The regulatory role of cystatin C in autophagy and neurodegeneration

Autophagy is a dynamic cellular process involved in the turnover of proteins, protein complexes, and organelles through lysosomal degradation. It is particularly important in neurons, which do not have a proliferative option for cellular repair. Autophagy has been shown to be suppressed in the stria...

Full description

Bibliographic Details
Published in:Vavilov Journal of Genetics and Breeding
Main Authors: T. A. Korolenko, A. B. Shintyapina, A. B. Pupyshev, A. A. Akopyan, G. S. Russkikh, M. A. Dikovskaya, V. A. Vavilin, E. L Zavjalov, M. A. Tikhonova, T. G. Amstislavskaya, Т. А. Короленко, А. Б. Шинтяпина, А. Б. Пупышев, А. А. Акопян, Г. С. Русских, М. А. Диковская, В. А. Вавилин, Е. Л. Завьялов, М. А. Тихонова, Т. Г. Амстиславская
Other Authors: This work was supported partially by grant No. 16-04-01423-а from the Russian Foundation for Basic Research (Russia), to T.A.K., budget from the project No. 0538-2014-0009 of the Scientific Research Institute of Physiology and Basic Medicine (SRIPhBM) and a unique scientific resource “Biological collection – Genetic biomodels of neuro-psychiatric disorders” (No. 493387) at the SRIPhBM. The studies were implemented using the equipment of the Center for Genetic Resources of Laboratory Animals at ICG SB RAS, supported by the Ministry of Education and Science of Russia (unique identifier of the project: RFMEFI62117X0015).
Format: Article in Journal/Newspaper
Language:English
Published: Institute of Cytology and Genetics of Siberian Branch of the RAS 2019
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/2129
https://doi.org/10.18699/VJ19.507
id ftjvavilov:oai:oai.vavilov.elpub.ru:article/2129
record_format openpolar
institution Open Polar
collection Vavilov Journal of Genetics and Breeding
op_collection_id ftjvavilov
language English
topic нейродегенерация
autophagy
neurodegeneration
аутофагия
spellingShingle нейродегенерация
autophagy
neurodegeneration
аутофагия
T. A. Korolenko
A. B. Shintyapina
A. B. Pupyshev
A. A. Akopyan
G. S. Russkikh
M. A. Dikovskaya
V. A. Vavilin
E. L Zavjalov
M. A. Tikhonova
T. G. Amstislavskaya
Т. А. Короленко
А. Б. Шинтяпина
А. Б. Пупышев
А. А. Акопян
Г. С. Русских
М. А. Диковская
В. А. Вавилин
Е. Л. Завьялов
М. А. Тихонова
Т. Г. Амстиславская
The regulatory role of cystatin C in autophagy and neurodegeneration
topic_facet нейродегенерация
autophagy
neurodegeneration
аутофагия
description Autophagy is a dynamic cellular process involved in the turnover of proteins, protein complexes, and organelles through lysosomal degradation. It is particularly important in neurons, which do not have a proliferative option for cellular repair. Autophagy has been shown to be suppressed in the striatum of a transgenic mouse model of Parkinson’s disease. Cystatin C is one of the potent regulators of autophagy. Changes in the expression and secretion of cystatin C in the brain have been shown in amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases, and in some animal models of neurodegeneration, thus proving a protective function of cystatin C. It has been suggested that cystatin C plays the primary role in amyloidogenesis and shows promise as a therapeutic agent for neurodegenerative diseases (Alzheimer’s and Parkinson’s diseases). Cystatin C colocalizes with the amyloid β-protein in the brain during Alzheimer’s disease. Controlled expression of a cystatin C peptide has been proposed as a new approach to therapy for Alzheimer’s disease. In Parkinson’s disease, serum cystatin C levels can predict disease severity and cognitive dysfunction, although the exact involvement of cystatin C remains unclear. The aim: to study the role of cystatin C in neurodegeneration and evaluate the results in relation to the mechanism of autophagy. In our study on humans, a higher concentration of cystatin C was noted in cerebrospinal fluid than in serum; much lower concentrations were observed in other biological fluids (intraocular fluid, bile, and sweat). In elderly persons (61–80 years old compared to practically healthy people at 40–60 years of age), we revealed increased cystatin C levels both in serum and intraocular fluid. In an experiment on C57Bl/6J mice, cystatin C concentration was significantly higher in brain tissue than in the liver and spleen: an indication of an important function of this cysteine protease inhibitor in the brain. Using a transgenic mouse model of Parkinson’s disease (5 months old), we demonstrated a significant increase in osmotic susceptibility of brain lysosomes, depending on autophagy, while in a murine model of Alzheimer’s disease, this parameter did not differ from that in the appropriate control. Aутофагия – динамичный клеточный процесс, связанный с оборотом белков, белковых комплексов и органелл посредством лизосомной деградации. Аутофагия особенно важна в нейронах, которые не имеют пролиферативного ресурса для клеточного восстановления. Одним из мощных регуляторов аутофагии является цистатин С. Изменения экспрессии и секреции цистатина С в головном мозге показаны при боковом амиотрофическом склерозе, болезни Альцгеймера и Паркинсона, а также на некоторых моделях нейродегенерации у животных, что подтверждает защитную функцию цистатина С. Высказано предположение, что цистатин С играет важную роль в амилоидогенезе и может рассматриваться как возможное терапевтическое средство для предупреждения и лечения ряда нейродегенеративных заболеваний (болезни Альцгеймера и Паркинсона). Цистатин С колокализуется с амилоидом β в головном мозге при болезни Альцгеймера. Контролируемая экспрессия пептида цистатина С предложена в качестве нового подхода к терапии болезни Альцгеймера. При болезни Паркинсона уровни цистатина С в сыворотке крови могут прогнозировать тяжесть заболевания и когнитивную дисфункцию, хотя конкретное участие цистатина С остается неясным. Рассмотрена роль цистатина С в нейродегенерации и проведена оценка результатов в связи с активностью аутофагии. У здоровых людей обнаружена высокая концентрация цистатина С в спинномозговой жидкости по сравнению с сывороткой крови; значительно более низкие концентрации наблюдали в других биологических жидкостях (внутриглазная жидкость, желчь, пот). При оценке влияния возраста обнаружено повышение концентрации цистатина С как в сыворотке, так и во внутриглазной жидкости у пожилых людей (61–80 лет) по сравнению с практически здоровыми людьми в возрасте 40–60 лет. В эксперименте на мышах C57Bl/6J концентрация цистатина С была значительно выше в мозговой ткани, чем в печени и селезенке, что указывает на важную функцию этого ингибитора цистеиновых протеаз в головном мозге. На трансгенной мышиной модели болезни Паркинсона (5 месяцев) найдено значительное увеличение осмотической чувствительности лизосом мозга, соответствующее усилению аутофагии, тогда как на мышиной модели болезни Альцгеймера этот показатель не обнаружил изменения аутофагии.
