Influence of breed and environment on leukocyte telomere length in cattle

High milk yield is associated with reduced longevity in high-producing dairy cattle breeds. Pre-term culling leads to high replacement heifer demand and economic losses for the dairy industry. Selection for this trait is limited because of low heritability and difficulties in phenotype measurement....

Full description

Bibliographic Details
Main Authors: N. S. Yudin, A. V. Igoshin, G. A. Romashov, A. A. Martynov, D. M. Larkin, Н. С. Юдин, А. В. Игошин, Г. А. Ромашов, А. А. Мартынов, Д. М. Ларкин
Other Authors: The work was supported by the Russian Scientific Foundation (RSF) grant No. 22-26-00143 (https://rscf.ru/project/22-26-00143/).
Format: Article in Journal/Newspaper
Language:English
Published: Institute of Cytology and Genetics of Siberian Branch of the RAS 2024
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/4089
https://doi.org/10.18699/vjgb-24-23
id ftjvavilov:oai:oai.vavilov.elpub.ru:article/4089
record_format openpolar
institution Open Polar
collection Vavilov Journal of Genetics and Breeding
op_collection_id ftjvavilov
language English
topic длина теломер лейкоцитов
selection
cattle
breed
dairy
beef
environment
cold climate
leukocyte telomere length
селекция
крупный рогатый скот
молочный
мясной
холодный климат
spellingShingle длина теломер лейкоцитов
selection
cattle
breed
dairy
beef
environment
cold climate
leukocyte telomere length
селекция
крупный рогатый скот
молочный
мясной
холодный климат
N. S. Yudin
A. V. Igoshin
G. A. Romashov
A. A. Martynov
D. M. Larkin
Н. С. Юдин
А. В. Игошин
Г. А. Ромашов
А. А. Мартынов
Д. М. Ларкин
Influence of breed and environment on leukocyte telomere length in cattle
topic_facet длина теломер лейкоцитов
selection
cattle
breed
dairy
beef
environment
cold climate
leukocyte telomere length
селекция
крупный рогатый скот
молочный
мясной
холодный климат
description High milk yield is associated with reduced longevity in high-producing dairy cattle breeds. Pre-term culling leads to high replacement heifer demand and economic losses for the dairy industry. Selection for this trait is limited because of low heritability and difficulties in phenotype measurement. Telomeres are elements found at the ends of chromosomes, consisting of repetitive DNA sequences, several thousand base pairs in length, coupled with nucleoprotein complexes. Eventually, in humans and most other animals, telomere length reduces with age. When telomeric DNA is truncated to a critical length, cell ageing, cell cycle arrest, and apoptosis are induced. As a result, telomere length can be considered as a predictor of health risks and an individual’s lifespan. The leukocyte telomere length may be used as a proxy phenotype of productive lifespan to improve cattle selection. Our objectives were to assess the effects of breed and breed group (dairy vs. beef) on the leukocyte telomere length and to estimate the effect of cold climate on this trait in Kalmyk cattle populations from the South (Rostov Oblast) and Far North (Republic of Sakha) regions of Russia. The leukocyte telomere lengths were estimated computationally from whole-genome resequencing data. We leveraged data on leukocyte telomere length, sex, and age of 239 animals from 17 cattle breeds. The breed factor had a significant effect on leukocyte telomere length across our sample. There was no difference in leukocyte telomere length between dairy and beef groups. The population factor had a significant effect on leukocyte telomere length in Kalmyk animals. In conclusion, we found that breed, but not breed group (dairy vs. beef), was significantly associated with leukocyte telomere length in cattle. Residence in colder climates was associated with longer leukocyte telomere length in Kalmyk breed cattle. Высокие удои молока сопряжены с сокращением продолжительности жизни у высокопродуктивных молочных пород скота. Преждевременная выбраковка приводит к ...
author2 The work was supported by the Russian Scientific Foundation (RSF) grant No. 22-26-00143 (https://rscf.ru/project/22-26-00143/).
