Polymorphism of the mannose-binding lectin gene in the Arctic indigenous populations of the Russian Federation

Mannose-binding lectin (MBL) is a pattern recognizing acute-phase protein of the innate immunity system actively involved in the elimination of a wide range of pathogenic microorganisms by activating the lectin pathway of the complement system. A significant part of the human population has a congen...

Full description

Bibliographic Details
Published in:Vavilov Journal of Genetics and Breeding
Main Authors: S. Yu. Tereshchenko, M. V. Smolnikova, С. Ю. Терещенко, М. В. Смольникова
Other Authors: This work was supported by the Presidium of the Russian Academy of Sciences, basic research program ”Pilot basic research targeted at the development of the Arctic belt of the Russian Federation“, 2016–2019, and State Contract register no. NIOKTR 1201351112 ”Analysis of prevalence and risk factors and track of major psychosomatic disorders in Siberian children and adolescents“
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of Cytology and Genetics of Siberian Branch of the RAS 2020
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/2847
https://doi.org/10.18699/VJ20.685
id ftjvavilov:oai:oai.vavilov.elpub.ru:article/2847
record_format openpolar
institution Open Polar
collection Vavilov Journal of Genetics and Breeding
op_collection_id ftjvavilov
language Russian
topic арктические популяции
gene polymorphism
newborns
Russia
Arctic populations
полиморфизм генов
новорожденные
Россия
spellingShingle арктические популяции
gene polymorphism
newborns
Russia
Arctic populations
полиморфизм генов
новорожденные
Россия
S. Yu. Tereshchenko
M. V. Smolnikova
С. Ю. Терещенко
М. В. Смольникова
Polymorphism of the mannose-binding lectin gene in the Arctic indigenous populations of the Russian Federation
topic_facet арктические популяции
gene polymorphism
newborns
Russia
Arctic populations
полиморфизм генов
новорожденные
Россия
description Mannose-binding lectin (MBL) is a pattern recognizing acute-phase protein of the innate immunity system actively involved in the elimination of a wide range of pathogenic microorganisms by activating the lectin pathway of the complement system. A significant part of the human population has a congenitally low production level and/or low MBL activity due to the carriage of various MBL2 variants, which can modify the course of a wide range of infectious diseases. The genotype and haplotype frequencies of the MBL2 polymorphisms have significant population differences. So far, data on the prevalence of the MBL2 genotypes in indigenous populations of the Russian Arctic regions have not been available. The aim of the study was to analyze the frequency and ethnic specificity of the distribution of allelic variants of the MBL2 polymorphisms rs11003125, rs7096206, rs7095891, rs5030737, rs1800450 and rs1800451 and their haplotypes in the populations of the Taimyr Dolgans-Nenets region of the Krasnoyarsk territory (Nenets, Dolgans-Nganasans, Russians). Data on the genotype and haplotype frequencies of the MBL2 gene among indigenous peoples of the Russian Arctic territories was first obtained in the study. The HYPA haplotype prevalence associated with a high concentration of MBL amounted to 35.4 % for Russian newborns in Eastern Siberia, corresponding to the one for European populations (27–33 %). In newborns of the Arctic populations, the prevalence of HYPA haplotype was significantly higher than in Russians and amounted to 64 % for Nenets and 56 % for the DolgansNganasans, which is close to the one detected for the Eskimos and North American Indians (64–81 %). Populations of Nenets and Dolgans-Nganasans demonstrated a significantly lower prevalence of MBL-deficient haplotypes compared with Caucasians of Eastern Siberia (3.9, 6.4 and 21.3 % respectively). Isolated Arctic populations were suggested to experience some intracellular infections (tuberculosis, leprosy) historically later and, unlike Caucasoid populations, to retain the high activity of the lectin complement activation pathway formed in the early stages of human evolution. Маннозосвязывающий лектин (mannose-binding lectin, MBL) – паттерн-распознающий острофазовый белок, относящийся к системе врожденного иммунитета и активно участвующий в элиминации широкого круга патогенных микроорганизмов посредством активации лектинового пути системы комплемента. Значительная часть человеческой популяции имеет врожденно низкий уровень продукции и/или низкую функциональную активность MBL вследствие носительства различных вариантов гена MBL2, что может модифицировать течение самых разнообразных инфекционных заболеваний. Частота генотипов и гаплотипов полиморфизмов в гене MBL2 имеет значительные популяционные различия. К настоящему времени данные относительно распределения генотипов гена MBL2 в коренных популяциях территорий Арктической зоны Российской Федерации отсутствуют. Цель исследования – изучение частоты и этнической специфики распределения аллельных вариантов полиморфизмов гена MBL2 rs11003125, rs7096206, rs7095891, rs5030737, rs1800450 и rs1800451 и их гаплотипов в популяциях Таймырского Долгано-Ненецкого района Красноярского края (ненцы, долганы-нганасаны, русские). В настоящем исследовании нами впервые получены данные о частотах генотипов и гаплотипов гена MBL2 у коренных народностей, проживающих на территориях Арктической зоны Российской Федерации. Частота встречаемости гаплотипа HYPA, ассоциированного с высокой концентрацией MBL, составила 35.4 % для русских новорожденных Восточной Сибири, что соответствует частотам европейских популяций (27–33 %). У новорожденных арктических популяций частота гаплотипа HYPA была статистически значимо выше, чем у русских, и составила 64 % для ненцев и 56 % для долган-нганасан, что приближается к значениям частот, выявленных для эскимосов и североамериканских индейцев (64–81 %). Популяции ненцев и долган-нганасан демонстрируют существенно более низкие частоты MBL-дефицитных гаплотипов в сравнении с европеоидами Восточной Сибири (3.9, 6.4 и 21.3 % соответственно). Мы предполагаем, что изолированные арктические популяции исторически позже столкнулись с некоторыми внутриклеточными инфекциями (туберкулезом, лепрой) и, в отличие от европеоидных популяций, сохранили сформированную на ранних этапах эволюции человека высокую активность лектинового пути активации комплемента.
