Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem

Soil microbial communities play a key role in the evolution of the rhizosphere. In addition, proper exploration of these microbial resources represents a promising strategy that guarantees the health and sustainability of all ecosystems connected to the ground. Under the influence of environmental c...

Full description

Bibliographic Details
Published in:Vavilov Journal of Genetics and Breeding
Main Authors: El Amrani Belkacem, эль-Амрани Белкасем
Format: Article in Journal/Newspaper
Language:English
Published: Institute of Cytology and Genetics of Siberian Branch of the RAS 2022
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/3436
https://doi.org/10.18699/VJGB-22-54
id ftjvavilov:oai:oai.vavilov.elpub.ru:article/3436
record_format openpolar
institution Open Polar
collection Vavilov Journal of Genetics and Breeding
op_collection_id ftjvavilov
language English
topic биоразнообразие растений
rhizosphere
microbial diversity
plant biodiversity
ризосфера
микробное разнообразие
spellingShingle биоразнообразие растений
rhizosphere
microbial diversity
plant biodiversity
ризосфера
микробное разнообразие
El Amrani Belkacem
эль-Амрани Белкасем
Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem
topic_facet биоразнообразие растений
rhizosphere
microbial diversity
plant biodiversity
ризосфера
микробное разнообразие
description Soil microbial communities play a key role in the evolution of the rhizosphere. In addition, proper exploration of these microbial resources represents a promising strategy that guarantees the health and sustainability of all ecosystems connected to the ground. Under the influence of environmental conditions, microbial communities can change compositions in terms of abundance and diversity. Beyond the descriptive level, the current orientation of microbial ecology is to link these structures to the functioning of ecosystems; specifically, to understand the effect of environmental factors on the functional structure of microbial communities in ecosystems. This review focuses on the main interactions between the indigenous soil microflora and the major constituents of the rhizosphere to understand, on the one hand, how microbial biodiversity can improve plant growth and maintain homeostasis of the rhizospheric ecosystem, on the other hand, how the maintenance and enrichment of plant biodiversity can contribute to the conservation of soil microbial diversity; knowing that these microorganisms are also controlled by the abiotic properties of the soil. Overall, understanding the dynamics of the rhizosphere microbiome is essential for developing innovative strategies in the field of protecting and maintaining the proper functioning of the soil ecosystem. Почвенные микробные сообщества играют ключевую роль в эволюции ризосферы. Планомерное изучение этих микробных ресурсов представляет собой перспективную стратегию, с помощью которой можно будет обеспечить здоровье и устойчивость всех почвенных экосистем. Под воздействием окружающей среды микробные сообщества могут менять численность своих популяций и видовой состав. Современная микробная экология нацелена, помимо описательного уровня, на определение связей этих структур с функционированием экосистем, в частности для понимания роли окружающей среды в жизнедеятельности микробных сообществ в экосистемах. Настоящий обзор посвящен основным взаимодействиям между местной ...
format Article in Journal/Newspaper
author El Amrani Belkacem
эль-Амрани Белкасем
author_facet El Amrani Belkacem
эль-Амрани Белкасем
author_sort El Amrani Belkacem
title Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem
title_short Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem
title_full Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem
title_fullStr Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem
title_full_unstemmed Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem
title_sort aspects of the rhizospheric microbiota and their interactions with the soil ecosystem
publisher Institute of Cytology and Genetics of Siberian Branch of the RAS
publishDate 2022
url https://vavilov.elpub.ru/jour/article/view/3436
https://doi.org/10.18699/VJGB-22-54
genre Arctic
genre_facet Arctic
op_source Vavilov Journal of Genetics and Breeding; Том 26, № 5 (2022); 442-448
Вавиловский журнал генетики и селекции; Том 26, № 5 (2022); 442-448
2500-3259
2500-0462
10.18699/VJGB-22-50
op_relation https://vavilov.elpub.ru/jour/article/view/3436/1632
Almario J., Jeena G., Wunder J., Langen G., Zuccaro A., Coupland G., Bucher M. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl. Acad. Sci. USA. 2017;114:E9403-E9412. DOI 10.1073/pnas.1710455114.
