Biochemical and technological properties of moose (Alces alces) recombinant chymosin

Recombinant chymosins (rСhns) of the cow and the camel are currently considered as standard milk coagulants for cheese-making. The search for a new type of milk-clotting enzymes that may exist in nature and can surpass the existing “cheese-making” standards is an urgent biotechnological task. Within...

Full description

Bibliographic Details
Published in:Vavilov Journal of Genetics and Breeding
Main Authors: D. V. Balabova, A. P. Rudometov, S. V. Belenkaya, A. N. Belov, A. D. Koval, A. A. Bondar, A. Yu. Bakulina, E. A. Rukhlova, V. V. Elchaninov, D. N. Shcherbakov, Д. В. Балабова, А. П. Рудометов, С. В. Беленькая, А. Н. Белов, А. Д. Коваль, А. А. Бондарь, А. Ю. Бакулина, Е. А. Рухлова, В. В. Ельчанинов, Д. Н. Щербаков
Other Authors: This study was funded by the State Task of the Ministry of Science and Education of the Russian Federation (topic No. FZMW-2020-0002, “Design of recombinant enzyme producers for the cheese-making industry”) and The Russian Foundation for Basic Research (grant number 19-44-220010).
Format: Article in Journal/Newspaper
Language:English
Published: Institute of Cytology and Genetics of Siberian Branch of the RAS 2022
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/3358
https://doi.org/10.18699/VJGB-22-31
id ftjvavilov:oai:oai.vavilov.elpub.ru:article/3358
record_format openpolar
institution Open Polar
collection Vavilov Journal of Genetics and Breeding
op_collection_id ftjvavilov
language English
topic Alces alces
recombinant chymosin
milk-clotting activity
biochemical properties
cheese-making
рекомбинантный химозин
молокосвертывающая активность
биохимические свойства
сыроделие
spellingShingle Alces alces
recombinant chymosin
milk-clotting activity
biochemical properties
cheese-making
рекомбинантный химозин
молокосвертывающая активность
биохимические свойства
сыроделие
D. V. Balabova
A. P. Rudometov
S. V. Belenkaya
A. N. Belov
A. D. Koval
A. A. Bondar
A. Yu. Bakulina
E. A. Rukhlova
V. V. Elchaninov
D. N. Shcherbakov
Д. В. Балабова
А. П. Рудометов
С. В. Беленькая
А. Н. Белов
А. Д. Коваль
А. А. Бондарь
А. Ю. Бакулина
Е. А. Рухлова
В. В. Ельчанинов
Д. Н. Щербаков
Biochemical and technological properties of moose (Alces alces) recombinant chymosin
topic_facet Alces alces
recombinant chymosin
milk-clotting activity
biochemical properties
cheese-making
рекомбинантный химозин
молокосвертывающая активность
биохимические свойства
сыроделие
description Recombinant chymosins (rСhns) of the cow and the camel are currently considered as standard milk coagulants for cheese-making. The search for a new type of milk-clotting enzymes that may exist in nature and can surpass the existing “cheese-making” standards is an urgent biotechnological task. Within this study, we for the first time constructed an expression vector allowing production of a recombinant analog of moose chymosin in the expression system of Escherichia coli (strain SHuffle express). We built a model of the spatial structure of moose chymosin and compared the topography of positive and negative surface charges with the correspondent structures of cow and camel chymosins. We found that the distribution of charges on the surface of moose chymosin has common features with that of cow and camel chymosins. However, the moose enzyme carries a unique positively charged patch, which is likely to affect its interaction with the substrate. Biochemical and technological properties of the moose rChn were studied. Commercial rСhns of cow and camel were used as comparison enzymes. In some technological parameters, the moose rChn proved to be superior to the reference enzymes. Сompared with the cow and camel rСhns, the moose chymosin specific activity is less dependent on the changes in CaCl2 concentration in the range of 1–5 mM and pH in the range of 6–7, which is an attractive technological property. The total proteolytic activity of the moose rСhn occupies an intermediate position between the rСhns of cow and camel. The combination of biochemical and technological properties of the moose rСhn argues for further study of this enzyme. Эталонными коагулянтами молока для сыроделия в настоящее время считаются рекомбинантные химозины (рХн) коровы и верблюда. Нахождение молокосвертывающих ферментов, способных превзойти эталонные коагулянты молока, является актуальной биотехнологической задачей. Нами сконструирован экспрессирующий вектор, который позволил впервые получить рекомбинантный аналог химозина лося в системе ...