format Article in Journal/Newspaper
author N. S. Yudin
A. V. Igoshin
G. A. Romashov
A. A. Martynov
D. M. Larkin
Н. С. Юдин
А. В. Игошин
Г. А. Ромашов
А. А. Мартынов
Д. М. Ларкин
author_facet N. S. Yudin
A. V. Igoshin
G. A. Romashov
A. A. Martynov
D. M. Larkin
Н. С. Юдин
А. В. Игошин
Г. А. Ромашов
А. А. Мартынов
Д. М. Ларкин
author_sort N. S. Yudin
title Influence of breed and environment on leukocyte telomere length in cattle
title_short Influence of breed and environment on leukocyte telomere length in cattle
title_full Influence of breed and environment on leukocyte telomere length in cattle
title_fullStr Influence of breed and environment on leukocyte telomere length in cattle
title_full_unstemmed Influence of breed and environment on leukocyte telomere length in cattle
title_sort influence of breed and environment on leukocyte telomere length in cattle
publisher Institute of Cytology and Genetics of Siberian Branch of the RAS
publishDate 2024
url https://vavilov.elpub.ru/jour/article/view/4089
https://doi.org/10.18699/vjgb-24-23
geographic Sakha
geographic_facet Sakha
genre Republic of Sakha
genre_facet Republic of Sakha
op_source Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 190-197
Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 190-197
2500-3259
10.18699/vjgb-24-15
op_relation https://vavilov.elpub.ru/jour/article/view/4089/1826
Andrew T., Aviv A., Falchi M., Surdulescu G.L., Gardner J.P., Lu X., Kimura M., Kato B.S., Valdes A.M., Spector T.D. Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. Am. J. Hum. Genet. 2006;78(3): 480-486. DOI 10.1086/500052
Armanios M. The role of telomeres in human disease. Annu. Rev. Genomics Hum. Genet. 2022;23:363-381. DOI 10.1146/annurev- genom-010422-091101
Asghar M., Palinauskas V., Zaghdoudi-Allan N., Valkiūnas G., Mukhin A., Platonova E., Färnert A., Bensch S., Hasselquist D. Parallel telomere shortening in multiple body tissues owing to malaria infection. Proc. Biol. Sci. 2016;283(1836):20161184. DOI 10.1098/ rspb.2016.1184
Astuti Y., Wardhana A., Watkins J., Wulaningsih W.; PILAR Research Network. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ. Res. 2017;158:480-
DOI 10.1016/j.envres.2017.06.038
Behr A.A., Liu K.Z., Liu-Fang G., Nakka P., Ramachandran S. pong: fast analysis and visualization of latent clusters in population genetic data. Bioinformatics. 2016;32(18):2817-2823. DOI 10.1093/ bioinformatics/btw327
Ben-Shachar M.S., Lüdecke D., Makowski D. effectsize: Estimation of effect size indices and standardized parameters. J. Open Source
Softw. 2020;5(56):2815. DOI 10.21105/joss.02815
Blackburn E.H., Epel E.S., Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193-1198. DOI 10.1126/science.aab3389
Broer L., Codd V., Nyholt D.R., Deelen J., Mangino M., Willemsen G., Albrecht E., … Vink J.M., Spector T.D., Slagboom P.E., Martin N.G., Samani N.J., van Duijn C.M., Boomsma D.I. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum.
Genet. 2013;21(10):1163-1168. DOI 10.1038/ejhg.2012.303
Brown D.E., Dechow C.D., Liu W.S., Harvatine K.J., Ott T.L. Hot topic: association of telomere length with age, herd, and culling in lactating Holsteins. J. Dairy Sci. 2012;95(11):6384-6387. DOI 10.3168/jds.2012-5593
Burraco P., Hernandez-Gonzalez M., Metcalfe N.B., Monaghan P. Ageing across the great divide: tissue transformation, organismal growth and temperature shape telomere dynamics through the metamorphic transition. Proc. Biol. Sci. 2023;290(1992):20222448. DOI 10.1098/rspb.2022.2448
Carrillo A.E., Flouris A.D. Caloric restriction and longevity: effects of reduced body temperature. Ageing Res. Rev. 2011;10(1):153-162. DOI 10.1016/j.arr.2010.10.001
Chakravarti D., LaBella K.A., DePinho R.A. Telomeres: history, health, and hallmarks of aging. Cell. 2021;184(2):306-322. DOI 10.1016/ j.cell.2020.12.028
Chatelain M., Drobniak S.M., Szulkin M. The association between stressors and telomeres in non-human vertebrates: a meta-analysis.
