Generation of microdissected DNA probes from metaphase chromosomes when chromosome identification by routine staining is impossible

Application of microdissected DNA libraries and DNA probes in numerous and various modern molecular cytogenetic studies showed them as an efficient and reliable tool in the analysis of chromosome reorganization during karyotypic evolution and in the diagnosis of human chromosome pathology. An import...

Full description

Bibliographic Details
Published in:Vavilov Journal of Genetics and Breeding
Main Authors: K. S. Zadesenets, N. B. Rubtsov, К. С. Задесенец, Н. Б. Рубцов
Other Authors: This study was supported by the Russian Science Foundation under grant 19-14-00211
Format: Article in Journal/Newspaper
Language:English
Published: Institute of Cytology and Genetics of Siberian Branch of the RAS 2020
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/2716
https://doi.org/10.18699/VJ20.46-o
id ftjvavilov:oai:oai.vavilov.elpub.ru:article/2716
record_format openpolar
institution Open Polar
collection Vavilov Journal of Genetics and Breeding
op_collection_id ftjvavilov
language English
topic сиквенс-независимая полимеразная цепная реакция
Whole Chromosome Paints
FISH
sequence-independent polymerase chain reaction
микродиссекционные ДНК-пробы
флуоресцентная in situ гибридизация
spellingShingle сиквенс-независимая полимеразная цепная реакция
Whole Chromosome Paints
FISH
sequence-independent polymerase chain reaction
микродиссекционные ДНК-пробы
флуоресцентная in situ гибридизация
K. S. Zadesenets
N. B. Rubtsov
К. С. Задесенец
Н. Б. Рубцов
Generation of microdissected DNA probes from metaphase chromosomes when chromosome identification by routine staining is impossible
topic_facet сиквенс-независимая полимеразная цепная реакция
Whole Chromosome Paints
FISH
sequence-independent polymerase chain reaction
микродиссекционные ДНК-пробы
флуоресцентная in situ гибридизация
description Application of microdissected DNA libraries and DNA probes in numerous and various modern molecular cytogenetic studies showed them as an efficient and reliable tool in the analysis of chromosome reorganization during karyotypic evolution and in the diagnosis of human chromosome pathology. An important advantage of DNA probe generation by metaphase chromosome microdissection followed by sequence-independent polymerase chain reaction in comparison with the method of DNA probe generation using chromosome sorting is the possibility of DNA probe preparation from chromosomes of an individual sample without cell line establishment for the production of a large number of metaphase chromosomes. One of the main requirements for successful application of this technique is a possibility for identification of the chromosome of interest during its dissection and collection of its material from metaphase plates spread on the coverslip. In the present study, we developed and applied a technique for generation of microdissected DNA probes in the case when chromosome identification during microdissection appeared to be impossible. The technique was used for generation of two sets of Whole Chromosome Paints (WCPs) from all chromosomes of two species of free-living flatworms in the genus Macrostomum, M. mirumnovem and M. cliftonensis. The single-copy chromosome technique including separate collection of all chromosomes from one metaphase plate allowed us to generate WCPs that painted specifically the original chromosome by Chromosome In Situ Suppression Hybridization (CISS-Hybridization). CISS-Hybridization allowed identifying the original chromosome(s) used for DNA probe generation. Pooled WCPs derived from homologous chromosomes increased the intensity and specificity of chromosome painting provided by CISS-Hybridization. In the result, the obtained DNA probes appeared to be good enough for application in our studies devoted to analysis of karyotypic evolution in the genus Macrostomum and for analysis of chromosome ...
author2 This study was supported by the Russian Science Foundation under grant 19-14-00211
format Article in Journal/Newspaper
author K. S. Zadesenets
N. B. Rubtsov
К. С. Задесенец
Н. Б. Рубцов
author_facet K. S. Zadesenets
N. B. Rubtsov
К. С. Задесенец
Н. Б. Рубцов
author_sort K. S. Zadesenets
title Generation of microdissected DNA probes from metaphase chromosomes when chromosome identification by routine staining is impossible
title_short Generation of microdissected DNA probes from metaphase chromosomes when chromosome identification by routine staining is impossible
title_full Generation of microdissected DNA probes from metaphase chromosomes when chromosome identification by routine staining is impossible
title_fullStr Generation of microdissected DNA probes from metaphase chromosomes when chromosome identification by routine staining is impossible
title_full_unstemmed Generation of microdissected DNA probes from metaphase chromosomes when chromosome identification by routine staining is impossible
title_sort generation of microdissected dna probes from metaphase chromosomes when chromosome identification by routine staining is impossible
publisher Institute of Cytology and Genetics of Siberian Branch of the RAS
publishDate 2020
url https://vavilov.elpub.ru/jour/article/view/2716
https://doi.org/10.18699/VJ20.46-o
genre Arctic
genre_facet Arctic
op_source Vavilov Journal of Genetics and Breeding; Том 24, № 5 (2020); 519-524
Вавиловский журнал генетики и селекции; Том 24, № 5 (2020); 519-524
2500-3259
10.18699/VJ20.637
op_relation https://vavilov.elpub.ru/jour/article/view/2716/1409
Ferguson-Smith M.A., Trifonov V. Mammalian karyotype evolution. Nat. Rev. Genet. 2007;8(12):950-962. DOI 10.1038/nrg2199.