author2 This study was funded by the State Task of the Ministry of Science and Education of the Russian Federation (topic No. FZMW-2020-0002, “Design of recombinant enzyme producers for the cheese-making industry”) and The Russian Foundation for Basic Research (grant number 19-44-220010).
format Article in Journal/Newspaper
author D. V. Balabova
A. P. Rudometov
S. V. Belenkaya
A. N. Belov
A. D. Koval
A. A. Bondar
A. Yu. Bakulina
E. A. Rukhlova
V. V. Elchaninov
D. N. Shcherbakov
Д. В. Балабова
А. П. Рудометов
С. В. Беленькая
А. Н. Белов
А. Д. Коваль
А. А. Бондарь
А. Ю. Бакулина
Е. А. Рухлова
В. В. Ельчанинов
Д. Н. Щербаков
author_facet D. V. Balabova
A. P. Rudometov
S. V. Belenkaya
A. N. Belov
A. D. Koval
A. A. Bondar
A. Yu. Bakulina
E. A. Rukhlova
V. V. Elchaninov
D. N. Shcherbakov
Д. В. Балабова
А. П. Рудометов
С. В. Беленькая
А. Н. Белов
А. Д. Коваль
А. А. Бондарь
А. Ю. Бакулина
Е. А. Рухлова
В. В. Ельчанинов
Д. Н. Щербаков
author_sort D. V. Balabova
title Biochemical and technological properties of moose (Alces alces) recombinant chymosin
title_short Biochemical and technological properties of moose (Alces alces) recombinant chymosin
title_full Biochemical and technological properties of moose (Alces alces) recombinant chymosin
title_fullStr Biochemical and technological properties of moose (Alces alces) recombinant chymosin
title_full_unstemmed Biochemical and technological properties of moose (Alces alces) recombinant chymosin
title_sort biochemical and technological properties of moose (alces alces) recombinant chymosin
publisher Institute of Cytology and Genetics of Siberian Branch of the RAS
publishDate 2022
url https://vavilov.elpub.ru/jour/article/view/3358
https://doi.org/10.18699/VJGB-22-31
genre Alces alces
genre_facet Alces alces
op_source Vavilov Journal of Genetics and Breeding; Том 26, № 3 (2022); 240-249
Вавиловский журнал генетики и селекции; Том 26, № 3 (2022); 240-249
2500-3259
2500-0462
10.18699/VJGB-22-27
op_relation https://vavilov.elpub.ru/jour/article/view/3358/1610
Akishev Z., Kiribayeva A., Mussakhmetov A., Baltin K., Ramankulov Y., Khassenov B. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris. Heliyon. 2021;7(5):e07137. DOI 10.1016/j.heliyon.2021.e07137.
Bansal N., Drake M.A., Piraino P., Broe M.L., Harboe M., Fox P.F., McSweeney P.L.H. Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese. Int. Dairy J. 2009;19(9):510-517. DOI 10.1016/j.idairyj.2009.03.010.
Belenkaya S.V., Balabova D.V., Belov A.N., Koval A.D., Shcherbakov D.N., Elchaninov V.V. Basic biochemical properties of recombinant chymosins (review). Appl. Biochem. Microbiol. 2020a;56(4):363-372. DOI 10.1134/S0003683820040031.