author2 This work was supported by the Presidium of the Russian Academy of Sciences, basic research program ”Pilot basic research targeted at the development of the Arctic belt of the Russian Federation“, 2016–2019
and State Contract register no. NIOKTR 1201351112 ”Analysis of prevalence and risk factors and track of major psychosomatic disorders in Siberian children and adolescents“
format Article in Journal/Newspaper
author S. Yu. Tereshchenko
M. V. Smolnikova
С. Ю. Терещенко
М. В. Смольникова
author_facet S. Yu. Tereshchenko
M. V. Smolnikova
С. Ю. Терещенко
М. В. Смольникова
author_sort S. Yu. Tereshchenko
title Polymorphism of the mannose-binding lectin gene in the Arctic indigenous populations of the Russian Federation
title_short Polymorphism of the mannose-binding lectin gene in the Arctic indigenous populations of the Russian Federation
title_full Polymorphism of the mannose-binding lectin gene in the Arctic indigenous populations of the Russian Federation
title_fullStr Polymorphism of the mannose-binding lectin gene in the Arctic indigenous populations of the Russian Federation
title_full_unstemmed Polymorphism of the mannose-binding lectin gene in the Arctic indigenous populations of the Russian Federation
title_sort polymorphism of the mannose-binding lectin gene in the arctic indigenous populations of the russian federation
publisher Institute of Cytology and Genetics of Siberian Branch of the RAS
publishDate 2020
url https://vavilov.elpub.ru/jour/article/view/2847
https://doi.org/10.18699/VJ20.685
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctic
eskimo*
nenets
Nganasan*
Taimyr
Ненец*
Ненцы
Siberia
genre_facet Arctic
Arctic
eskimo*
nenets
Nganasan*
Taimyr
Ненец*
Ненцы
Siberia
op_source Vavilov Journal of Genetics and Breeding; Том 24, № 8 (2020); 868-875
Вавиловский журнал генетики и селекции; Том 24, № 8 (2020); 868-875
2500-3259
2500-0462
10.18699/VJ20.67
op_relation https://vavilov.elpub.ru/jour/article/view/2847/1456
Alonso D.Р., Ferreira A.F., Ribolla P.E., Santos I.M., Cruz M.P., Carvalho F., Abatepaulo A.R., Costa D., Werneck G.L., Farias T., Soares M.J., Costa C.H. Genotypes of the mannan‐binding lectin gene and susceptibility to visceral leishmaniasis and clinical complications. J. Infect. Dis. 2007;195(8):1212-1217. DOI 10.1086/512683.
Areeshi M.Y., Mandal R.K., Akhter N., Dar S.A., Jawed A., Wahid M., Mahto H., Panda A.K., Lohani M., Haque S. A meta-analysis of MBL2 polymorphisms and tuberculosis risk. Sci. Rep. 2016;6: 35728. DOI 10.1038/srep35728.
Bernig T., Breunis W., Brouwer N., Hutchinson A., Welch R., Roos D., Kuijpers T., Chanock S. An analysis of genetic variation across the MBL2 locus in Dutch Caucasians indicates that 3′ haplotypes could modify circulating levels of mannose-binding lectin. Hum. Genet. 2005;118(3-4):404-415. DOI 10.1007/s00439-005-0053-5.
Bernig T., Taylor J.G., Foster C.B., Staats B., Yeager M., Chanock S.J. Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun. 2004;5(6):461-476. DOI 10.1038/sj.gene.6364116.