Graphodatsky A.S., Yang F., O’Brien P.C.M., Serdukova N., Milne B.S., Trifonov V., Ferguson-Smith M.A. A comparative chromosome map of the Arctic fox, Red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res. 2000;8(3):253-263. DOI 10.1023/A:1009217400140.
Nesterova T., Rubtsov N., Zakian S., Matveeva V., GraphodatskyA. Mapping of the silver fox genes: assignments of the genes for ME1, ADK, PP, PEPA, GSR, MPI, and GOT1. Cytogenet. Cell Genet. 1991;56(2):125-127. DOI 10.1159/000133065.
Rubtsov N., Graphodatsky A., Matveeva V., Radjabli S., Nesterova T., Kulbakina N., Zakian S. Silver fox gene mapping: conserved chromosome regions in the order Carnivora. Cytogenet. Cell Genet. 1988;48(2):95-98. DOI 10.1159/000132598.
Rubtsov N., Radjabli S., Gradov A., Serov O. Chinese hamster× American mink somatic cell hybrids: characterization of clone panel and assignment of the genes for malate dehydrogenaseNADP-1 and malate dehydrogenase-NAD-1. Theor. Appl. Genet. 1981;60:99. DOI 10.1007/BF00282425.
Schärer L., Brand J.N., Singh P., Zadesenets K.S., Stelzer C.‐P., Viktorin G.A phylogenetically informed search for an alternative Macrostomum model species, with notes on taxonomy, mating behavior, karyology, and genome size. J. Zool. Syst. Evol. Res. 2020;58:41-65. DOI 10.1111/jzs.12344.
Zadesenets K.S., Ershov N.I., Berezikov E., Rubtsov N.B. Chromosome evolution in the free-living flatworms: first evidence of intrachromosomal rearrangements in karyotype evolution of Macrostomum lignano (Platyhelminthes, Macrostomida). Genes. 2017a;8:298. DOI 10.3390/genes8110298.
Zadesenets K., Jetybayev I., Schärer L., Rubtsov N. Genome and karyotype reorganization after whole genome duplication in free-living flatworms of the genus Macrostomum. Int. J. Mol. Sci. 2020; 21:680. DOI 10.3390/ijms21020680.
Zadesenets K.S., Schӓrer L., Rubtsov N.B. New insights into the karyotype evolution of the free-living flatworm Macrostomum lignano (Platyhelminthes, Turbellaria). Sci. Rep. 2017b;7:6066. DOI 10.1038/s41598-017-06498-0.
Zadesenets K.S., Vizoso D.B., Schlatter A., Konopatskaia I.D., Berezikov E., Schärer L., Rubtsov N.B. Evidence for karyotype polymorphism in the free-living flatworm, Macrostomum lignano, a model organism for evolutionary and developmental biology. PLoS One. 2016;11:e0164915. DOI 10.1371/journal.pone.0164915.
https://vavilov.elpub.ru/jour/article/view/2716
doi:10.18699/VJ20.46-o
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.18699/VJ20.46-o10.18699/VJ20.637
container_title Vavilov Journal of Genetics and Breeding
container_volume 24
container_issue 5
container_start_page 519
op_container_end_page 524
_version_ 1810294118165774336
spelling ftjvavilov:oai:oai.vavilov.elpub.ru:article/2716 2024-09-15T17:52:03+00:00 Generation of microdissected DNA probes from metaphase chromosomes when chromosome identification by routine staining is impossible Получение микродиссекционных ДНК-проб из метафазных хромосом в случае невозможности идентификации целевой хромосомы методами рутинного окрашивания K. S. Zadesenets N. B. Rubtsov К. С. Задесенец Н. Б. Рубцов This study was supported by the Russian Science Foundation under grant 19-14-00211 2020-08-28 application/pdf https://vavilov.elpub.ru/jour/article/view/2716 https://doi.org/10.18699/VJ20.46-o eng eng Institute of Cytology and Genetics of Siberian Branch of the RAS https://vavilov.elpub.ru/jour/article/view/2716/1409 Ferguson-Smith M.A., Trifonov V. Mammalian karyotype evolution. Nat. Rev. Genet. 2007;8(12):950-962. DOI 10.1038/nrg2199. Graphodatsky A.S., Yang F., O’Brien P.C.M., Serdukova N., Milne B.S., Trifonov V., Ferguson-Smith M.A. A comparative chromosome map of the Arctic fox, Red fox and dog defined by chromosome painting and high resolution G-banding. Chromosome Res. 2000;8(3):253-263. DOI 10.1023/A:1009217400140. Nesterova T., Rubtsov N., Zakian S., Matveeva V., GraphodatskyA. Mapping of the silver fox genes: assignments of the genes for ME1, ADK, PP, PEPA, GSR, MPI, and GOT1. Cytogenet. Cell Genet. 1991;56(2):125-127. DOI 10.1159/000133065. Rubtsov N., Graphodatsky A., Matveeva V., Radjabli S., Nesterova T., Kulbakina N., Zakian S. Silver fox gene mapping: conserved chromosome regions in the order Carnivora. Cytogenet. Cell Genet. 