Amaral J.A., Knowles R. Inhibition of methane consumption in forest soils by monoterpenes. J. Chem. Ecol. 1998;24:723-734. DOI 10.1023/A:1022398404448.
Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017;41(2):109-130. DOI 10.1093/femsre/fuw040.
Bargali K., Manral V., Padalia K., Bargali S.S., Upadhyay V.P. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. CATENA. 2018;171:125-135. DOI 10.1016/j.catena.2018.07.001.
Bethke C.M., Sanford R.A., Kirk M.F., Jin Q., Flynn T.M. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 2011;311(3):183-210. DOI 10.2475/03.2011.01.
Biswas S.R., Mallik A.U. Species diversity and functional diversity relationship varies with disturbance intensity. Ecosphere. 2011;2(4): 1-10. DOI 10.1890/ES10-00206.1.
Bulgarelli D., Garrido-Oter R., Münch P.C., Weiman A., Dröge J., Pan Y., McHardy A.C., Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17(3):392-403. DOI 10.1016/j.chom.2015.01.011.
Cao H., Chen R., Wang L., Jiang L., Yang F., Zheng S., Wang G., Lin X. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Sci. Rep. 2016;6:25815. DOI 10.1038/srep25815.
Carnovale D., Bissett A., Thrall P.H., Baker G. Plant genus (Acacia and Eucalyptus) alters soil microbial community structure and relative abundance within revegetated shelterbelts. Appl. Soil Ecol. 2019; 133:1-11. DOI 10.1016/j.apsoil.2018.09.001.
Chang E.-H., Tian G., Chiu C.-Y. Soil microbial communities in natural and managed cloud montane forests. Forests. 2017;8(2):33. DOI 10.3390/f8010033.
Chen D., Mi J., Chu P., Cheng J., Zhang L., Pan Q., Xie Y., Bai Y. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landsc. Ecol. 2015a;30:1669-1682. DOI 10.1007/s10980-014-9996-z.
Chen D., Wang Y., Lan Z., Li J., Xing W., Hu S., Bai Y. Biotic community shifts explain the contrasting responses of microbial and root respiration to experimental soil acidification. Soil Biol. Biochem. 2015b;90:139-147. DOI 10.1016/j.soilbio.2015.08.009.
Chernov T.I., Zhelezova A.D. The dynamics of soil microbial communities on different timescales: a review. Eurasian Soil Sci. 2020;53: 643-652. DOI 10.1134/S106422932005004X.
Chomel M., Fernandez C., Bousquet-Mélou A., Gers C., Monnier Y., Santonja M., Gauquelin T., Gros R., Lecareux C., Baldy V. Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J. Ecol. 2014;102(2):411-424. DOI 10.1111/1365-2745. 12205.
Chomel M., Guittonny-Larchevêque M., Fernandez C., Gallet C., DesRochers A., Paré D., Jackson B.G., Baldy V. Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J. Ecol. 2016;104(6):1527-1541. DOI 10.1111/1365-2745.12644.
D’Acunto L., Andrade J.F., Poggio S.L., Semmartin M. Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agric. Ecosyst. Environ. 2018;257:159-164. DOI 10.1016/j.agee.2018.02.011.
Díaz S., Lavorel S., de Bello F., Quétier F., Grigulis K., Robson T.M. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA. 2007;104(52):20684-20689. DOI 10.1073/pnas.0704716104.
El Amrani B. The effect of pH on the growth of Cedrus atlantica M. plants. 1st Scientific Day dedicated to PhD students under the theme “Biotechnology, Ecology and Valorization of Phyto-resources” FSDM, Fes, Morocco. 2017. DOI 10.5281/zenodo.619302.
El Amrani B., Amraoui B.M. Effects of some properties of cedar forest soils on secondary roots of Cedrus atlantica Manetti. J. For. Sci. 2018;64:506-513. DOI 10.17221/69/2018-JFS.