Belenkaya S.V., Bondar A.A., Kurgina T.A., Elchaninov V.V., Bakulina A.Yu., Rukhlova E.A., Lavrik O.I., Ilyichev A.A., Shcherbakov D.N. Characterization of the Altai maral chymosin gene, production of a chymosin recombinant analog in the prokaryotic expression system, and analysis of its several biochemical properties. Biochemistry (Mosc.). 2020b;85(7):781-791. DOI 10.1134/S0006297920070068.
Belenkaya S.V., Rudometov A.P., Shcherbakov D.N., Balabova D.V., Kriger A.V., Belov A.N., Koval A.D., Elchaninov V.V. Biochemical properties of recombinant chymosin in alpaca (Vicugna pacos L.). Appl. Biochem. Microbiol. 2018;54(6):569-576. DOI 10.1134/S0003683818060054.
Belenkaya S.V., Shcherbakov D.N., Balabova D.V., Belov A.N., Koval A.D., Elchaninov V.V. Production of maral (Cervus elaphus sibiricus Severtzov) recombinant chymosin in the prokaryotic expression system and the study of the aggregate of its biochemical properties relevant for the cheese-making industry. Appl. Biochem. Microbiol. 2020c;56(6):647-656. DOI 10.1134/S0003683820060034.
Belov A.N., Koval A.D., Avdanina E.A., Elchaninov V.V. Effects of milk clotting preparation on cheese organoleptic indices. Syrodelie i Maslodelie = Cheese Making and Butter Making. 2009;1:22-24. (in Russian)
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72(1-2):248-254. DOI 10.1016/0003-2697(76)90527-3.
Chen H., Zhang G., Zhang Y., Dong Y., Yang K. Functional implications of disulfide bond, Cys206−Cys210, in recombinant prochymosin (chymosin). Biochemistry. 2000;39(40):12140-12148. DOI 10.1021/bi000976o.
Costabel L.M., Bergamini C.V., Pozza L., Cuffia F., Candioti M.C., Hynes E. Influence of chymosin type and curd scalding temperature on proteolysis of hard cooked cheeses. J. Dairy Res. 2015;82(3):375-384. DOI 10.1017/S0022029915000175.
D’Incecco P., Limbo S., Hogenboom J., Rosi V., Gobbi S., Pellegrino L. Impact of extending hard-cheese ripening: a multiparameter characterization of Parmigiano Reggiano cheese ripened up to 50 months. Foods. 2020;9(3):268. DOI 10.3390/foods9030268.
Ersöz F., İnan M. Large-scale production of yak (Bos grunniens) chymosin A in Pichia pastoris. Protein Expr. Purif. 2019;154:126-133. DOI 10.1016/j.pep.2018.10.007.
Eskandari M.H., Hosseini A., Zarasvand S.A., Aminlari M. Cloning, expression, purification and refolding of caprine prochymosin. Food Biotechnol. 2012;26(2):143-153. DOI 10.1080/08905436.2012.670829.
Flamm E.L. How FDA approved chymosin: a case history. Nat. Biotechnol. 1991;9(4):349-351. DOI 10.1038/nbt0491-349.
Fox P.F., Guinee T.P., Cogan T.M., McSweeney P.L.H. Enzymatic coagulation of milk. In: Fundamentals of Cheese Science. Boston: Springer, 2017;185-229. DOI 10.1007/978-1-4899-7681-9_7.
Gumus P., Hayaloglu A.A. Effects of blends of camel and calf chymosin on proteolysis, residual coagulant activity, microstructure, and sensory characteristics of Beyaz peynir. J. Dairy Sci. 2019;102(7):5945-5956. DOI 10.3168/jds.2018-15671.
Harboe M., Broe M.L., Qvist K.B. The production, action and application of rennet and coagulants. In: Law B.A., Tamime A.Y. (Eds.) Technology of Cheesemaking. Chichester: Wiley-Blackwell, 2010;98-129. DOI 10.1002/9781444323740.ch3.
Jacob M., Jaros D., Rohm H. Recent advances in milk clotting enzymes. Int. J. Dairy Tech. 2011;64(1):14-33. DOI 10.1111/j.1471-0307.2010.00633.x.