author2 This work was supported partially by grant No. 16-04-01423-а from the Russian Foundation for Basic Research (Russia), to T.A.K., budget from the project No. 0538-2014-0009 of the Scientific Research Institute of Physiology and Basic Medicine (SRIPhBM) and a unique scientific resource “Biological collection – Genetic biomodels of neuro-psychiatric disorders” (No. 493387) at the SRIPhBM. The studies were implemented using the equipment of the Center for Genetic Resources of Laboratory Animals at ICG SB RAS, supported by the Ministry of Education and Science of Russia (unique identifier of the project: RFMEFI62117X0015).
format Article in Journal/Newspaper
author T. A. Korolenko
A. B. Shintyapina
A. B. Pupyshev
A. A. Akopyan
G. S. Russkikh
M. A. Dikovskaya
V. A. Vavilin
E. L Zavjalov
M. A. Tikhonova
T. G. Amstislavskaya
Т. А. Короленко
А. Б. Шинтяпина
А. Б. Пупышев
А. А. Акопян
Г. С. Русских
М. А. Диковская
В. А. Вавилин
Е. Л. Завьялов
М. А. Тихонова
Т. Г. Амстиславская
author_facet T. A. Korolenko
A. B. Shintyapina
A. B. Pupyshev
A. A. Akopyan
G. S. Russkikh
M. A. Dikovskaya
V. A. Vavilin
E. L Zavjalov
M. A. Tikhonova
T. G. Amstislavskaya
Т. А. Короленко
А. Б. Шинтяпина
А. Б. Пупышев
А. А. Акопян
Г. С. Русских
М. А. Диковская
В. А. Вавилин
Е. Л. Завьялов
М. А. Тихонова
Т. Г. Амстиславская
author_sort T. A. Korolenko
title The regulatory role of cystatin C in autophagy and neurodegeneration
title_short The regulatory role of cystatin C in autophagy and neurodegeneration
title_full The regulatory role of cystatin C in autophagy and neurodegeneration
title_fullStr The regulatory role of cystatin C in autophagy and neurodegeneration
title_full_unstemmed The regulatory role of cystatin C in autophagy and neurodegeneration
title_sort regulatory role of cystatin c in autophagy and neurodegeneration
publisher Institute of Cytology and Genetics of Siberian Branch of the RAS
publishDate 2019
url https://vavilov.elpub.ru/jour/article/view/2129
https://doi.org/10.18699/VJ19.507
genre Circumpolar Health
genre_facet Circumpolar Health
op_source Vavilov Journal of Genetics and Breeding; Том 23, № 4 (2019); 390-397
Вавиловский журнал генетики и селекции; Том 23, № 4 (2019); 390-397
2500-3259
2500-0462
op_relation https://vavilov.elpub.ru/jour/article/view/2129/1227
Bjornstad P., Cherney D.Z., Maahs D.M. Update on estimation of kidney function in diabetic kidney disease. Curr. Diab. Rep. 2015;15(9):57. DOI 10.1007/s11892-015-0633-2.
Chen W.W., Cheng X., Zhang X., Zhang Q.S., Sun H.Q., Huang W.J., Xie Z.Y. The expression features of serum cystatin C and homocysteine of Parkinson’s disease with mild cognitive dysfunction. Eur. Rev. Med. Pharmacol. Sci. 2015;19(16):2957-2963.
Chen Y., Klionsky D.J. The regulation of autophagy – unanswered questions. J. Cell Sci. 2011;124(Pt.2):161-170.
Cheung Z.H., Ip N.Y. Autophagy deregulation in neurodegenerative diseases – recent advances and future perspectives. J. Neurochem. 2011;118(3):317-325. DOI 10.1111/j.1471-4159.2011.07314.x.