El Amrani B., Amraoui B.M. Biomechanics of Atlas cedar roots in response to the medium hydromechanical characteristics. Scientifica. 2020;2020:7538698. DOI 10.1155/2020/7538698.
El Amrani B., Amraoui B.M. Soil microbial communities affect development of Cedrus atlantica M. Asian J. Soil Sci. Plant Nutr. 2022;7(1):43-50.
Feng Y., Hu Y., Wu J., Chen J., Yrjälä K., Yu W. Change in microbial communities, soil enzyme and metabolic activity in a Torreya grandis plantation in response to root rot disease. For. Ecol. Manag. 2019;432:932-941. DOI 10.1016/j.foreco.2018.10.028.
Field K.J., Leake J.R., Tille S., Allinson K.E., Rimington W.R., Bidartondo M.I., Beerling D.J., Cameron D.D. From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes. New Phytol. 2015;205:1492-1502. DOI 10.1111/nph.13263.
Fitzpatrick C.R., Copeland J., Wang P.W., Guttman D.S., Kotanen P.M., Johnson M.T.J. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. USA. 2018;115(6):E1157-E1165. DOI 10.1073/pnas.1717617115.
Fontana V., Guariento E., Hilpold A., Niedrist G., Steinwandter M., Spitale D., Nascimbene J., Tappeiner U., Seeber J. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 2020; 10:12516. DOI 10.1038/s41598-020-69569-9.
Glick B.R. Beneficial Plant-Bacterial Interactions. Springer Cham, 2020. DOI 10.1007/978-3-030-44368-9.
Gömöryová E., Ujházy K., Martinák M., Gömöry D. Soil microbial community response to variation in vegetation and abiotic environment in a temperate old-growth forest. Appl. Soil Ecol. 2013;68:10-19. DOI 10.1016/j.apsoil.2013.03.005.
Gunina A., Smith A.R., Godbold D.L., Jones D.L., Kuzyakov Y. Response of soil microbial community to afforestation with pure and mixed species. Plant Soil. 2017;412:357-368. DOI 10.1007/s11104-016-3073-0.
Hanson C.A., Fuhrman J.A., Horner-Devine M.C., Martiny J.B.H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 2012;10:497-506. DOI 10.1038/nrmicro2795.
Jiménez J.J., Igual J.M., Villar L., Benito-Alonso J.L., Abadias-Ullod J. Hierarchical drivers of soil microbial community structure variability in “Monte Perdido” Massif (Central Pyrenees). Sci. Rep. 2019; 9(1):8768. DOI 10.1038/s41598-019-45372-z.
Jin K., Shen J., Ashton R.W., Dodd I.C., Parry M.A.J., Whalley W.R. How do roots elongate in a structured soil? J. Exp. Bot. 2013;64(15):4761-4777. DOI 10.1093/jxb/ert286.
Jin Q., Kirk M.F. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Front. Environ. Sci. 2018; 6:21. DOI 10.3389/fenvs.2018.00021.
Jones D.L., Nguyen C., Finlay R.D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 2009;321:5-33. DOI 10.1007/s11104-009-9925-0.
Kernaghan G., Widden P., Bergeron Y., Légaré S., Paré D. Biotic and abiotic factors affecting ectomycorrhizal diversity in boreal mixedwoods. Oikos. 2003;102:497-504.
Kooch Y., Samadzadeh B., Hosseini S.M. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. CATENA. 2017;150:223-229. DOI 10.1016/j.catena.2016.11.023.
Kumar M., Brader G., Sessitsch A., Mäki A., van Elsas J.D., Nissinen R. Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones. Front. Microbiol. 2017;8:12. DOI 10.3389/fmicb.2017.00012.
Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 2015;83:184-199. DOI 10.1016/j.soilbio.2015.01.025.