Ecol. Lett. 2020;23(2):381-398. DOI 10.1111/ele.13426
Chik H.Y.J., Sparks A.M., Schroeder J., Dugdale H.L. A meta-analysis on the heritability of vertebrate telomere length. J. Evol. Biol. ;35(10):1283-1295. DOI 10.1111/jeb.14071
Conti B., Sanchez-Alavez M., Winsky-Sommerer R., Morale M.C., Lucero J., Brownell S., Fabre V., Huitron-Resendiz S., Henriksen S., Zorrilla E.P., de Lecea L., Bartfai T. Transgenic mice with a reduced core body temperature have an increased life span. Science. 2006;
(5800):825-828. DOI 10.1126/science.1132191
Cook D.E., Zdraljevic S., Tanny R.E., Seo B., Riccardi D.D., Noble L.M., Rockman M.V., Alkema M.J., Braendle C., Kammenga J.E., Wang J., Kruglyak L., Félix M.A., Lee J., Andersen E.C. The genetic basis of natural variation in Caenorhabditis elegans telomere length. Genetics. 2016;204(1):371-383. DOI 10.1534/genetics.116. 191148
Crocco P., De Rango F., Dato S., Rose G., Passarino G. Telomere length as a function of age at population level parallels human survival curves. Aging (Albany NY ). 2021;13(1):204-218. DOI 10.18632/ aging.202498
de Lange T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 2018;52:223-247. DOI 10.1146/annurev-genet-032918-021921
Ding Z., Mangino M., Aviv A., Spector T., Durbin R. Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 2014;42(9):e75. DOI 10.1093/nar/gku181
Dmitriev N.G., Ernst L.K. (Eds.). Animal Genetics Resources of the USSR. Rome: Food and Agriculture Organization of the United Nations, 1989
Dugdale H.L., Richardson D.S. Heritability of telomere variation: it is all about the environment! Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018;373(1741):20160450. DOI 10.1098/rstb.2016.0450
Dunin I.M., Dankvert A.G. (Eds.). Breeds and Types of Farm Animals in the Russian Federation. Moscow: All-Russia Research Institute of Animal Breeding, 2013 (in Russian)
Fick L.J., Fick G.H., Li Z., Cao E., Bao B., Heffelfinger D., Parker H.G., Ostrander E.A., Riabowol K. Telomere length correlates with life span of dog breeds. Cell Rep. 2012;2(6):1530-1536. DOI
1016/j.celrep.2012.11.021
Foley N.M., Petit E.J., Brazier T., Finarelli J.A., Hughes G.M., Touzalin F., Puechmaille S.J., Teeling E.C. Drivers of longitudinal telomere dynamics in a long-lived bat species, Myotis myotis. Mol. Ecol. 2020;29(16):2963-2977. DOI 10.1111/mec.15395
Friesen C.R., Wapstra E., Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol.