Choi J.Y., Cho E.J., Lee H.S., Lee J.M., Yoon Y.H., Lee S. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model. Food Chem. Toxicol. 2013; 53:105-111. DOI 10.1016/j.fct.2012.11.002.
Ciechanover A., Kwon Y.T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 2015:47:e147.
Coria F., Castaño E.M., Frangione B. Brain amyloid in normal aging and cerebral amyloid angiopathy is antigenically related to Alzheimer’s disease beta-protein. Am. J. Pathol. 1987;129(3):422-428.
Cuervo A.M., Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell. Res. 2014;24(1):92-104.
Dehay B., Bove J., Rodriguez-Muela N., Perier C., Recasens A., Boya P., Vila M. Pathogenic lysosomal depletion in Parkinson’s disease. J. Neurosci. 2010;30(37):12535-12544.
Feng Y., Yao Z., Klionsky D.J. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015;25(6):354-363. DOI 10.1016/j. tcb.2015.02.002.
Galluzzi L., Baehrecke E.H., Ballabio A., Boya P., Bravo-San Pedro J.M., Cecconi F., Choi A.M., Chu C.T., Codogno P., Colombo M.I., Cuervo A.M., Debnath J., Deretic V., Dikic I., Eskelinen E.L., Fimia G.M., Fulda S., Gewirtz D.A., Green D.R., Hansen M., Harper J.W., Jäättelä M., Johansen T., Juhasz G., Kimmelman A.C., Kraft C., Ktistakis N.T., Kumar S., Levine B., LopezOtin C., Madeo F., Martens S., Martinez J., Melendez A., Mizushima N., Münz C., Murphy L.O., Penninger J.M., Piacentini M., Reggiori F., Rubinsztein D.C., Ryan K.M., Santambrogio L., Scorrano L., Simon A.K., Simon H.U., Simonsen A., Tavernarakis N., Tooze S.A., Yoshimori T., Yuan J., Yue Z., Zhong Q., Kroemer G. Molecular definitions of autophagy and related processes. EMBO J. 2017a;36(13):1811-1836. DOI 10.15252/embj.201796697.
Galluzzi L., Bravo-San Pedro J.M., Levine B., Green D.R., Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 2017b;6(7):487-511. DOI 10.1038/nrd.2017.22.
Gammoh N., Fraser J., Puente C., Syred H.M., Kang H., Ozawa T., Lam D., Acosta J.C., Finch A.J., Holland E., Jiang X. Suppression of autophagy impedes glioblastoma development and induces senescence. Autophagy. 2016;12(9):1431-1439. DOI 10.1080/15548627.2016.1190053.
Gao L., Jauregui C.E., Teng Y. Targeting autophagy as a strategy for drug discovery and therapeutic modulation. Future Med. Chem. 2017;9(3):335-345. DOI 10.4155/fmc-2016-0210.
Gashenko E.A., Lebedeva V.A., Brak I.V., Tsykalenko E.A., Vinokurova G.V., Korolenko T.A. Evaluation of serum procathepsin B, cystatin B and cystatin C as possible biomarkers of ovarian cancer. Int. J. Circumpolar Health. 2013;72:21215. DOI 10.3402/ijch.v72i0.21215.
Gauthier A.C., Liu J. Neurodegeneration and neuroprotection in glaucoma. Yale J. Biol. Med. 2016;89(1):73-79.
Gauthier S., Kaur G., Mi W., Tizon B., Levy E. Protective mechanisms by cystatin C in neurodegenerative diseases. Front. Biosci. (Schol Ed). 2011;3:541-554.
Gomez-Santos C., Ferrer I., Santidrian A.F., Barrachina M., Gil J., Ambrosio S. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J. Neurosci. Res. 2003;73:341-350.
Ha J., Kim J. Novel pharmacological modulators of autophagy: an updated patent review (2012–2015). Expert Opin. Ther. Pat. 2016; 26(11):1273-1289.
Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R., Yokoyama M., Mishima K., Saito I., Okano H., Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885-889.
Harris H., Rubinsztein D.C. Control of autophagy as a therapy for neurodegenerative disease. Nat. Rev. Neurol. 2011;8(2):108-117. DOI 10.1038/nrneurol.2011.200.
Hu W.D., Chen J., Mao C.J., Feng P., Yang Y.P., Luo W.F., Liu C.F. Elevated cystatin C levels are associated with cognitive impairment and progression of Parkinson disease. Cogn. Behav. Neurol. 2016;29(3):144-149. DOI 10.1097/WNN.0000000000000100.
Huang C.K., Chang Y.T., Amstislavskaya T.G., Tikhonova M.A., Lin C.L., Hung C.S., Lai T.J., Ho Y.J. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson’s disease dementia. Behav. Brain Res. 2015;294:198-207. DOI 10.1016/j.bbr.2015.08.011.
Huh C.G., Håkansson K., Nathanson C.M., Thorgeirsson U.P., Jonsson N., Grubb A., Abrahamson M., Karlsson S. Decreased metastatic spread in mice homozygous for a null allele of the cystatin C protease inhibitor gene. Mol. Pathol. 1999;52(6):332-340.
Hwang H.Y., Cho S.M., Kwon H.J. Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opin. Drug Discov. 2017;12(9):909-923. DOI 10.1080/17460441.2017.1349751.