Latimer A.M. Species diversity. In: El-Shaarawi A.H., Piegorsch W.W. (Eds.) Encyclopedia of Environmetrics. Wiley, 2012. DOI 10.1002/9780470057339.vas046.pub2.
Liu L., Zhu K., Wurzburger N., Zhang J. Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere. 2020;11(1):e02999. DOI 10.1002/ecs2.2999.
Malard L.A., Pearce D.A. Microbial diversity and biogeography in Arctic soils: microbial diversity and biogeography. Environ. Microbiol. Rep. 2018;10:611-625. DOI 10.1111/1758-2229.12680.
Mansouri H., Petit A., Oger P., Dessaux Y. Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl. Environ. Microbiol. 2002;68(5):2562-2566. DOI 10.1128/AEM.68.5.2562-2566.2002.
Manzoni S., Schimel J.P., Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology. 2012;93(4):930-938. DOI 10.1890/11-0026.1.
Marinari S., Mancinelli R., Campiglia E., Grego S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 2006;6(4):701-711. DOI 10.1016/j.ecolind.2005.08.029.
Mayfield M.M., Bonser S.P., Morgan J.W., Aubin I., McNamara S., Vesk P.A. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 2010;19(4):423-431. DOI 10.1111/j.1466-8238.2010.00532.x.
Monkai J., Goldberg S.D., Hyde K.D., Harrison R.D., Mortimer P.E., Xu J. Natural forests maintain a greater soil microbial diversity than that in rubber plantations in Southwest China. Agric. Ecosyst. Environ. 2018;265:190-197. DOI 10.1016/j.agee.2018.06.009.
Nair D.N., Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. Sci. World J. 2014;2014:250693. DOI 10.1155/2014/250693.
Philippot L., Raaijmakers J.M., Lemanceau P., van der Putten W.H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013;11:789-799. DOI 10.1038/nrmicro3109.
Pingel M., Reineke A., Leyer I. A 30-years vineyard trial: plant communities, soil microbial communities and litter decomposition respond more to soil treatment than to N fertilization. Agric. Ecosyst. Environ. 2019;272:114-125. DOI 10.1016/j.agee.2018.11.005.
Raaijmakers J.M., Paulitz T.C., Steinberg C., Alabouvette C., Moënne- Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009; 321:341-361. DOI 10.1007/s11104-008-9568-6.
op_rights Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.18699/VJGB-22-54
https://doi.org/10.18699/VJGB-22-50
https://doi.org/10.1111/1365-2745.
https://doi.org/10.1016/j.foreco.
container_title Vavilov Journal of Genetics and Breeding
container_volume 26
container_issue 5
container_start_page 442
op_container_end_page 448
_version_ 1766302672946724864
spelling ftjvavilov:oai:oai.vavilov.elpub.ru:article/3436 2023-05-15T14:28:31+02:00 Aspects of the rhizospheric microbiota and their interactions with the soil ecosystem Аспекты ризосферной микробиоты и их взаимодействие с почвенной экосистемой El Amrani Belkacem эль-Амрани Белкасем 2022-09-03 application/pdf https://vavilov.elpub.ru/jour/article/view/3436 https://doi.org/10.18699/VJGB-22-54 eng eng Institute of Cytology and Genetics of Siberian Branch of the RAS https://vavilov.elpub.ru/jour/article/view/3436/1632 Almario J., Jeena G., Wunder J., Langen G., Zuccaro A., Coupland G., Bucher M. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl. Acad. Sci. USA. 2017;114:E9403-E9412. DOI 10.1073/pnas.1710455114. Amaral J.A., Knowles R. Inhibition of methane consumption in forest soils by monoterpenes. J. Chem. Ecol. 1998;24:723-734. DOI 10.1023/A:1022398404448. Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017;41(2):109-130. DOI 10.1093/femsre/fuw040. Bargali K., Manral V., Padalia K., Bargali S.S., Upadhyay V.P. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. CATENA. 2018;171:125-135. DOI 10.1016/j.catena.2018.07.001. Bethke C.M., Sanford R.A., Kirk M.F., Jin Q., Flynn T.M. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 2011;311(3):183-210. DOI 10.2475/03.2011.01. Biswas S.R., Mallik A.U. Species diversity and functional diversity relationship varies with disturbance intensity. Ecosphere. 2011;2(4): 1-10. DOI 10.1890/ES10-00206.1. Bulgarelli D., Garrido-Oter R., Münch P.C., Weiman A., Dröge J., Pan Y., McHardy A.C., Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17(3):392-403. DOI 10.1016/j.chom.2015.01.011. Cao H., Chen R., Wang L., Jiang L., Yang F., Zheng S., Wang G., Lin X. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Sci. Rep. 2016;6:25815. DOI 10.1038/srep25815. Carnovale D., Bissett A., Thrall P.H., Baker G. Plant genus (Acacia and Eucalyptus) alters soil microbial community structure and relative abundance within revegetated shelterbelts. Appl. Soil Ecol. 2019; 133:1-11. DOI 10.1016/j.apsoil.2018.09.001. Chang E.-H., Tian G., Chiu C.-Y. Soil microbial communities in natural and managed cloud montane forests. Forests. 2017;8(2):33. DOI 10.3390/f8010033. Chen D., Mi J., Chu P., Cheng J., Zhang L., Pan Q., Xie Y., Bai Y. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landsc. Ecol. 2015a;30:1669-1682. DOI 10.1007/s10980-014-9996-z. Chen D., Wang Y., Lan Z., Li J., Xing W., Hu S., Bai Y. Biotic community shifts explain the contrasting responses of microbial and root respiration to experimental soil acidification. Soil Biol. Biochem. 2015b;90:139-147. DOI 10.1016/j.soilbio.2015.08.009. Chernov T.I., Zhelezova A.D. The dynamics of soil microbial communities on different timescales: a review. Eurasian Soil Sci. 2020;53: 643-652. DOI 10.1134/S106422932005004X. Chomel M., Fernandez C., Bousquet-Mélou A., Gers C., Monnier Y., Santonja M., Gauquelin T., Gros R., Lecareux C., Baldy V. Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J. Ecol. 2014;102(2):411-424. DOI 10.1111/1365-2745. 12205. Chomel M., Guittonny-Larchevêque M., Fernandez C., Gallet C., DesRochers A., Paré D., Jackson B.G., Baldy V. Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J. Ecol. 2016;104(6):1527-1541. DOI 10.1111/1365-2745.12644. D’Acunto L., Andrade J.F., Poggio S.L., Semmartin M. Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agric. Ecosyst. Environ. 2018;257:159-164. DOI 10.1016/j.agee.2018.02.011. Díaz S., Lavorel S., de Bello F., Quétier F., Grigulis K., Robson T.M. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. USA. 2007;104(52):20684-20689. DOI 10.1073/pnas.0704716104. El Amrani B. The effect of pH on the growth of Cedrus atlantica M. plants. 1st Scientific Day dedicated to PhD students under the theme “Biotechnology, Ecology and Valorization of Phyto-resources” FSDM, Fes, Morocco. 2017. DOI 10.5281/zenodo.619302. El Amrani B., Amraoui B.M. Effects of some properties of cedar forest soils on secondary roots of Cedrus atlantica Manetti. J. For. Sci. 2018;64:506-513. DOI 10.17221/69/2018-JFS. El Amrani B., Amraoui B.M. Biomechanics of Atlas cedar roots in response to the medium hydromechanical characteristics. Scientifica. 2020;2020:7538698. DOI 10.1155/2020/7538698. El Amrani B., Amraoui B.M. Soil microbial communities affect development of Cedrus atlantica M. Asian J. Soil Sci. Plant Nutr. 2022;7(1):43-50. Feng Y., Hu Y., Wu J., Chen J., Yrjälä K., Yu W. Change in microbial communities, soil enzyme and metabolic activity in a Torreya grandis plantation in response to root rot disease. For. Ecol. Manag. 2019;432:932-941. DOI 10.1016/j.foreco.2018.10.028. Field K.J., Leake J.R., Tille S., Allinson K.E., Rimington W.R., Bidartondo M.I., Beerling D.J., Cameron D.D. From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes. New Phytol. 