Best L.G., Davidson M., North K.E., Maccluer J.W., Zhang Y., Lee E.T., Howard B.V., Decroo S., Ferrell R.E. Prospective analysis of mannose-binding lectin genotypes and coronary artery disease in American Indians: the Strong Heart Study. Circulation. 2004;109(4): 471-475. DOI 10.1161/01.CIR.0000109757.95461.10.
Bjarnadottir H., Arnardottir M., Ludviksson B.R. Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics. 2016;68(5):315-325. DOI 10.1007/s00251016-0903-4.
Boldt A.B., Culpi L., Tsuneto L.T., De Souza I.R., Kun J.F., PetzlErler M.L. Diversity of the MBL2 gene in various Brazilian populations and the case of selection at the mannose-binding lectin locus. Hum. Immunol. 2006;67(9):722-734. DOI 10.1016/j.humimm.2006.05.009.
Boldt A.B., Messias-Reason I.J., Meyer D., Schrago C.G., Lang F., Lell B., Dietz K., Kremsner P.G., Petzl-Erler M., Kun J.F. Phylogenetic nomenclature and evolution of mannose-binding lectin (MBL2) haplotypes. BMC Genet. 2010;11(1):38. DOI 10.1186/1471-215611-38.
Cao Y., Wang X., Cao Z., Wu C., Wu D., Cheng X. Genetic polymorphisms of MBL2 and tuberculosis susceptibility: a meta-analysis of 22 case-control studies. Arch. Med. Sci. 2018;14(6):1212-1232. DOI 10.5114/aoms.2017.65319.
Chalmers J.D., Mchugh B.J., Doherty C., Smith M.P., Govan J.R., Kilpatrick D.C., Hill A.T. Mannose-binding lectin deficiency and disease severity in non-cystic fibrosis bronchiectasis: a prospective study. Lancet Respir. Med. 2013;1(3):224-232. DOI 10.1016/S22132600(13)70001-8.
Czerewaty M., Tarnowski M., Safranow K., Domanski L., Pawlik A. Mannose binding lectin 2 gene polymorphisms in patients after renal transplantation with acute graft rejection. Transpl. Immunol. 2019; 54:29-37. DOI 10.1016/j.trim.2019.01.004.
Eisen D.P., Dean M.M., Boermeester M.A., Fidler K.J., Gordon A.C., Kronborg G., Kun J.F., Lau Y.L., Payeras A., Valdimarsson H., Brett S.J., Ip W.K., Mila J., Peters M.J., Saevarsdottir S., Van Till J.W., Hinds C.J., Mcbryde E.S. Low serum mannose-binding lectin level increases the risk of death due to pneumococcal infection. Clin. Infect. Dis. 2008;47(4):510-516. DOI 10.1086/590006.
Eisen D.P., Osthoff M. If there is an evolutionary selection pressure for the high frequency of MBL2 polymorphisms, what is it? Clin. Exp. Immunol. 2014;176(2):165-171. DOI 10.1111/cei.12241.
Ferraroni N.R., Segat L., Guimaraes R.L., Brandao L.A., Crovella S., Constantino-Silva R.N., Loja C., Da Silva Duarte A.J., GrumachA.S. Mannose-binding lectin and MBL-associated serine protease-2 gene polymorphisms in a Brazilian population from Rio de Janeiro. Int. J. Immunogenet. 2012;39(1):32-38. DOI 10.1111/j.1744-313X.2011.01052.x.
Fumagalli S., Perego C., Zangari R., De Blasio D., Oggioni M., De Nigris F., Snider F., Garred P., Ferrante A.M., De Simoni M.G. Lectin pathway of complement activation is associated with vulnerability of atherosclerotic plaques. Front. Immunol. 2017;8:288. DOI 10.3389/fimmu.2017.00288.
Garred P., Harboe M., Oettinger T., Koch C., Svejgaard A. Dual role of mannan-binding protein in infections: another case of heterosis? Eur. J. Immunogenet. 1994;21(2):125-131. DOI 10.1111/j.1744313x.1994.tb00183.x.
Garred P., Honore C., Ma Y.J., Munthe-Fog L., Hummelshoj T. MBL2, FCN1, FCN2 and FCN3 – The genes behind the initiation of the lectin pathway of complement. Mol. Immunol. 2009;46(14):2737-2744. DOI 10.1016/j.molimm.2009.05.005.
Hegele R.A., Busch C.P., Young T.K., Connelly P.W., Cao H. Mannosebinding lectin gene variation and cardiovascular disease in Canadian Inuit. Clin. Chem. 1999;45(8 Pt 1):1283-1285.
Hoal-Van Helden E.G., Epstein J., Victor T.C., Hon D., Lewis L.-A., Beyers N., Zurakowski D., Ezekowitz R.a.B., Van Helden P.D. Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatr. Res. 1999;45(4):459-464. DOI 10.1203/00006450-199904010-00002.