Jensen J.L., Molgaard A., Poulsen J.-C.N., Harboe M.K., Simonsen J.B., Lorentzen A.M., Hjernø K., Brink J.M., Qvist K.B., Larsen S. Camel and bovine chymosin: the relationship between their structures and cheese-making properties. Acta Crystallogr. D. Biol. Crystallogr. 2013;69(Pt.5):901-913. DOI 10.1107/S0907444913003260.
Kappeler S.R., van den Brink H.J.M., Rahbek-Nielsen H., Farah Z., Puhan Z., Hansen E.B., Johansen E. Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Biochem. Biophys. Res. Commun. 2006;342(2):647-654. DOI 10.1016/j.bbrc.2006.02.014.
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. DOI 10.1038/227680a0.
Lamichhane P., Sharma P., Kennedy D., Kelly A.L., Sheehan J.J. Microstructure and fracture properties of semi-hard cheese: differentiating the effects of primary proteolysis and calcium solubilization. Food Res. Int. 2019;125:108525. DOI 10.1016/j.foodres.2019.108525.
Lucey J.A. Formation and physical properties of milk protein gels. J. Dairy Sci. 2002;85(2):281-294. DOI 10.3168/JDS.S0022-0302(02)74078-2.
Luo F., Jiang W.H., Yang Y.X., Li J., Jiang M.F. Cloning and expression of yak active chymosin in Pichia pastoris. Asian-Australas. J. Anim. Sci. 2016;29(9):1363-1370. DOI 10.5713/AJAS.16.0038.
Mane A., McSweeney P.L.H. Proteolysis in Irish farmhouse Camembert cheese during ripening. J. Food Biochem. 2020;44(1):1-14. DOI 10.1111/jfbc.13101.
Masotti F., Hogenboom J.A., Rosi V., de Noni I., Pellegrino L. Proteolysis indices related to cheese ripening and typicalness in PDO Grana Padano cheese. Int. Dairy J. 2010;20(5):352-359. DOI 10.1016/j.idairyj.2009.11.020.
Moynihan A.C., Govindasamy-Lucey S., Jaeggi J.J., Johnson M.E., Lucey J.A., McSweeney P.L.H. Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim Mozzarella cheese. J. Dairy Sci. 2014;97(1):85-96. DOI 10.3168/jds.2013-7081.
Pedersen V.B., Christensen K.A., Foltmann B. Investigations on the activation of bovine prochymosin. Eur. J. Biochem. 1979;94(2):573-580. DOI 10.1111/j.1432-1033.1979.tb12927.x.
Rogelj I., Perko B., Francky A., Penca V., Pungerčar J. Recombinant lamb chymosin as an alternative coagulating enzyme in cheese production. J. Dairy Sci. 2001;84(5):1020-1026. DOI 10.3168/jds.S0022-0302(01)74561-4.
Sforza S., Cavatorta V., Lambertini F., Galaverna G., Dossena A., Marchelli R. Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J. Dairy Sci. 2012;95(7):3514-3526. DOI 10.3168/jds.2011-5046.
Singh T.K., Drake M.A., Cadwallader K.R. Flavor of Cheddar cheese: a chemical and sensory perspective. Compr. Rev. Food Sci. Food Saf. 2003;2(4):166-189. DOI 10.1111/j.1541-4337.2003.tb00021.x.
Trono D. Recombinant enzymes in the food and pharmaceutical industries. In: Singh R.S., Singhania R.R., Pandey A., Larroche C. (Eds.) Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology. Elsevier, 2019;349-387. DOI 10.1016/B978-0-444-64114-4.00013-3.
Tyagi A., Kumar A., Mohanty A.K., Kaushik J.K., Grover S., Batish V.K. Expression of buffalo chymosin in Pichia pastoris for application in mozzarella cheese. LWT – Food Sci. Technol. 2017;84:733-739. DOI 10.1016/j.lwt.2017.06.033.