2015;205:1492-1502. DOI 10.1111/nph.13263. Fitzpatrick C.R., Copeland J., Wang P.W., Guttman D.S., Kotanen P.M., Johnson M.T.J. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. USA. 2018;115(6):E1157-E1165. DOI 10.1073/pnas.1717617115. Fontana V., Guariento E., Hilpold A., Niedrist G., Steinwandter M., Spitale D., Nascimbene J., Tappeiner U., Seeber J. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 2020; 10:12516. DOI 10.1038/s41598-020-69569-9. Glick B.R. Beneficial Plant-Bacterial Interactions. Springer Cham, 2020. DOI 10.1007/978-3-030-44368-9. Gömöryová E., Ujházy K., Martinák M., Gömöry D. Soil microbial community response to variation in vegetation and abiotic environment in a temperate old-growth forest. Appl. Soil Ecol. 2013;68:10-19. DOI 10.1016/j.apsoil.2013.03.005. Gunina A., Smith A.R., Godbold D.L., Jones D.L., Kuzyakov Y. Response of soil microbial community to afforestation with pure and mixed species. Plant Soil. 2017;412:357-368. DOI 10.1007/s11104-016-3073-0. Hanson C.A., Fuhrman J.A., Horner-Devine M.C., Martiny J.B.H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 2012;10:497-506. DOI 10.1038/nrmicro2795. Jiménez J.J., Igual J.M., Villar L., Benito-Alonso J.L., Abadias-Ullod J. Hierarchical drivers of soil microbial community structure variability in “Monte Perdido” Massif (Central Pyrenees). Sci. Rep. 2019; 9(1):8768. DOI 10.1038/s41598-019-45372-z. Jin K., Shen J., Ashton R.W., Dodd I.C., Parry M.A.J., Whalley W.R. How do roots elongate in a structured soil? J. Exp. Bot. 2013;64(15):4761-4777. DOI 10.1093/jxb/ert286. Jin Q., Kirk M.F. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Front. Environ. Sci. 2018; 6:21. DOI 10.3389/fenvs.2018.00021. Jones D.L., Nguyen C., Finlay R.D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 2009;321:5-33. DOI 10.1007/s11104-009-9925-0. Kernaghan G., Widden P., Bergeron Y., Légaré S., Paré D. Biotic and abiotic factors affecting ectomycorrhizal diversity in boreal mixedwoods. Oikos. 2003;102:497-504. Kooch Y., Samadzadeh B., Hosseini S.M. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. CATENA. 2017;150:223-229. DOI 10.1016/j.catena.2016.11.023. Kumar M., Brader G., Sessitsch A., Mäki A., van Elsas J.D., Nissinen R. Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones. Front. Microbiol. 2017;8:12. DOI 10.3389/fmicb.2017.00012. Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 2015;83:184-199. DOI 10.1016/j.soilbio.2015.01.025. Latimer A.M. Species diversity. In: El-Shaarawi A.H., Piegorsch W.W. (Eds.) Encyclopedia of Environmetrics. Wiley, 2012. DOI 10.1002/9780470057339.vas046.pub2. Liu L., Zhu K., Wurzburger N., Zhang J. Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere. 2020;11(1):e02999. DOI 10.1002/ecs2.2999. Malard L.A., Pearce D.A. Microbial diversity and biogeography in Arctic soils: microbial diversity and biogeography. Environ. Microbiol. Rep. 2018;10:611-625. DOI 10.1111/1758-2229.12680. Mansouri H., Petit A., Oger P., Dessaux Y. Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl. Environ. Microbiol. 2002;68(5):2562-2566. DOI 10.1128/AEM.68.5.2562-2566.2002. Manzoni S., Schimel J.P., Porporato A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology. 2012;93(4):930-938. DOI 10.1890/11-0026.1. Marinari S., Mancinelli R., Campiglia E., Grego S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 2006;6(4):701-711. DOI 10.1016/j.ecolind.2005.08.029. Mayfield M.M., Bonser S.P., Morgan J.W., Aubin I., McNamara S., Vesk P.A. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 2010;19(4):423-431. DOI 10.1111/j.1466-8238.2010.00532.x. Monkai J., Goldberg S.D., Hyde K.D., Harrison R.D., Mortimer P.E., Xu J. Natural forests maintain a greater soil microbial diversity than that in rubber plantations in Southwest China. Agric. Ecosyst. Environ. 