Ecol. 2022;31(23):6069-6086. DOI 10.1111/mec.16154
Fulbert C., Gaude C., Sulpice E., Chabardès S., Ratel D. Moderate hypothermia inhibits both proliferation and migration of human glioblastoma cells. J. Neurooncol. 2019;144(3):489-499. DOI 10.1007/
s11060-019-03263-3
Galigniana N.M., Charó N.L., Uranga R., Cabanillas A.M., Piwien-Pilipuk G. Oxidative stress induces transcription of telomeric repeatcontaining RNA (TERRA) by engaging PKA signaling and cytoskeleton dynamics. Biochim. Biophys. Acta Mol. Cell. Res. 2020; 1867(4):118643. DOI 10.1016/j.bbamcr.2020.118643
Grandl F., Furger M., Kreuzer M., Zehetmeier M. Impact of longev ity on greenhouse gas emissions and profitability of individual dairy cows analysed with different system boundaries. Animal. 2019; 13(1):198-208. DOI 10.1017/S175173111800112X
Herborn K.A., Heidinger B.J., Boner W., Noguera J.C., Adam A., Daunt F., Monaghan P. Stress exposure in early post-natal life reduces telomere length: an experimental demonstration in a long-lived seabird. Proc. Biol. Sci. 2014;281(1782):20133151. DOI 10.1098/ rspb.2013.3151
Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50(3):346-363. DOI 10.1002/ bimj.20081042
Hu H., Mu T., Ma Y., Wang X., Ma Y. Analysis of longevity traits in Holstein cattle: A review. Front. Genet. 2021;12:695543. DOI
3389/fgene.2021.695543
Iannuzzi A., Albarella S., Parma P., Galdiero G., D’Anza E., Pistucci R., Peretti V., Ciotola F. Characterization of telomere length in Agerolese cattle breed, correlating blood and milk samples. Anim.
Genet. 2022;53(5):676-679. DOI 10.1111/age.13227
Igoshin A.V., Yudin N.S., Romashov G.A., Larkin D.M. A multibreed genome-wide association study for cattle leukocyte telomere length. Genes (Basel). 2023;14(8):1596. DOI 10.3390/ genes14081596
Ilska-Warner J.J., Psifidi A., Seeker L.A., Wilbourn R.V., Underwood S.L., Fairlie J., Whitelaw B., Nussey D.H., Coffey M.P., Banos G. The genetic architecture of bovine telomere length in early life and association with animal fitness. Front. Genet. 2019;10: 1048. DOI 10.3389/fgene.2019.01048
Jenner L.P., Peska V., Fulnečková J., Sýkorová E. Telomeres and their neighbors. Genes (Basel). 2022;13(9):1663. DOI 10.3390/genes130
Kanagawa T., Fukuda H., Tsubouchi H., Komoto Y., Hayashi S., Fukui O., Shimoya K., Murata Y. A decrease of cell proliferation by hypothermia in the hippocampus of the neonatal rat. Brain Res. ;1111(1):36-40. DOI 10.1016/j.brainres.2006.06.112
Kayumov F.G., Chernomyrdin V.N., Mayevskaya L.A., Surundaeva L.G., Polskikh S.S. The use of Kalmyk cattle on animal breeding farms in Russia. Izv. Orenbg. State Agrar. Univ. 2014;5(49):116-119
(in Russian)
Kordowitzki P., Merle R., Hass P.-K., Plendl J., Rieger J., Kaessmeyer S. Influence of age and breed on bovine ovarian capillary blood supply, ovarian mitochondria and telomere length. Cells. ;10(10):2661. DOI 10.3390/cells10102661
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.18699/vjgb-24-2310.18699/vjgb-24-1510.1146/annurev-10.1534/genetics.116.10.26717/BJSTR.10.1016/j.arr.10.1073/pnas.