Kilpatrick D. Mannan-binding lectin: clinical significance and applications. Biochim. Biophys. Acta Gen. Subj. 2002;1572(2-3):401-413. DOI 10.1016/s0304-4165(02)00321-5.
Luo J., Xu F., Lu G.J., Lin H.C., Feng Z.C. Low mannose-binding lectin (MBL) levels and MBL genetic polymorphisms associated with the risk of neonatal sepsis: An updated meta-analysis. Early Hum. Dev. 2014;90(10):557-564. DOI 10.1016/j.earlhumdev.2014.07.007.
Madsen H.O., Garred P., Thiel S., Kurtzhals J.A., Lamm L.U., Ryder L.P., Svejgaard A. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J. Immunol. 1995;155(6):3013-3020.
Madsen H.O., Satz M.L., Hogh B., Svejgaard A., Garred P. Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J. Immunol. 1998;161(6):3169-3175.
Monsey L., Best L.G., Zhu J., Decroo S., Anderson M.Z. The association of mannose binding lectin genotype and immune response to Chlamydia pneumoniae: The Strong Heart Study. PLoS One. 2019; 14(1):e0210640. DOI 10.1371/journal.pone.0210640.
Santos I.K., Costa C.H.N., Krieger H., Feitosa M.F., Zurakowski D., Fardin B., Gomes R.B.B., Weiner D.L., Harn D.A., Ezekowitz R.A.B., Epstein J.E. Mannan-binding lectin enhances susceptibility to visceral leishmaniasis. Infect. Immun. 2001;69(8):5212-5215. DOI 10.1128/iai.69.8.5212-5215.2001.
Seyfarth J., Garred P., Madsen H.O. The ‘involution’ of mannose-binding lectin. Hum. Mol. Genet. 2005;14(19):2859-2869. DOI 10.1093/hmg/ddi318.
Skalnikova H., Freiberger T., Chumchalova J., Grombirikova H., Sediva A. Cost-effective genotyping of human MBL2 gene mutations using multiplex PCR. J. Immunol. Methods. 2004;295(1-2):139147. DOI 10.1016/j.jim.2004.10.007.
Smolnikova M.V., Freidin M.B., Tereshchenko S.Y. The prevalence of the variants of the L-ficolin gene (FCN2) in the arctic populations of East Siberia. Immunogenetics. 2017;69(6):409-413. DOI 10.1007/s00251-017-0984-8.
Steffensen R., Thiel S., Varming K., Jersild C., Jensenius J.C. Detection of structural gene mutations and promoter polymorphisms in the mannan-binding lectin (MBL) gene by polymerase chain reaction with sequence-specific primers. J. Immunol. Methods. 2000; 241(1-2):33-42. DOI 10.1016/s0022-1759(00)00198-8.
Sullivan K.E., Wooten C., Goldman D., Petri M. Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheumatol. 1996;39(12):2046-2051. DOI 10.1002/art.1780391214.
Tereshchenko S.Y., Kasparov E.V., Smol’nikova M.V., Kuvshinova E.V. Mannose-binding lectin deficiency in respiratory diseases. Rus. Pulmonol. 2016;26(6):748-752. DOI 10.18093/0869-01892016-26-6-748-752.
Tong X., Wan Q., Li Z., Liu S., Huang J., Wu M., Fan H. Association between the mannose-binding lectin (MBL)-2 gene variants and serum MBL with pulmonary tuberculosis: An update meta-analysis and systematic review. Microb. Pathog. 2019;132:374-380. DOI 10.1016/j.micpath.2019.04.023.
Troldborg A., Hansen A., Hansen S.W., Jensenius J.C., StengaardPedersen K., Thiel S. Lectin complement pathway proteins in healthy individuals. Clin. Exp. Immunol. 2017;188(1):138-147. DOI 10.1111/cei.12909.
Valles X., Sarrias M.R., Casals F., Farnos M., Piner R., Suarez B., Morais L., Mandomando I., Sigauque B., Roca A., Alonso P.L., Torres A., Thielens N.M., Lozano F. Genetic and structural analysis of MBL2 and MASP2 polymorphisms in South-Eastern African children. Tissue Antigens. 2009;74(4):298-307. DOI 10.1111/j.13990039.2009.01328.x.
Van Kempen G., Meijvis S., Endeman H., Vlaminckx B., Meek B., De Jong B., Rijkers G., Bos W.J. Mannose-binding lectin andl-ficolin polymorphisms in patients with community-acquired pneumonia caused by intracellular pathogens. Immunol. 2017;151(1):81-88. DOI 10.1111/imm.12705.