Johnston T.P., Korolenko T.A., Bgatova N.P. Statins and Yeast Polysaccharides in the Treatment of Hyperlipidemia and Liver Steatosis, Role of Autophagy. In: Berhardt L.V. (Ed.). Advances in Medicine and Biology. Vol. 110. New York: Nova Science Publ., 2017;31-60. Kaminskyy V., Zhivotovsky B. Proteases in autophagy. Biochim. Biophys. Acta. 2012;1824(1):44-50.
Kaur G., Levy E. Cystatin C in Alzheimer’s disease. Front. Mol. Neurosci. 2012;6(5):79. DOI 10.3389/fnmol.2012.00079.
Keppler D. Towards novel anti-cancer strategies based on cystatin function. Cancer Lett. 2006;235(2):159-176.
Kiriyama Y., Nochi H. The function of autophagy in neurodegenerative diseases. Int. J. Mol. Sci. 2015;16(11):26797-26812. DOI 10.3390/ijms161125990.
Korolenko T.A., Cherkanova M.S., Gashenko E.A., Johnston T.P., Bravve I.Yu. Cystatin C, Atherosclerosis and Lipid-Lowering Therapy by Statins. In: Cohen J.B., Ryseck L.P. (Eds.). Cystatins, Protease Inhibitors, Biomarkers and Immunomodulators. Nova Science Publ., USA, 2011;187-204.
Korolenko T.A., Pisareva E.E., Filyushina E.E., Johnston T.P., Machova E. Serum cystatin C and chitotriosidase in acute P-407 induced dyslipidemia: can they serve as potential early biomarkers for atherosclerosis? Exp. Toxicol. Pathol. 2015;67(9):459-466. DOI 10.1016/j.etp.2015.06.003.
Korolenko T.A., Tuzikov F.V., Cherkanova M.S., Johnston T.P., Tuzikova N.A., Loginova V.M., Filjushina E.E., Kaledin V.I. Influence of atorvastatin and carboxymethylated glucan on the serum lipoprotein profile and MMP activity of mice with lipemia induced by poloxamer 407. Can. J. Physiol. Pharmacol. 2012;90(2):141-153. DOI 10.1139/y11-118.
Kovács T., Billes V., Komlós M., Hotzi B., Manzéger A., Tarnóci A., Papp D., Szikszai F., Szinyákovics J., Rácz Á., Noszál B., Veszelka S., Walter F.R., Deli M.A., Hackler L., Jr, Alfoldi R., Huzian O., Puskas L.G., Liliom H., Tárnok K., Schlett K., Borsy A., Welker E., Kovács A.L., Pádár Z., Erdős A., Legradi A., Bjelik A., Gulya K., Gulyás B., Vellai T. The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms. Sci. Rep. 2017;7:42014. DOI 10.1038/srep42014.
Lee D.C., Womble T.A., Mason C.W., Jackson I.M., Lamango N.S., Severs W.B., Palm D.E. 6-Hydroxydopamine induces cystatin C-mediated cysteine protease suppression and cathepsin D activation. Neurochem. Int. 2007;50(4):607-618.
Lee J.A. Autophagy in neurodegeneration: two sides of the same coin. BMB Rep. 2009;42(6):324-330.
Li W., Sultana N., Siraj N., Ward L.J., Pawlik M., Levy E., Jovinge S., Bengtsson E., Yuan X.-M. Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis. J. Cell. Mol. Med. 2016;20(9):1664-1672.
Ling D., Salvaterra P.M. A central role for autophagy in Alzheimer-type neurodegeneration. Autophagy. 2009;5(5):738-740.
Liu Y., Cai H., Wang Z., Li J., Wang K., Yu Z., Chen G. Induction of autophagy by cystatin C: a potential mechanism for prevention of cerebral vasospasm after experimental subarachnoid hemorrhage. Eur. J. Med. Res. 2013;18:21. DOI 10.1186/2047-783X-18-21.
Luo J. Autophagy and ethanol neurotoxicity. Autophagy. 2014;10(12): 2099-2108. DOI 10.4161/15548627.2014.981916.
Maetzler W., Schmid B., Synofzik M., Schulte C., Riester K., Huber H., Brockmann K., Gasser T., Berg D., Melms A. The CST3 BB genotype and low cystatin C cerebrospinal fluid levels are associated with dementia in Lewy body disease. J. Alzheimers Dis. 2010;19(3):937942. DOI 10.3233/JAD-2010-1289.
Malagelada C., Jin Z.H., Jackson-Lewis V., Przedborski S., Greene L.A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J. Neurosci. 2010;30(3):1166-1175. DOI 10.1523/JNEUROSCI.3944-09.2010.
Martini-Stoica H., Xu Y., Ballabio A., Zheng H. The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci. 2016;39(4):221-234. DOI 10.1016/j.tins.2016.02.002.
Mathews P.M., Levy E. Cystatin C in aging and in Alzheimer’s disease. Ageing Res. Rev. 2016;32:38-50. DOI 10.1016/j.arr.2016.06.003.
Maxfield F. Role of endosomes and lysosomes in human disease. Cold Spring Harb. Perspect. Biol. 2014;6(5):a016931. DOI 10.1101/cshperspect.a016931.
Mi W., Pawlik M., Sastre M., Jung S.S., Radvinsky D.S., Klein A.M., Sommer J., Schmidt S.D., Nixon R.A., Mathews P.M., Levy E. Cystatin C inhibits amyloid-beta deposition in Alzheimer’s disease mouse models. Nat. Genet. 2007;39(12):1440-1442.