Tyagi A., Kumar A., Yadav A.K., Chandola Saklani A., Grover S., Batish V.K. Functional expression of recombinant goat chymosin in Pichia pastoris bioreactor cultures: a commercially viable alternate. LWT – Food Sci. Technol. 2016;69:217-224. DOI 10.1016/j.lwt.2016.01.015.
Vallejo J.A., Ageitos J.M., Poza M., Villa T.G. Short communication: a comparative analysis of recombinant chymosins. J. Dairy Sci. 2012;95(2):609-613. DOI 10.3168/jds.2011-4445.
Vega-Hernández M.C., Gómez-Coello A., Villar J., ClaverieMartı ́ n F. Molecular cloning and expression in yeast of caprine prochymosin. J. Biotechnol. 2004;114(1-2):69-79. DOI 10.1016/j.jbiotec.2004.06.002.
Wang N., Wang K.Y., Li G., Guo W., Liu D. Expression and characterization of camel chymosin in Pichia pastoris. Protein Expr. Purif. 2015;111:75-81. DOI 10.1016/j.pep.2015.03.012.
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303. DOI 10.1093/nar/gky427.
Wei C., Tang B., Zhang Y., Yang K. Oxidative refolding of recombinant prochymosin. Biochem. J. 1999;340(1):345-351. DOI 10.1042/0264-6021:3400345.
Wei C., Zhang Y., Yang K. Chaperone-mediated refolding of recombinant prochymosin. J. Protein Chem. 2000;19(6):449-456. DOI 10.1023/A:1026593113633.
https://vavilov.elpub.ru/jour/article/view/3358
doi:10.18699/VJGB-22-31
op_rights Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.18699/VJGB-22-31
https://doi.org/10.18699/VJGB-22-27
container_title Vavilov Journal of Genetics and Breeding
container_volume 26
container_issue 3
container_start_page 240
op_container_end_page 249
_version_ 1766254823009681408
spelling ftjvavilov:oai:oai.vavilov.elpub.ru:article/3358 2023-05-15T13:12:54+02:00 Biochemical and technological properties of moose (Alces alces) recombinant chymosin Биохимические и технологические свойства рекомбинантного химозина лося (Alces alces) D. V. Balabova A. P. Rudometov S. V. Belenkaya A. N. Belov A. D. Koval A. A. Bondar A. Yu. Bakulina E. A. Rukhlova V. V. Elchaninov D. N. Shcherbakov Д. В. Балабова А. П. Рудометов С. В. Беленькая А. Н. Белов А. Д. Коваль А. А. Бондарь А. Ю. Бакулина Е. А. Рухлова В. В. Ельчанинов Д. Н. Щербаков This study was funded by the State Task of the Ministry of Science and Education of the Russian Federation (topic No. FZMW-2020-0002, “Design of recombinant enzyme producers for the cheese-making industry”) and The Russian Foundation for Basic Research (grant number 19-44-220010). 2022-06-03 application/pdf https://vavilov.elpub.ru/jour/article/view/3358 https://doi.org/10.18699/VJGB-22-31 eng eng Institute of Cytology and Genetics of Siberian Branch of the RAS https://vavilov.elpub.ru/jour/article/view/3358/1610 Akishev Z., Kiribayeva A., Mussakhmetov A., Baltin K., Ramankulov Y., Khassenov B. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris. Heliyon. 2021;7(5):e07137. DOI 10.1016/j.heliyon.2021.e07137. Bansal N., Drake M.A., Piraino P., Broe M.L., Harboe M., Fox P.F., McSweeney P.L.H. Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese. Int. Dairy J. 2009;19(9):510-517. DOI 10.1016/j.idairyj.2009.03.010. Belenkaya S.V., Balabova D.V., Belov A.N., Koval A.D., Shcherbakov D.N., Elchaninov V.V. Basic biochemical properties of recombinant chymosins (review). Appl. Biochem. Microbiol. 2020a;56(4):363-372. DOI 10.1134/S0003683820040031. Belenkaya S.V., Bondar A.A., Kurgina T.A., Elchaninov V.V., Bakulina A.Yu., Rukhlova E.A., Lavrik O.I., Ilyichev A.A., Shcherbakov D.N. Characterization of the Altai maral chymosin gene, production of a chymosin recombinant analog in the prokaryotic expression system, and analysis of its several biochemical properties. Biochemistry (Mosc.). 