Verdu P., Barreiro L.B., Patin E., Gessain A., Cassar O., Kidd J.R., Kidd K.K., Behar D.M., Froment A., Heyer E., Sica L., Casanova J.L., Abel L., Quintana-Murci L. Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles. Hum. Mol. Genet. 2006;15(17):2650-2658. DOI 10.1093/hmg/ddl193.
Zelensky A.N., Gready J.E. The C-type lectin-like domain superfamily. FEBS J. 2005;272(24):6179-6217. DOI 10.1111/j.1742-4658.2005.05031.x.
Zhang J.X., Gong W.P., Zhu D.L., An H.R., Yang Y.R., Liang Y., Wang J., Tang J., Zhao W.G., Wu X.Q. Mannose-binding lectin 2 gene polymorphisms and their association with tuberculosis in a Chinese population. Infect. Dis. Poverty. 2020;9(1):46. DOI 10.1186/s40249-020-00664-9.
https://vavilov.elpub.ru/jour/article/view/2847
doi:10.18699/VJ20.685
op_rights Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.18699/VJ20.685
https://doi.org/10.18699/VJ20.67
container_title Vavilov Journal of Genetics and Breeding
container_volume 24
container_issue 8
container_start_page 868
op_container_end_page 875
_version_ 1766302654902829056
spelling ftjvavilov:oai:oai.vavilov.elpub.ru:article/2847 2023-05-15T14:28:30+02:00 Polymorphism of the mannose-binding lectin gene in the Arctic indigenous populations of the Russian Federation Полиморфизм гена маннозосвязывающего лектина у коренных популяций территорий Арктической зоны Российской Федерации S. Yu. Tereshchenko M. V. Smolnikova С. Ю. Терещенко М. В. Смольникова This work was supported by the Presidium of the Russian Academy of Sciences, basic research program ”Pilot basic research targeted at the development of the Arctic belt of the Russian Federation“, 2016–2019 and State Contract register no. NIOKTR 1201351112 ”Analysis of prevalence and risk factors and track of major psychosomatic disorders in Siberian children and adolescents“ 2020-12-31 application/pdf https://vavilov.elpub.ru/jour/article/view/2847 https://doi.org/10.18699/VJ20.685 rus rus Institute of Cytology and Genetics of Siberian Branch of the RAS https://vavilov.elpub.ru/jour/article/view/2847/1456 Alonso D.Р., Ferreira A.F., Ribolla P.E., Santos I.M., Cruz M.P., Carvalho F., Abatepaulo A.R., Costa D., Werneck G.L., Farias T., Soares M.J., Costa C.H. Genotypes of the mannan‐binding lectin gene and susceptibility to visceral leishmaniasis and clinical complications. J. Infect. Dis. 2007;195(8):1212-1217. DOI 10.1086/512683. Areeshi M.Y., Mandal R.K., Akhter N., Dar S.A., Jawed A., Wahid M., Mahto H., Panda A.K., Lohani M., Haque S. A meta-analysis of MBL2 polymorphisms and tuberculosis risk. Sci. Rep. 2016;6: 35728. DOI 10.1038/srep35728. Bernig T., Breunis W., Brouwer N., Hutchinson A., Welch R., Roos D., Kuijpers T., Chanock S. An analysis of genetic variation across the MBL2 locus in Dutch Caucasians indicates that 3′ haplotypes could modify circulating levels of mannose-binding lectin. Hum. Genet. 2005;118(3-4):404-415. DOI 10.1007/s00439-005-0053-5. Bernig T., Taylor J.G., Foster C.B., Staats B., Yeager M., Chanock S.J. Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun. 2004;5(6):461-476. DOI 10.1038/sj.gene.6364116. Best L.G., Davidson M., North K.E., Maccluer J.W., Zhang Y., Lee E.T., Howard B.V., Decroo S., Ferrell R.E. Prospective analysis of mannose-binding lectin genotypes and coronary artery disease in American Indians: the Strong Heart Study. Circulation. 2004;109(4): 471-475. DOI 10.1161/01.CIR.0000109757.95461.10. Bjarnadottir H., Arnardottir M., Ludviksson B.R. Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics. 2016;68(5):315-325. DOI 10.1007/s00251016-0903-4. Boldt A.B., Culpi L., Tsuneto L.T., De Souza I.R., Kun J.F., PetzlErler M.L. Diversity of the MBL2 gene in various Brazilian populations and the case of selection at the mannose-binding lectin locus. Hum. Immunol. 2006;67(9):722-734. DOI 10.1016/j.humimm.2006.05.009. Boldt A.B., Messias-Reason I.J., Meyer D., Schrago C.G., Lang F., Lell B., Dietz K., Kremsner P.G., Petzl-Erler M., Kun J.F. Phylogenetic nomenclature and evolution of mannose-binding lectin (MBL2) haplotypes. BMC Genet. 