Nalivaeva N.N., Turner A.J. Role of ageing and oxidative stress in regulation of amyloid-degrading enzymes and development of neurodegeneration. Curr. Aging Sci. 2017;10(1):32-40.
Park S.H., Kim J.H., Bae S.S., Hong K.W., Lee D.S., Leem J.Y., Choi B.T., Shin H.K. Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid β-induced cognitive deficits associated with decreased amyloid β accumulation. Biochem. Biophys. Res. Commun. 2011;408(4):602-608. DOI 10.1016/j.bbrc.2011.04.068.
Poteryaeva O.N., Falameyeva O.V., Korolenko T.A., Kaledin V.I., Djanayeva S.J., Nowicky J.W., Sandula J. Cysteine proteinase inhibitor level in tumor and normal tissues in control and cured mice. Drugs Exp. Clin. Res. 2000;26(5-6):301-306.
Přikrylová Vranová H., Mareš J., Nevrlý M., Stejskal D., Zapletalová J., Hluštík P., Kaňovský P. CSF markers of neurodegeneration in Parkinson’s disease. J. Neural Transm. (Vienna). 2010;117(10):11771181. DOI 10.1007/s00702-010-0462-z.
op_rights Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.18699/VJ19.507
https://doi.org/10.1016/j.
container_title Vavilov Journal of Genetics and Breeding
container_volume 23
container_issue 4
container_start_page 390
op_container_end_page 397
_version_ 1766390978506129408
spelling ftjvavilov:oai:oai.vavilov.elpub.ru:article/2129 2023-05-15T15:55:29+02:00 The regulatory role of cystatin C in autophagy and neurodegeneration Регуляторная роль цистатина С в аутофагии и нейродегенерации T. A. Korolenko A. B. Shintyapina A. B. Pupyshev A. A. Akopyan G. S. Russkikh M. A. Dikovskaya V. A. Vavilin E. L Zavjalov M. A. Tikhonova T. G. Amstislavskaya Т. А. Короленко А. Б. Шинтяпина А. Б. Пупышев А. А. Акопян Г. С. Русских М. А. Диковская В. А. Вавилин Е. Л. Завьялов М. А. Тихонова Т. Г. Амстиславская This work was supported partially by grant No. 16-04-01423-а from the Russian Foundation for Basic Research (Russia), to T.A.K., budget from the project No. 0538-2014-0009 of the Scientific Research Institute of Physiology and Basic Medicine (SRIPhBM) and a unique scientific resource “Biological collection – Genetic biomodels of neuro-psychiatric disorders” (No. 493387) at the SRIPhBM. The studies were implemented using the equipment of the Center for Genetic Resources of Laboratory Animals at ICG SB RAS, supported by the Ministry of Education and Science of Russia (unique identifier of the project: RFMEFI62117X0015). 2019-07-05 application/pdf https://vavilov.elpub.ru/jour/article/view/2129 https://doi.org/10.18699/VJ19.507 eng eng Institute of Cytology and Genetics of Siberian Branch of the RAS https://vavilov.elpub.ru/jour/article/view/2129/1227 Bjornstad P., Cherney D.Z., Maahs D.M. Update on estimation of kidney function in diabetic kidney disease. Curr. Diab. Rep. 2015;15(9):57. DOI 10.1007/s11892-015-0633-2. Chen W.W., Cheng X., Zhang X., Zhang Q.S., Sun H.Q., Huang W.J., Xie Z.Y. The expression features of serum cystatin C and homocysteine of Parkinson’s disease with mild cognitive dysfunction. Eur. Rev. Med. Pharmacol. Sci. 2015;19(16):2957-2963. Chen Y., Klionsky D.J. The regulation of autophagy – unanswered questions. J. Cell Sci. 2011;124(Pt.2):161-170. Cheung Z.H., Ip N.Y. Autophagy deregulation in neurodegenerative diseases – recent advances and future perspectives. J. Neurochem. 2011;118(3):317-325. DOI 10.1111/j.1471-4159.2011.07314.x. Choi J.Y., Cho E.J., Lee H.S., Lee J.M., Yoon Y.H., Lee S. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model. Food Chem. Toxicol. 2013; 53:105-111. DOI 10.1016/j.fct.2012.11.002. Ciechanover A., Kwon Y.T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 2015:47:e147. Coria F., Castaño E.M., Frangione B. Brain amyloid in normal aging and cerebral amyloid angiopathy is antigenically related to Alzheimer’s disease beta-protein. Am. J. Pathol. 1987;129(3):422-428. Cuervo A.M., Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell. Res. 2014;24(1):92-104. Dehay B., Bove J., Rodriguez-Muela N., Perier C., Recasens A., Boya P., Vila M. Pathogenic lysosomal depletion in Parkinson’s disease. J. Neurosci. 2010;30(37):12535-12544. Feng Y., Yao Z., Klionsky D.J. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015;25(6):354-363. DOI 10.1016/j. tcb.2015.02.002. Galluzzi L., Baehrecke E.H., Ballabio A., Boya P., Bravo-San Pedro J.M., Cecconi F., Choi A.M., Chu C.T., Codogno P., Colombo M.I., Cuervo A.M., Debnath J., Deretic V., Dikic I., Eskelinen E.L., Fimia G.M., Fulda S., Gewirtz D.A., Green D.R., Hansen M., Harper J.W., Jäättelä M., Johansen T., Juhasz G., Kimmelman A.C., Kraft C., Ktistakis N.T., Kumar S., Levine B., LopezOtin C., Madeo F., Martens S., Martinez J., Melendez A., Mizushima N., Münz C., Murphy L.O., Penninger J.M., Piacentini M., Reggiori F., Rubinsztein D.C., Ryan K.M., Santambrogio L., Scorrano L., Simon A.K., Simon H.U., Simonsen A., Tavernarakis N., Tooze S.A., Yoshimori T., Yuan J., Yue Z., Zhong Q., Kroemer G. Molecular definitions of autophagy and related processes. EMBO J. 2017a;36(13):1811-1836. DOI 10.15252/embj.201796697. Galluzzi L., Bravo-San Pedro J.M., Levine B., Green D.R., Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 2017b;6(7):487-511. DOI 10.1038/nrd.2017.22. Gammoh N., Fraser J., Puente C., Syred H.M., Kang H., Ozawa T., Lam D., Acosta J.C., Finch A.J., Holland E., Jiang X. Suppression of autophagy impedes glioblastoma development and induces senescence. Autophagy. 