2018;265:190-197. DOI 10.1016/j.agee.2018.06.009. Nair D.N., Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. Sci. World J. 2014;2014:250693. DOI 10.1155/2014/250693. Philippot L., Raaijmakers J.M., Lemanceau P., van der Putten W.H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013;11:789-799. DOI 10.1038/nrmicro3109. Pingel M., Reineke A., Leyer I. A 30-years vineyard trial: plant communities, soil microbial communities and litter decomposition respond more to soil treatment than to N fertilization. Agric. Ecosyst. Environ. 2019;272:114-125. DOI 10.1016/j.agee.2018.11.005. Raaijmakers J.M., Paulitz T.C., Steinberg C., Alabouvette C., Moënne- Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009; 321:341-361. DOI 10.1007/s11104-008-9568-6. Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Vavilov Journal of Genetics and Breeding; Том 26, № 5 (2022); 442-448 Вавиловский журнал генетики и селекции; Том 26, № 5 (2022); 442-448 2500-3259 2500-0462 10.18699/VJGB-22-50 биоразнообразие растений rhizosphere microbial diversity plant biodiversity ризосфера микробное разнообразие info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjvavilov https://doi.org/10.18699/VJGB-22-54 https://doi.org/10.18699/VJGB-22-50 https://doi.org/10.1111/1365-2745. https://doi.org/10.1016/j.foreco. 2022-09-06T17:02:30Z Soil microbial communities play a key role in the evolution of the rhizosphere. In addition, proper exploration of these microbial resources represents a promising strategy that guarantees the health and sustainability of all ecosystems connected to the ground. Under the influence of environmental conditions, microbial communities can change compositions in terms of abundance and diversity. Beyond the descriptive level, the current orientation of microbial ecology is to link these structures to the functioning of ecosystems; specifically, to understand the effect of environmental factors on the functional structure of microbial communities in ecosystems. This review focuses on the main interactions between the indigenous soil microflora and the major constituents of the rhizosphere to understand, on the one hand, how microbial biodiversity can improve plant growth and maintain homeostasis of the rhizospheric ecosystem, on the other hand, how the maintenance and enrichment of plant biodiversity can contribute to the conservation of soil microbial diversity; knowing that these microorganisms are also controlled by the abiotic properties of the soil. Overall, understanding the dynamics of the rhizosphere microbiome is essential for developing innovative strategies in the field of protecting and maintaining the proper functioning of the soil ecosystem. Почвенные микробные сообщества играют ключевую роль в эволюции ризосферы. Планомерное изучение этих микробных ресурсов представляет собой перспективную стратегию, с помощью которой можно будет обеспечить здоровье и устойчивость всех почвенных экосистем. Под воздействием окружающей среды микробные сообщества могут менять численность своих популяций и видовой состав. Современная микробная экология нацелена, помимо описательного уровня, на определение связей этих структур с функционированием экосистем, в частности для понимания роли окружающей среды в жизнедеятельности микробных сообществ в экосистемах. Настоящий обзор посвящен основным взаимодействиям между местной ... Article in Journal/Newspaper Arctic Vavilov Journal of Genetics and Breeding Vavilov Journal of Genetics and Breeding 26 5 442 448