Biology
container_volume 25
container_issue 5
container_start_page 1746
op_container_end_page 1764
_version_ 1789961141276901376