2016;12(9):1431-1439. DOI 10.1080/15548627.2016.1190053. Gao L., Jauregui C.E., Teng Y. Targeting autophagy as a strategy for drug discovery and therapeutic modulation. Future Med. Chem. 2017;9(3):335-345. DOI 10.4155/fmc-2016-0210. Gashenko E.A., Lebedeva V.A., Brak I.V., Tsykalenko E.A., Vinokurova G.V., Korolenko T.A. Evaluation of serum procathepsin B, cystatin B and cystatin C as possible biomarkers of ovarian cancer. Int. J. Circumpolar Health. 2013;72:21215. DOI 10.3402/ijch.v72i0.21215. Gauthier A.C., Liu J. Neurodegeneration and neuroprotection in glaucoma. Yale J. Biol. Med. 2016;89(1):73-79. Gauthier S., Kaur G., Mi W., Tizon B., Levy E. Protective mechanisms by cystatin C in neurodegenerative diseases. Front. Biosci. (Schol Ed). 2011;3:541-554. Gomez-Santos C., Ferrer I., Santidrian A.F., Barrachina M., Gil J., Ambrosio S. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells. J. Neurosci. Res. 2003;73:341-350. Ha J., Kim J. Novel pharmacological modulators of autophagy: an updated patent review (2012–2015). Expert Opin. Ther. Pat. 2016; 26(11):1273-1289. Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R., Yokoyama M., Mishima K., Saito I., Okano H., Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885-889. Harris H., Rubinsztein D.C. Control of autophagy as a therapy for neurodegenerative disease. Nat. Rev. Neurol. 2011;8(2):108-117. DOI 10.1038/nrneurol.2011.200. Hu W.D., Chen J., Mao C.J., Feng P., Yang Y.P., Luo W.F., Liu C.F. Elevated cystatin C levels are associated with cognitive impairment and progression of Parkinson disease. Cogn. Behav. Neurol. 2016;29(3):144-149. DOI 10.1097/WNN.0000000000000100. Huang C.K., Chang Y.T., Amstislavskaya T.G., Tikhonova M.A., Lin C.L., Hung C.S., Lai T.J., Ho Y.J. Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson’s disease dementia. Behav. Brain Res. 2015;294:198-207. DOI 10.1016/j.bbr.2015.08.011. Huh C.G., Håkansson K., Nathanson C.M., Thorgeirsson U.P., Jonsson N., Grubb A., Abrahamson M., Karlsson S. Decreased metastatic spread in mice homozygous for a null allele of the cystatin C protease inhibitor gene. Mol. Pathol. 1999;52(6):332-340. Hwang H.Y., Cho S.M., Kwon H.J. Approaches for discovering novel bioactive small molecules targeting autophagy. Expert Opin. Drug Discov. 2017;12(9):909-923. DOI 10.1080/17460441.2017.1349751. Johnston T.P., Korolenko T.A., Bgatova N.P. Statins and Yeast Polysaccharides in the Treatment of Hyperlipidemia and Liver Steatosis, Role of Autophagy. In: Berhardt L.V. (Ed.). Advances in Medicine and Biology. Vol. 110. New York: Nova Science Publ., 2017;31-60. Kaminskyy V., Zhivotovsky B. Proteases in autophagy. Biochim. Biophys. Acta. 2012;1824(1):44-50. Kaur G., Levy E. Cystatin C in Alzheimer’s disease. Front. Mol. Neurosci. 2012;6(5):79. DOI 10.3389/fnmol.2012.00079. Keppler D. Towards novel anti-cancer strategies based on cystatin function. Cancer Lett. 2006;235(2):159-176. Kiriyama Y., Nochi H. The function of autophagy in neurodegenerative diseases. Int. J. Mol. Sci. 2015;16(11):26797-26812. DOI 10.3390/ijms161125990. Korolenko T.A., Cherkanova M.S., Gashenko E.A., Johnston T.P., Bravve I.Yu. Cystatin C, Atherosclerosis and Lipid-Lowering Therapy by Statins. In: Cohen J.B., Ryseck L.P. (Eds.). Cystatins, Protease Inhibitors, Biomarkers and Immunomodulators. Nova Science Publ., USA, 2011;187-204. Korolenko T.A., Pisareva E.E., Filyushina E.E., Johnston T.P., Machova E. Serum cystatin C and chitotriosidase in acute P-407 induced dyslipidemia: can they serve as potential early biomarkers for atherosclerosis? Exp. Toxicol. Pathol. 2015;67(9):459-466. DOI 10.1016/j.etp.2015.06.003. Korolenko T.A., Tuzikov F.V., Cherkanova M.S., Johnston T.P., Tuzikova N.A., Loginova V.M., Filjushina E.E., Kaledin V.I. Influence of atorvastatin and carboxymethylated glucan on the serum lipoprotein profile and MMP activity of mice with lipemia induced by poloxamer 407. Can. J. Physiol. Pharmacol. 