2010;11(1):38. DOI 10.1186/1471-215611-38. Cao Y., Wang X., Cao Z., Wu C., Wu D., Cheng X. Genetic polymorphisms of MBL2 and tuberculosis susceptibility: a meta-analysis of 22 case-control studies. Arch. Med. Sci. 2018;14(6):1212-1232. DOI 10.5114/aoms.2017.65319. Chalmers J.D., Mchugh B.J., Doherty C., Smith M.P., Govan J.R., Kilpatrick D.C., Hill A.T. Mannose-binding lectin deficiency and disease severity in non-cystic fibrosis bronchiectasis: a prospective study. Lancet Respir. Med. 2013;1(3):224-232. DOI 10.1016/S22132600(13)70001-8. Czerewaty M., Tarnowski M., Safranow K., Domanski L., Pawlik A. Mannose binding lectin 2 gene polymorphisms in patients after renal transplantation with acute graft rejection. Transpl. Immunol. 2019; 54:29-37. DOI 10.1016/j.trim.2019.01.004. Eisen D.P., Dean M.M., Boermeester M.A., Fidler K.J., Gordon A.C., Kronborg G., Kun J.F., Lau Y.L., Payeras A., Valdimarsson H., Brett S.J., Ip W.K., Mila J., Peters M.J., Saevarsdottir S., Van Till J.W., Hinds C.J., Mcbryde E.S. Low serum mannose-binding lectin level increases the risk of death due to pneumococcal infection. Clin. Infect. Dis. 2008;47(4):510-516. DOI 10.1086/590006. Eisen D.P., Osthoff M. If there is an evolutionary selection pressure for the high frequency of MBL2 polymorphisms, what is it? Clin. Exp. Immunol. 2014;176(2):165-171. DOI 10.1111/cei.12241. Ferraroni N.R., Segat L., Guimaraes R.L., Brandao L.A., Crovella S., Constantino-Silva R.N., Loja C., Da Silva Duarte A.J., GrumachA.S. Mannose-binding lectin and MBL-associated serine protease-2 gene polymorphisms in a Brazilian population from Rio de Janeiro. Int. J. Immunogenet. 2012;39(1):32-38. DOI 10.1111/j.1744-313X.2011.01052.x. Fumagalli S., Perego C., Zangari R., De Blasio D., Oggioni M., De Nigris F., Snider F., Garred P., Ferrante A.M., De Simoni M.G. Lectin pathway of complement activation is associated with vulnerability of atherosclerotic plaques. Front. Immunol. 2017;8:288. DOI 10.3389/fimmu.2017.00288. Garred P., Harboe M., Oettinger T., Koch C., Svejgaard A. Dual role of mannan-binding protein in infections: another case of heterosis? Eur. J. Immunogenet. 1994;21(2):125-131. DOI 10.1111/j.1744313x.1994.tb00183.x. Garred P., Honore C., Ma Y.J., Munthe-Fog L., Hummelshoj T. MBL2, FCN1, FCN2 and FCN3 – The genes behind the initiation of the lectin pathway of complement. Mol. Immunol. 2009;46(14):2737-2744. DOI 10.1016/j.molimm.2009.05.005. Hegele R.A., Busch C.P., Young T.K., Connelly P.W., Cao H. Mannosebinding lectin gene variation and cardiovascular disease in Canadian Inuit. Clin. Chem. 1999;45(8 Pt 1):1283-1285. Hoal-Van Helden E.G., Epstein J., Victor T.C., Hon D., Lewis L.-A., Beyers N., Zurakowski D., Ezekowitz R.a.B., Van Helden P.D. Mannose-binding protein B allele confers protection against tuberculous meningitis. Pediatr. Res. 1999;45(4):459-464. DOI 10.1203/00006450-199904010-00002. Kilpatrick D. Mannan-binding lectin: clinical significance and applications. Biochim. Biophys. Acta Gen. Subj. 2002;1572(2-3):401-413. DOI 10.1016/s0304-4165(02)00321-5. Luo J., Xu F., Lu G.J., Lin H.C., Feng Z.C. Low mannose-binding lectin (MBL) levels and MBL genetic polymorphisms associated with the risk of neonatal sepsis: An updated meta-analysis. Early Hum. Dev. 2014;90(10):557-564. DOI 10.1016/j.earlhumdev.2014.07.007. Madsen H.O., Garred P., Thiel S., Kurtzhals J.A., Lamm L.U., Ryder L.P., Svejgaard A. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J. Immunol. 1995;155(6):3013-3020. Madsen H.O., Satz M.L., Hogh B., Svejgaard A., Garred P. Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J. Immunol. 1998;161(6):3169-3175. Monsey L., Best L.G., Zhu J., Decroo S., Anderson M.Z. The association of mannose binding lectin genotype and immune response to Chlamydia pneumoniae: The Strong Heart Study. PLoS One. 2019; 14(1):e0210640. DOI 10.1371/journal.pone.0210640. Santos I.K., Costa C.H.N., Krieger H., Feitosa M.F., Zurakowski D., Fardin B., Gomes R.B.B., Weiner D.L., Harn D.A., Ezekowitz R.A.B., Epstein J.E. Mannan-binding lectin enhances susceptibility to visceral leishmaniasis. Infect. Immun. 