2020b;85(7):781-791. DOI 10.1134/S0006297920070068. Belenkaya S.V., Rudometov A.P., Shcherbakov D.N., Balabova D.V., Kriger A.V., Belov A.N., Koval A.D., Elchaninov V.V. Biochemical properties of recombinant chymosin in alpaca (Vicugna pacos L.). Appl. Biochem. Microbiol. 2018;54(6):569-576. DOI 10.1134/S0003683818060054. Belenkaya S.V., Shcherbakov D.N., Balabova D.V., Belov A.N., Koval A.D., Elchaninov V.V. Production of maral (Cervus elaphus sibiricus Severtzov) recombinant chymosin in the prokaryotic expression system and the study of the aggregate of its biochemical properties relevant for the cheese-making industry. Appl. Biochem. Microbiol. 2020c;56(6):647-656. DOI 10.1134/S0003683820060034. Belov A.N., Koval A.D., Avdanina E.A., Elchaninov V.V. Effects of milk clotting preparation on cheese organoleptic indices. Syrodelie i Maslodelie = Cheese Making and Butter Making. 2009;1:22-24. (in Russian) Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72(1-2):248-254. DOI 10.1016/0003-2697(76)90527-3. Chen H., Zhang G., Zhang Y., Dong Y., Yang K. Functional implications of disulfide bond, Cys206−Cys210, in recombinant prochymosin (chymosin). Biochemistry. 2000;39(40):12140-12148. DOI 10.1021/bi000976o. Costabel L.M., Bergamini C.V., Pozza L., Cuffia F., Candioti M.C., Hynes E. Influence of chymosin type and curd scalding temperature on proteolysis of hard cooked cheeses. J. Dairy Res. 2015;82(3):375-384. DOI 10.1017/S0022029915000175. D’Incecco P., Limbo S., Hogenboom J., Rosi V., Gobbi S., Pellegrino L. Impact of extending hard-cheese ripening: a multiparameter characterization of Parmigiano Reggiano cheese ripened up to 50 months. Foods. 2020;9(3):268. DOI 10.3390/foods9030268. Ersöz F., İnan M. Large-scale production of yak (Bos grunniens) chymosin A in Pichia pastoris. Protein Expr. Purif. 2019;154:126-133. DOI 10.1016/j.pep.2018.10.007. Eskandari M.H., Hosseini A., Zarasvand S.A., Aminlari M. Cloning, expression, purification and refolding of caprine prochymosin. Food Biotechnol. 2012;26(2):143-153. DOI 10.1080/08905436.2012.670829. Flamm E.L. How FDA approved chymosin: a case history. Nat. Biotechnol. 1991;9(4):349-351. DOI 10.1038/nbt0491-349. Fox P.F., Guinee T.P., Cogan T.M., McSweeney P.L.H. Enzymatic coagulation of milk. In: Fundamentals of Cheese Science. Boston: Springer, 2017;185-229. DOI 10.1007/978-1-4899-7681-9_7. Gumus P., Hayaloglu A.A. Effects of blends of camel and calf chymosin on proteolysis, residual coagulant activity, microstructure, and sensory characteristics of Beyaz peynir. J. Dairy Sci. 2019;102(7):5945-5956. DOI 10.3168/jds.2018-15671. Harboe M., Broe M.L., Qvist K.B. The production, action and application of rennet and coagulants. In: Law B.A., Tamime A.Y. (Eds.) Technology of Cheesemaking. Chichester: Wiley-Blackwell, 2010;98-129. DOI 10.1002/9781444323740.ch3. Jacob M., Jaros D., Rohm H. Recent advances in milk clotting enzymes. Int. J. Dairy Tech. 2011;64(1):14-33. DOI 10.1111/j.1471-0307.2010.00633.x. Jensen J.L., Molgaard A., Poulsen J.-C.N., Harboe M.K., Simonsen J.B., Lorentzen A.M., Hjernø K., Brink J.M., Qvist K.B., Larsen S. Camel and bovine chymosin: the relationship between their structures and cheese-making properties. Acta Crystallogr. D. Biol. Crystallogr. 