2012;90(2):141-153. DOI 10.1139/y11-118. Kovács T., Billes V., Komlós M., Hotzi B., Manzéger A., Tarnóci A., Papp D., Szikszai F., Szinyákovics J., Rácz Á., Noszál B., Veszelka S., Walter F.R., Deli M.A., Hackler L., Jr, Alfoldi R., Huzian O., Puskas L.G., Liliom H., Tárnok K., Schlett K., Borsy A., Welker E., Kovács A.L., Pádár Z., Erdős A., Legradi A., Bjelik A., Gulya K., Gulyás B., Vellai T. The small molecule AUTEN-99 (autophagy enhancer-99) prevents the progression of neurodegenerative symptoms. Sci. Rep. 2017;7:42014. DOI 10.1038/srep42014. Lee D.C., Womble T.A., Mason C.W., Jackson I.M., Lamango N.S., Severs W.B., Palm D.E. 6-Hydroxydopamine induces cystatin C-mediated cysteine protease suppression and cathepsin D activation. Neurochem. Int. 2007;50(4):607-618. Lee J.A. Autophagy in neurodegeneration: two sides of the same coin. BMB Rep. 2009;42(6):324-330. Li W., Sultana N., Siraj N., Ward L.J., Pawlik M., Levy E., Jovinge S., Bengtsson E., Yuan X.-M. Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis. J. Cell. Mol. Med. 2016;20(9):1664-1672. Ling D., Salvaterra P.M. A central role for autophagy in Alzheimer-type neurodegeneration. Autophagy. 2009;5(5):738-740. Liu Y., Cai H., Wang Z., Li J., Wang K., Yu Z., Chen G. Induction of autophagy by cystatin C: a potential mechanism for prevention of cerebral vasospasm after experimental subarachnoid hemorrhage. Eur. J. Med. Res. 2013;18:21. DOI 10.1186/2047-783X-18-21. Luo J. Autophagy and ethanol neurotoxicity. Autophagy. 2014;10(12): 2099-2108. DOI 10.4161/15548627.2014.981916. Maetzler W., Schmid B., Synofzik M., Schulte C., Riester K., Huber H., Brockmann K., Gasser T., Berg D., Melms A. The CST3 BB genotype and low cystatin C cerebrospinal fluid levels are associated with dementia in Lewy body disease. J. Alzheimers Dis. 2010;19(3):937942. DOI 10.3233/JAD-2010-1289. Malagelada C., Jin Z.H., Jackson-Lewis V., Przedborski S., Greene L.A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J. Neurosci. 2010;30(3):1166-1175. DOI 10.1523/JNEUROSCI.3944-09.2010. Martini-Stoica H., Xu Y., Ballabio A., Zheng H. The autophagy-lysosomal pathway in neurodegeneration: a TFEB perspective. Trends Neurosci. 2016;39(4):221-234. DOI 10.1016/j.tins.2016.02.002. Mathews P.M., Levy E. Cystatin C in aging and in Alzheimer’s disease. Ageing Res. Rev. 2016;32:38-50. DOI 10.1016/j.arr.2016.06.003. Maxfield F. Role of endosomes and lysosomes in human disease. Cold Spring Harb. Perspect. Biol. 2014;6(5):a016931. DOI 10.1101/cshperspect.a016931. Mi W., Pawlik M., Sastre M., Jung S.S., Radvinsky D.S., Klein A.M., Sommer J., Schmidt S.D., Nixon R.A., Mathews P.M., Levy E. Cystatin C inhibits amyloid-beta deposition in Alzheimer’s disease mouse models. Nat. Genet. 2007;39(12):1440-1442. Nalivaeva N.N., Turner A.J. Role of ageing and oxidative stress in regulation of amyloid-degrading enzymes and development of neurodegeneration. Curr. Aging Sci. 2017;10(1):32-40. Park S.H., Kim J.H., Bae S.S., Hong K.W., Lee D.S., Leem J.Y., Choi B.T., Shin H.K. Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid β-induced cognitive deficits associated with decreased amyloid β accumulation. Biochem. Biophys. Res. Commun. 2011;408(4):602-608. DOI 10.1016/j.bbrc.2011.04.068. Poteryaeva O.N., Falameyeva O.V., Korolenko T.A., Kaledin V.I., Djanayeva S.J., Nowicky J.W., Sandula J. Cysteine proteinase inhibitor level in tumor and normal tissues in control and cured mice. Drugs Exp. Clin. Res. 2000;26(5-6):301-306. Přikrylová Vranová H., Mareš J., Nevrlý M., Stejskal D., Zapletalová J., Hluštík P., Kaňovský P. CSF markers of neurodegeneration in Parkinson’s disease. J. Neural Transm. (Vienna). 2010;117(10):11771181. DOI 10.1007/s00702-010-0462-z. Authors who publish their articles in this journal give their consent to the following:Authors reserve their rights and vest the journal with the authority to make the first publication of their manuscripts, which would automatically be licensed upon the expiry of 6 months after publication subject to the terms of Creative Commons Attribution License; the latter will allow anyone to disseminate the article in question, with mandatory preservation of references to the authors of the original article and to its first publication in this journal.Authors may display their articles on the Internet (for example, in the Institute’s data warehouse or on a personal website) prior to or during the process of their consideration by this journal, as it may lead to a more productive discussion and expand the number of references to the article in question (see The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать свою работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Vavilov Journal of Genetics and Breeding; Том 23, № 4 (2019); 390-397 Вавиловский журнал генетики и селекции; Том 23, № 4 (2019); 390-397 2500-3259 2500-0462 нейродегенерация autophagy neurodegeneration аутофагия