_version_ 1798853856018300928
spelling ftjvavilov:oai:oai.vavilov.elpub.ru:article/4089 2024-05-12T08:10:25+00:00 Influence of breed and environment on leukocyte telomere length in cattle Влияние породы и среды на длину теломер лейкоцитов у крупного рогатого скота N. S. Yudin A. V. Igoshin G. A. Romashov A. A. Martynov D. M. Larkin Н. С. Юдин А. В. Игошин Г. А. Ромашов А. А. Мартынов Д. М. Ларкин The work was supported by the Russian Scientific Foundation (RSF) grant No. 22-26-00143 (https://rscf.ru/project/22-26-00143/). 2024-04-11 application/pdf https://vavilov.elpub.ru/jour/article/view/4089 https://doi.org/10.18699/vjgb-24-23 eng eng Institute of Cytology and Genetics of Siberian Branch of the RAS https://vavilov.elpub.ru/jour/article/view/4089/1826 Andrew T., Aviv A., Falchi M., Surdulescu G.L., Gardner J.P., Lu X., Kimura M., Kato B.S., Valdes A.M., Spector T.D. Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. Am. J. Hum. Genet. 2006;78(3): 480-486. DOI 10.1086/500052 Armanios M. The role of telomeres in human disease. Annu. Rev. Genomics Hum. Genet. 2022;23:363-381. DOI 10.1146/annurev- genom-010422-091101 Asghar M., Palinauskas V., Zaghdoudi-Allan N., Valkiūnas G., Mukhin A., Platonova E., Färnert A., Bensch S., Hasselquist D. Parallel telomere shortening in multiple body tissues owing to malaria infection. Proc. Biol. Sci. 2016;283(1836):20161184. DOI 10.1098/ rspb.2016.1184 Astuti Y., Wardhana A., Watkins J., Wulaningsih W.; PILAR Research Network. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ. Res. 2017;158:480- DOI 10.1016/j.envres.2017.06.038 Behr A.A., Liu K.Z., Liu-Fang G., Nakka P., Ramachandran S. pong: fast analysis and visualization of latent clusters in population genetic data. Bioinformatics. 2016;32(18):2817-2823. DOI 10.1093/ bioinformatics/btw327 Ben-Shachar M.S., Lüdecke D., Makowski D. effectsize: Estimation of effect size indices and standardized parameters. J. Open Source Softw. 2020;5(56):2815. DOI 10.21105/joss.02815 Blackburn E.H., Epel E.S., Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193-1198. DOI 10.1126/science.aab3389 Broer L., Codd V., Nyholt D.R., Deelen J., Mangino M., Willemsen G., Albrecht E., … Vink J.M., Spector T.D., Slagboom P.E., Martin N.G., Samani N.J., van Duijn C.M., Boomsma D.I. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. 2013;21(10):1163-1168. DOI 10.1038/ejhg.2012.303 Brown D.E., Dechow C.D., Liu W.S., Harvatine K.J., Ott T.L. Hot topic: association of telomere length with age, herd, and culling in lactating Holsteins. J. Dairy Sci. 2012;95(11):6384-6387. DOI 10.3168/jds.2012-5593 Burraco P., Hernandez-Gonzalez M., Metcalfe N.B., Monaghan P. Ageing across the great divide: tissue transformation, organismal growth and temperature shape telomere dynamics through the metamorphic transition. Proc. Biol. Sci. 2023;290(1992):20222448. DOI 10.1098/rspb.2022.2448 Carrillo A.E., Flouris A.D. Caloric restriction and longevity: effects of reduced body temperature. Ageing Res. Rev. 2011;10(1):153-162. DOI 10.1016/j.arr.2010.10.001 Chakravarti D., LaBella K.A., DePinho R.A. Telomeres: history, health, and hallmarks of aging. Cell. 2021;184(2):306-322. DOI 10.1016/ j.cell.2020.12.028 Chatelain M., Drobniak S.M., Szulkin M. The association between stressors and telomeres in non-human vertebrates: a meta-analysis. Ecol. Lett. 2020;23(2):381-398. DOI 10.1111/ele.13426 Chik H.Y.J., Sparks A.M., Schroeder J., Dugdale H.L. A meta-analysis on the heritability of vertebrate telomere length. J. Evol. Biol. ;35(10):1283-1295. DOI 10.1111/jeb.14071 Conti B., Sanchez-Alavez M., Winsky-Sommerer R., Morale M.C., Lucero J., Brownell S., Fabre V., Huitron-Resendiz S., Henriksen S., Zorrilla E.P., de Lecea L., Bartfai T. Transgenic mice with a reduced core body temperature have an increased life span. Science. 