2013;69(Pt.5):901-913. DOI 10.1107/S0907444913003260. Kappeler S.R., van den Brink H.J.M., Rahbek-Nielsen H., Farah Z., Puhan Z., Hansen E.B., Johansen E. Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Biochem. Biophys. Res. Commun. 2006;342(2):647-654. DOI 10.1016/j.bbrc.2006.02.014. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-685. DOI 10.1038/227680a0. Lamichhane P., Sharma P., Kennedy D., Kelly A.L., Sheehan J.J. Microstructure and fracture properties of semi-hard cheese: differentiating the effects of primary proteolysis and calcium solubilization. Food Res. Int. 2019;125:108525. DOI 10.1016/j.foodres.2019.108525. Lucey J.A. Formation and physical properties of milk protein gels. J. Dairy Sci. 2002;85(2):281-294. DOI 10.3168/JDS.S0022-0302(02)74078-2. Luo F., Jiang W.H., Yang Y.X., Li J., Jiang M.F. Cloning and expression of yak active chymosin in Pichia pastoris. Asian-Australas. J. Anim. Sci. 2016;29(9):1363-1370. DOI 10.5713/AJAS.16.0038. Mane A., McSweeney P.L.H. Proteolysis in Irish farmhouse Camembert cheese during ripening. J. Food Biochem. 2020;44(1):1-14. DOI 10.1111/jfbc.13101. Masotti F., Hogenboom J.A., Rosi V., de Noni I., Pellegrino L. Proteolysis indices related to cheese ripening and typicalness in PDO Grana Padano cheese. Int. Dairy J. 2010;20(5):352-359. DOI 10.1016/j.idairyj.2009.11.020. Moynihan A.C., Govindasamy-Lucey S., Jaeggi J.J., Johnson M.E., Lucey J.A., McSweeney P.L.H. Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim Mozzarella cheese. J. Dairy Sci. 2014;97(1):85-96. DOI 10.3168/jds.2013-7081. Pedersen V.B., Christensen K.A., Foltmann B. Investigations on the activation of bovine prochymosin. Eur. J. Biochem. 1979;94(2):573-580. DOI 10.1111/j.1432-1033.1979.tb12927.x. Rogelj I., Perko B., Francky A., Penca V., Pungerčar J. Recombinant lamb chymosin as an alternative coagulating enzyme in cheese production. J. Dairy Sci. 2001;84(5):1020-1026. DOI 10.3168/jds.S0022-0302(01)74561-4. Sforza S., Cavatorta V., Lambertini F., Galaverna G., Dossena A., Marchelli R. Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J. Dairy Sci. 2012;95(7):3514-3526. DOI 10.3168/jds.2011-5046. Singh T.K., Drake M.A., Cadwallader K.R. Flavor of Cheddar cheese: a chemical and sensory perspective. Compr. Rev. Food Sci. Food Saf. 2003;2(4):166-189. DOI 10.1111/j.1541-4337.2003.tb00021.x. Trono D. Recombinant enzymes in the food and pharmaceutical industries. In: Singh R.S., Singhania R.R., Pandey A., Larroche C. (Eds.) Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology. Elsevier, 2019;349-387. DOI 10.1016/B978-0-444-64114-4.00013-3. Tyagi A., Kumar A., Mohanty A.K., Kaushik J.K., Grover S., Batish V.K. Expression of buffalo chymosin in Pichia pastoris for application in mozzarella cheese. LWT – Food Sci. Technol. 2017;84:733-739. DOI 10.1016/j.lwt.2017.06.033. Tyagi A., Kumar A., Yadav A.K., Chandola Saklani A., Grover S., Batish V.K. Functional expression of recombinant goat chymosin in Pichia pastoris bioreactor cultures: a commercially viable alternate. LWT – Food Sci. Technol. 2016;69:217-224. DOI 10.1016/j.lwt.2016.01.015. Vallejo J.A., Ageitos J.M., Poza M., Villa T.G. Short communication: a comparative analysis of recombinant chymosins. J. Dairy Sci. 2012;95(2):609-613. DOI 10.3168/jds.2011-4445. Vega-Hernández M.C., Gómez-Coello A., Villar J., ClaverieMartı ́ n F. Molecular cloning and expression in yeast of caprine prochymosin. J. Biotechnol. 