2001;69(8):5212-5215. DOI 10.1128/iai.69.8.5212-5215.2001. Seyfarth J., Garred P., Madsen H.O. The ‘involution’ of mannose-binding lectin. Hum. Mol. Genet. 2005;14(19):2859-2869. DOI 10.1093/hmg/ddi318. Skalnikova H., Freiberger T., Chumchalova J., Grombirikova H., Sediva A. Cost-effective genotyping of human MBL2 gene mutations using multiplex PCR. J. Immunol. Methods. 2004;295(1-2):139147. DOI 10.1016/j.jim.2004.10.007. Smolnikova M.V., Freidin M.B., Tereshchenko S.Y. The prevalence of the variants of the L-ficolin gene (FCN2) in the arctic populations of East Siberia. Immunogenetics. 2017;69(6):409-413. DOI 10.1007/s00251-017-0984-8. Steffensen R., Thiel S., Varming K., Jersild C., Jensenius J.C. Detection of structural gene mutations and promoter polymorphisms in the mannan-binding lectin (MBL) gene by polymerase chain reaction with sequence-specific primers. J. Immunol. Methods. 2000; 241(1-2):33-42. DOI 10.1016/s0022-1759(00)00198-8. Sullivan K.E., Wooten C., Goldman D., Petri M. Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheumatol. 1996;39(12):2046-2051. DOI 10.1002/art.1780391214. Tereshchenko S.Y., Kasparov E.V., Smol’nikova M.V., Kuvshinova E.V. Mannose-binding lectin deficiency in respiratory diseases. Rus. Pulmonol. 2016;26(6):748-752. DOI 10.18093/0869-01892016-26-6-748-752. Tong X., Wan Q., Li Z., Liu S., Huang J., Wu M., Fan H. Association between the mannose-binding lectin (MBL)-2 gene variants and serum MBL with pulmonary tuberculosis: An update meta-analysis and systematic review. Microb. Pathog. 2019;132:374-380. DOI 10.1016/j.micpath.2019.04.023. Troldborg A., Hansen A., Hansen S.W., Jensenius J.C., StengaardPedersen K., Thiel S. Lectin complement pathway proteins in healthy individuals. Clin. Exp. Immunol. 2017;188(1):138-147. DOI 10.1111/cei.12909. Valles X., Sarrias M.R., Casals F., Farnos M., Piner R., Suarez B., Morais L., Mandomando I., Sigauque B., Roca A., Alonso P.L., Torres A., Thielens N.M., Lozano F. Genetic and structural analysis of MBL2 and MASP2 polymorphisms in South-Eastern African children. Tissue Antigens. 2009;74(4):298-307. DOI 10.1111/j.13990039.2009.01328.x. Van Kempen G., Meijvis S., Endeman H., Vlaminckx B., Meek B., De Jong B., Rijkers G., Bos W.J. Mannose-binding lectin andl-ficolin polymorphisms in patients with community-acquired pneumonia caused by intracellular pathogens. Immunol. 2017;151(1):81-88. DOI 10.1111/imm.12705. Verdu P., Barreiro L.B., Patin E., Gessain A., Cassar O., Kidd J.R., Kidd K.K., Behar D.M., Froment A., Heyer E., Sica L., Casanova J.L., Abel L., Quintana-Murci L. Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles. Hum. Mol. Genet. 2006;15(17):2650-2658. DOI 10.1093/hmg/ddl193. Zelensky A.N., Gready J.E. The C-type lectin-like domain superfamily. FEBS J. 2005;272(24):6179-6217. DOI 10.1111/j.1742-4658.2005.05031.x. Zhang J.X., Gong W.P., Zhu D.L., An H.R., Yang Y.R., Liang Y., Wang J., Tang J., Zhao W.G., Wu X.Q. Mannose-binding lectin 2 gene polymorphisms and their association with tuberculosis in a Chinese population. Infect. Dis. Poverty. 2020;9(1):46. DOI 10.1186/s40249-020-00664-9. https://vavilov.elpub.ru/jour/article/view/2847 doi:10.18699/VJ20.685 Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Vavilov Journal of Genetics and Breeding; Том 24, № 8 (2020); 868-875 Вавиловский журнал генетики и селекции; Том 24, № 8 (2020); 868-875 2500-3259 2500-0462 10.18699/VJ20.67 арктические популяции gene polymorphism newborns Russia Arctic populations полиморфизм генов новорожденные Россия info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjvavilov https://doi.org/10.18699/VJ20.685 https://doi.org/10.18699/VJ20.67 2022-04-29T11:27:45Z Mannose-binding lectin (MBL) is a pattern recognizing acute-phase protein of the innate immunity system actively involved in the elimination of a wide range of pathogenic microorganisms by activating the lectin pathway of the complement system. A significant part of the human population has a congenitally low production level and/or low MBL activity due to the carriage of various MBL2 variants, which can modify the course of a wide range of infectious diseases. The genotype and haplotype