2006; (5800):825-828. DOI 10.1126/science.1132191 Cook D.E., Zdraljevic S., Tanny R.E., Seo B., Riccardi D.D., Noble L.M., Rockman M.V., Alkema M.J., Braendle C., Kammenga J.E., Wang J., Kruglyak L., Félix M.A., Lee J., Andersen E.C. The genetic basis of natural variation in Caenorhabditis elegans telomere length. Genetics. 2016;204(1):371-383. DOI 10.1534/genetics.116. 191148 Crocco P., De Rango F., Dato S., Rose G., Passarino G. Telomere length as a function of age at population level parallels human survival curves. Aging (Albany NY ). 2021;13(1):204-218. DOI 10.18632/ aging.202498 de Lange T. Shelterin-mediated telomere protection. Annu. Rev. Genet. 2018;52:223-247. DOI 10.1146/annurev-genet-032918-021921 Ding Z., Mangino M., Aviv A., Spector T., Durbin R. Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 2014;42(9):e75. DOI 10.1093/nar/gku181 Dmitriev N.G., Ernst L.K. (Eds.). Animal Genetics Resources of the USSR. Rome: Food and Agriculture Organization of the United Nations, 1989 Dugdale H.L., Richardson D.S. Heritability of telomere variation: it is all about the environment! Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018;373(1741):20160450. DOI 10.1098/rstb.2016.0450 Dunin I.M., Dankvert A.G. (Eds.). Breeds and Types of Farm Animals in the Russian Federation. Moscow: All-Russia Research Institute of Animal Breeding, 2013 (in Russian) Fick L.J., Fick G.H., Li Z., Cao E., Bao B., Heffelfinger D., Parker H.G., Ostrander E.A., Riabowol K. Telomere length correlates with life span of dog breeds. Cell Rep. 2012;2(6):1530-1536. DOI 1016/j.celrep.2012.11.021 Foley N.M., Petit E.J., Brazier T., Finarelli J.A., Hughes G.M., Touzalin F., Puechmaille S.J., Teeling E.C. Drivers of longitudinal telomere dynamics in a long-lived bat species, Myotis myotis. Mol. Ecol. 2020;29(16):2963-2977. DOI 10.1111/mec.15395 Friesen C.R., Wapstra E., Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol. Ecol. 2022;31(23):6069-6086. DOI 10.1111/mec.16154 Fulbert C., Gaude C., Sulpice E., Chabardès S., Ratel D. Moderate hypothermia inhibits both proliferation and migration of human glioblastoma cells. J. Neurooncol. 2019;144(3):489-499. DOI 10.1007/ s11060-019-03263-3 Galigniana N.M., Charó N.L., Uranga R., Cabanillas A.M., Piwien-Pilipuk G. Oxidative stress induces transcription of telomeric repeatcontaining RNA (TERRA) by engaging PKA signaling and cytoskeleton dynamics. Biochim. Biophys. Acta Mol. Cell. Res. 2020; 1867(4):118643. DOI 10.1016/j.bbamcr.2020.118643 Grandl F., Furger M., Kreuzer M., Zehetmeier M. Impact of longev ity on greenhouse gas emissions and profitability of individual dairy cows analysed with different system boundaries. Animal. 2019; 13(1):198-208. DOI 10.1017/S175173111800112X Herborn K.A., Heidinger B.J., Boner W., Noguera J.C., Adam A., Daunt F., Monaghan P. Stress exposure in early post-natal life reduces telomere length: an experimental demonstration in a long-lived seabird. Proc. Biol. Sci. 2014;281(1782):20133151. DOI 10.1098/ rspb.2013.3151 Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biom. J. 2008;50(3):346-363. DOI 10.1002/ bimj.20081042 Hu H., Mu T., Ma Y., Wang X., Ma Y. Analysis of longevity traits in Holstein cattle: A review. Front. Genet. 2021;12:695543. DOI 3389/fgene.2021.695543 Iannuzzi A., Albarella S., Parma P., Galdiero G., D’Anza E., Pistucci R., Peretti V., Ciotola F. Characterization of telomere length in Agerolese cattle breed, correlating blood and milk samples. Anim. Genet. 2022;53(5):676-679. DOI 10.1111/age.13227 Igoshin A.V., Yudin N.S., Romashov G.A., Larkin D.M. A multibreed genome-wide association study for cattle leukocyte telomere length. Genes (Basel). 