1988;48(2):95-98. DOI 10.1159/000132598. Rubtsov N., Radjabli S., Gradov A., Serov O. Chinese hamster× American mink somatic cell hybrids: characterization of clone panel and assignment of the genes for malate dehydrogenaseNADP-1 and malate dehydrogenase-NAD-1. Theor. Appl. Genet. 1981;60:99. DOI 10.1007/BF00282425. Schärer L., Brand J.N., Singh P., Zadesenets K.S., Stelzer C.‐P., Viktorin G.A phylogenetically informed search for an alternative Macrostomum model species, with notes on taxonomy, mating behavior, karyology, and genome size. J. Zool. Syst. Evol. Res. 2020;58:41-65. DOI 10.1111/jzs.12344. Zadesenets K.S., Ershov N.I., Berezikov E., Rubtsov N.B. Chromosome evolution in the free-living flatworms: first evidence of intrachromosomal rearrangements in karyotype evolution of Macrostomum lignano (Platyhelminthes, Macrostomida). Genes. 2017a;8:298. DOI 10.3390/genes8110298. Zadesenets K., Jetybayev I., Schärer L., Rubtsov N. Genome and karyotype reorganization after whole genome duplication in free-living flatworms of the genus Macrostomum. Int. J. Mol. Sci. 2020; 21:680. DOI 10.3390/ijms21020680. Zadesenets K.S., Schӓrer L., Rubtsov N.B. New insights into the karyotype evolution of the free-living flatworm Macrostomum lignano (Platyhelminthes, Turbellaria). Sci. Rep. 2017b;7:6066. DOI 10.1038/s41598-017-06498-0. Zadesenets K.S., Vizoso D.B., Schlatter A., Konopatskaia I.D., Berezikov E., Schärer L., Rubtsov N.B. Evidence for karyotype polymorphism in the free-living flatworm, Macrostomum lignano, a model organism for evolutionary and developmental biology. PLoS One. 2016;11:e0164915. DOI 10.1371/journal.pone.0164915. https://vavilov.elpub.ru/jour/article/view/2716 doi:10.18699/VJ20.46-o Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Vavilov Journal of Genetics and Breeding; Том 24, № 5 (2020); 519-524 Вавиловский журнал генетики и селекции; Том 24, № 5 (2020); 519-524 2500-3259 10.18699/VJ20.637 сиквенс-независимая полимеразная цепная реакция Whole Chromosome Paints FISH sequence-independent polymerase chain reaction микродиссекционные ДНК-пробы флуоресцентная in situ гибридизация info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjvavilov https://doi.org/10.18699/VJ20.46-o10.18699/VJ20.637 2024-08-09T03:06:46Z Application of microdissected DNA libraries and DNA probes in numerous and various modern molecular cytogenetic studies showed them as an efficient and reliable tool in the analysis of chromosome reorganization during karyotypic evolution and in the diagnosis of human chromosome pathology. An important advantage of DNA probe generation by metaphase chromosome microdissection followed by sequence-independent polymerase chain reaction in comparison with the method of DNA probe generation using chromosome sorting is the possibility of DNA probe preparation from chromosomes of an individual sample without cell line establishment for the production of a large number of metaphase chromosomes. One of the main requirements for successful application of this technique is a possibility for identification of the chromosome of interest during its dissection and collection of its material from metaphase plates spread on the coverslip. In the present study, we developed and applied a technique for generation of microdissected DNA probes in the case when chromosome identification during microdissection appeared to be impossible. The technique was used for generation of two sets of Whole Chromosome Paints (WCPs) from all chromosomes of two species of free-living flatworms in the genus Macrostomum, M. mirumnovem and M. cliftonensis. The single-copy chromosome technique including separate collection of all chromosomes from one metaphase plate allowed us to generate WCPs that painted specifically the original chromosome by Chromosome In Situ Suppression Hybridization (CISS-Hybridization). CISS-Hybridization allowed identifying the original chromosome(s) used for DNA probe generation. Pooled WCPs derived from homologous chromosomes increased the intensity and specificity of chromosome painting provided by CISS-Hybridization. In the result, the obtained DNA probes appeared to be good enough for application in our studies devoted to analysis of karyotypic evolution in the genus Macrostomum and for analysis of chromosome ... Article in Journal/Newspaper Arctic Vavilov Journal of Genetics and Breeding Vavilov Journal of Genetics and Breeding 24 5 519 524