info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjvavilov https://doi.org/10.18699/VJ19.507 https://doi.org/10.1016/j. 2022-04-29T11:26:54Z Autophagy is a dynamic cellular process involved in the turnover of proteins, protein complexes, and organelles through lysosomal degradation. It is particularly important in neurons, which do not have a proliferative option for cellular repair. Autophagy has been shown to be suppressed in the striatum of a transgenic mouse model of Parkinson’s disease. Cystatin C is one of the potent regulators of autophagy. Changes in the expression and secretion of cystatin C in the brain have been shown in amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases, and in some animal models of neurodegeneration, thus proving a protective function of cystatin C. It has been suggested that cystatin C plays the primary role in amyloidogenesis and shows promise as a therapeutic agent for neurodegenerative diseases (Alzheimer’s and Parkinson’s diseases). Cystatin C colocalizes with the amyloid β-protein in the brain during Alzheimer’s disease. Controlled expression of a cystatin C peptide has been proposed as a new approach to therapy for Alzheimer’s disease. In Parkinson’s disease, serum cystatin C levels can predict disease severity and cognitive dysfunction, although the exact involvement of cystatin C remains unclear. The aim: to study the role of cystatin C in neurodegeneration and evaluate the results in relation to the mechanism of autophagy. In our study on humans, a higher concentration of cystatin C was noted in cerebrospinal fluid than in serum; much lower concentrations were observed in other biological fluids (intraocular fluid, bile, and sweat). In elderly persons (61–80 years old compared to practically healthy people at 40–60 years of age), we revealed increased cystatin C levels both in serum and intraocular fluid. In an experiment on C57Bl/6J mice, cystatin C concentration was significantly higher in brain tissue than in the liver and spleen: an indication of an important function of this cysteine protease inhibitor in the brain. Using a transgenic mouse model of Parkinson’s disease (5 months old), we demonstrated a significant increase in osmotic susceptibility of brain lysosomes, depending on autophagy, while in a murine model of Alzheimer’s disease, this parameter did not differ from that in the appropriate control. Aутофагия – динамичный клеточный процесс, связанный с оборотом белков, белковых комплексов и органелл посредством лизосомной деградации. Аутофагия особенно важна в нейронах, которые не имеют пролиферативного ресурса для клеточного восстановления. Одним из мощных регуляторов аутофагии является цистатин С. Изменения экспрессии и секреции цистатина С в головном мозге показаны при боковом амиотрофическом склерозе, болезни Альцгеймера и Паркинсона, а также на некоторых моделях нейродегенерации у животных, что подтверждает защитную функцию цистатина С. Высказано предположение, что цистатин С играет важную роль в амилоидогенезе и может рассматриваться как возможное терапевтическое средство для предупреждения и лечения ряда нейродегенеративных заболеваний (болезни Альцгеймера и Паркинсона). Цистатин С колокализуется с амилоидом β в головном мозге при болезни Альцгеймера. Контролируемая экспрессия пептида цистатина С предложена в качестве нового подхода к терапии болезни Альцгеймера. При болезни Паркинсона уровни цистатина С в сыворотке крови могут прогнозировать тяжесть заболевания и когнитивную дисфункцию, хотя конкретное участие цистатина С остается неясным. Рассмотрена роль цистатина С в нейродегенерации и проведена оценка результатов в связи с активностью аутофагии. У здоровых людей обнаружена высокая концентрация цистатина С в спинномозговой жидкости по сравнению с сывороткой крови; значительно более низкие концентрации наблюдали в других биологических жидкостях (внутриглазная жидкость, желчь, пот). При оценке влияния возраста обнаружено повышение концентрации цистатина С как в сыворотке, так и во внутриглазной жидкости у пожилых людей (61–80 лет) по сравнению с практически здоровыми людьми в возрасте 40–60 лет. В эксперименте на мышах C57Bl/6J концентрация цистатина С была значительно выше в мозговой ткани, чем в печени и селезенке, что указывает на важную функцию этого ингибитора цистеиновых протеаз в головном мозге. На трансгенной мышиной модели болезни Паркинсона (5 месяцев) найдено значительное увеличение осмотической чувствительности лизосом мозга, соответствующее усилению аутофагии, тогда как на мышиной модели болезни Альцгеймера этот показатель не обнаружил изменения аутофагии. Article in Journal/Newspaper Circumpolar Health Vavilov Journal of Genetics and Breeding Vavilov Journal of Genetics and Breeding 23 4 390 397