frequencies of the MBL2 polymorphisms have significant population differences. So far, data on the prevalence of the MBL2 genotypes in indigenous populations of the Russian Arctic regions have not been available. The aim of the study was to analyze the frequency and ethnic specificity of the distribution of allelic variants of the MBL2 polymorphisms rs11003125, rs7096206, rs7095891, rs5030737, rs1800450 and rs1800451 and their haplotypes in the populations of the Taimyr Dolgans-Nenets region of the Krasnoyarsk territory (Nenets, Dolgans-Nganasans, Russians). Data on the genotype and haplotype frequencies of the MBL2 gene among indigenous peoples of the Russian Arctic territories was first obtained in the study. The HYPA haplotype prevalence associated with a high concentration of MBL amounted to 35.4 % for Russian newborns in Eastern Siberia, corresponding to the one for European populations (27–33 %). In newborns of the Arctic populations, the prevalence of HYPA haplotype was significantly higher than in Russians and amounted to 64 % for Nenets and 56 % for the DolgansNganasans, which is close to the one detected for the Eskimos and North American Indians (64–81 %). Populations of Nenets and Dolgans-Nganasans demonstrated a significantly lower prevalence of MBL-deficient haplotypes compared with Caucasians of Eastern Siberia (3.9, 6.4 and 21.3 % respectively). Isolated Arctic populations were suggested to experience some intracellular infections (tuberculosis, leprosy) historically later and, unlike Caucasoid populations, to retain the high activity of the lectin complement activation pathway formed in the early stages of human evolution. Маннозосвязывающий лектин (mannose-binding lectin, MBL) – паттерн-распознающий острофазовый белок, относящийся к системе врожденного иммунитета и активно участвующий в элиминации широкого круга патогенных микроорганизмов посредством активации лектинового пути системы комплемента. Значительная часть человеческой популяции имеет врожденно низкий уровень продукции и/или низкую функциональную активность MBL вследствие носительства различных вариантов гена MBL2, что может модифицировать течение самых разнообразных инфекционных заболеваний. Частота генотипов и гаплотипов полиморфизмов в гене MBL2 имеет значительные популяционные различия. К настоящему времени данные относительно распределения генотипов гена MBL2 в коренных популяциях территорий Арктической зоны Российской Федерации отсутствуют. Цель исследования – изучение частоты и этнической специфики распределения аллельных вариантов полиморфизмов гена MBL2 rs11003125, rs7096206, rs7095891, rs5030737, rs1800450 и rs1800451 и их гаплотипов в популяциях Таймырского Долгано-Ненецкого района Красноярского края (ненцы, долганы-нганасаны, русские). В настоящем исследовании нами впервые получены данные о частотах генотипов и гаплотипов гена MBL2 у коренных народностей, проживающих на территориях Арктической зоны Российской Федерации. Частота встречаемости гаплотипа HYPA, ассоциированного с высокой концентрацией MBL, составила 35.4 % для русских новорожденных Восточной Сибири, что соответствует частотам европейских популяций (27–33 %). У новорожденных арктических популяций частота гаплотипа HYPA была статистически значимо выше, чем у русских, и составила 64 % для ненцев и 56 % для долган-нганасан, что приближается к значениям частот, выявленных для эскимосов и североамериканских индейцев (64–81 %). Популяции ненцев и долган-нганасан демонстрируют существенно более низкие частоты MBL-дефицитных гаплотипов в сравнении с европеоидами Восточной Сибири (3.9, 6.4 и 21.3 % соответственно). Мы предполагаем, что изолированные арктические популяции исторически позже столкнулись с некоторыми внутриклеточными инфекциями (туберкулезом, лепрой) и, в отличие от европеоидных популяций, сохранили сформированную на ранних этапах эволюции человека высокую активность лектинового пути активации комплемента. Article in Journal/Newspaper Arctic Arctic eskimo* nenets Nganasan* Taimyr Ненец* Ненцы Siberia Vavilov Journal of Genetics and Breeding Arctic Vavilov Journal of Genetics and Breeding 24 8 868 875