2023;14(8):1596. DOI 10.3390/ genes14081596 Ilska-Warner J.J., Psifidi A., Seeker L.A., Wilbourn R.V., Underwood S.L., Fairlie J., Whitelaw B., Nussey D.H., Coffey M.P., Banos G. The genetic architecture of bovine telomere length in early life and association with animal fitness. Front. Genet. 2019;10: 1048. DOI 10.3389/fgene.2019.01048 Jenner L.P., Peska V., Fulnečková J., Sýkorová E. Telomeres and their neighbors. Genes (Basel). 2022;13(9):1663. DOI 10.3390/genes130 Kanagawa T., Fukuda H., Tsubouchi H., Komoto Y., Hayashi S., Fukui O., Shimoya K., Murata Y. A decrease of cell proliferation by hypothermia in the hippocampus of the neonatal rat. Brain Res. ;1111(1):36-40. DOI 10.1016/j.brainres.2006.06.112 Kayumov F.G., Chernomyrdin V.N., Mayevskaya L.A., Surundaeva L.G., Polskikh S.S. The use of Kalmyk cattle on animal breeding farms in Russia. Izv. Orenbg. State Agrar. Univ. 2014;5(49):116-119 (in Russian) Kordowitzki P., Merle R., Hass P.-K., Plendl J., Rieger J., Kaessmeyer S. Influence of age and breed on bovine ovarian capillary blood supply, ovarian mitochondria and telomere length. Cells. ;10(10):2661. DOI 10.3390/cells10102661 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Vavilov Journal of Genetics and Breeding; Том 28, № 2 (2024); 190-197 Вавиловский журнал генетики и селекции; Том 28, № 2 (2024); 190-197 2500-3259 10.18699/vjgb-24-15 длина теломер лейкоцитов selection cattle breed dairy beef environment cold climate leukocyte telomere length селекция крупный рогатый скот молочный мясной холодный климат info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjvavilov https://doi.org/10.18699/vjgb-24-2310.18699/vjgb-24-1510.1146/annurev-10.1534/genetics.116.10.26717/BJSTR.10.1016/j.arr.10.1073/pnas. 2024-04-14T23:45:13Z High milk yield is associated with reduced longevity in high-producing dairy cattle breeds. Pre-term culling leads to high replacement heifer demand and economic losses for the dairy industry. Selection for this trait is limited because of low heritability and difficulties in phenotype measurement. Telomeres are elements found at the ends of chromosomes, consisting of repetitive DNA sequences, several thousand base pairs in length, coupled with nucleoprotein complexes. Eventually, in humans and most other animals, telomere length reduces with age. When telomeric DNA is truncated to a critical length, cell ageing, cell cycle arrest, and apoptosis are induced. As a result, telomere length can be considered as a predictor of health risks and an individual’s lifespan. The leukocyte telomere length may be used as a proxy phenotype of productive lifespan to improve cattle selection. Our objectives were to assess the effects of breed and breed group (dairy vs. beef) on the leukocyte telomere length and to estimate the effect of cold climate on this trait in Kalmyk cattle populations from the South (Rostov Oblast) and Far North (Republic of Sakha) regions of Russia. The leukocyte telomere lengths were estimated computationally from whole-genome resequencing data. We leveraged data on leukocyte telomere length, sex, and age of 239 animals from 17 cattle breeds. The breed factor had a significant effect on leukocyte telomere length across our sample. There was no difference in leukocyte telomere length between dairy and beef groups. The population factor had a significant effect on leukocyte telomere length in Kalmyk animals. In conclusion, we found that breed, but not breed group (dairy vs. beef), was significantly associated with leukocyte telomere length in cattle. Residence in colder climates was associated with longer leukocyte telomere length in Kalmyk breed cattle. Высокие удои молока сопряжены с сокращением продолжительности жизни у высокопродуктивных молочных пород скота. Преждевременная выбраковка приводит к ... Article in Journal/Newspaper Republic of Sakha Vavilov Journal of Genetics and Breeding Sakha