2004;114(1-2):69-79. DOI 10.1016/j.jbiotec.2004.06.002. Wang N., Wang K.Y., Li G., Guo W., Liu D. Expression and characterization of camel chymosin in Pichia pastoris. Protein Expr. Purif. 2015;111:75-81. DOI 10.1016/j.pep.2015.03.012. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303. DOI 10.1093/nar/gky427. Wei C., Tang B., Zhang Y., Yang K. Oxidative refolding of recombinant prochymosin. Biochem. J. 1999;340(1):345-351. DOI 10.1042/0264-6021:3400345. Wei C., Zhang Y., Yang K. Chaperone-mediated refolding of recombinant prochymosin. J. Protein Chem. 2000;19(6):449-456. DOI 10.1023/A:1026593113633. https://vavilov.elpub.ru/jour/article/view/3358 doi:10.18699/VJGB-22-31 Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Vavilov Journal of Genetics and Breeding; Том 26, № 3 (2022); 240-249 Вавиловский журнал генетики и селекции; Том 26, № 3 (2022); 240-249 2500-3259 2500-0462 10.18699/VJGB-22-27 Alces alces recombinant chymosin milk-clotting activity biochemical properties cheese-making рекомбинантный химозин молокосвертывающая активность биохимические свойства сыроделие info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjvavilov https://doi.org/10.18699/VJGB-22-31 https://doi.org/10.18699/VJGB-22-27 2022-06-07T17:01:39Z Recombinant chymosins (rСhns) of the cow and the camel are currently considered as standard milk coagulants for cheese-making. The search for a new type of milk-clotting enzymes that may exist in nature and can surpass the existing “cheese-making” standards is an urgent biotechnological task. Within this study, we for the first time constructed an expression vector allowing production of a recombinant analog of moose chymosin in the expression system of Escherichia coli (strain SHuffle express). We built a model of the spatial structure of moose chymosin and compared the topography of positive and negative surface charges with the correspondent structures of cow and camel chymosins. We found that the distribution of charges on the surface of moose chymosin has common features with that of cow and camel chymosins. However, the moose enzyme carries a unique positively charged patch, which is likely to affect its interaction with the substrate. Biochemical and technological properties of the moose rChn were studied. Commercial rСhns of cow and camel were used as comparison enzymes. In some technological parameters, the moose rChn proved to be superior to the reference enzymes. Сompared with the cow and camel rСhns, the moose chymosin specific activity is less dependent on the changes in CaCl2 concentration in the range of 1–5 mM and pH in the range of 6–7, which is an attractive technological property. The total proteolytic activity of the moose rСhn occupies an intermediate position between the rСhns of cow and camel. The combination of biochemical and technological properties of the moose rСhn argues for further study of this enzyme. Эталонными коагулянтами молока для сыроделия в настоящее время считаются рекомбинантные химозины (рХн) коровы и верблюда. Нахождение молокосвертывающих ферментов, способных превзойти эталонные коагулянты молока, является актуальной биотехнологической задачей. Нами сконструирован экспрессирующий вектор, который позволил впервые получить рекомбинантный аналог химозина лося в системе ... Article in Journal/Newspaper Alces alces Vavilov Journal of Genetics and Breeding Vavilov Journal of Genetics and Breeding 26 3 240 249