Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts

Generation of induced pluripotent stem (iPS) cells expanded possibilities of pluripotency and early development studies. Generation of order Carnivora iPS cells from dog (Canis lupus familiaris), snow leopard (Panthera uncia), and American mink (Neovison vison) was previously reported. The aim of th...

Full description

Bibliographic Details
Published in:Vavilov Journal of Genetics and Breeding
Main Authors: V. R. Beklemisheva, A. G. Menzorov, В. Р. Беклемишева, А. Г. Мензоров
Format: Article in Journal/Newspaper
Language:Russian
Published: Institute of Cytology and Genetics of Siberian Branch of the RAS 2019
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/1804
https://doi.org/10.18699/VJ18.445
id ftjvavilov:oai:oai.vavilov.elpub.ru:article/1804
record_format openpolar
institution Open Polar
collection Vavilov Journal of Genetics and Breeding
op_collection_id ftjvavilov
language Russian
topic CytoTune EmGFP Sendai Fluorescence Reporter
seals
walrus
reprogramming
iPS cells
Sendai virus
тюлени
морж
репрограммирование
ИПСК
вирус Сендай
spellingShingle CytoTune EmGFP Sendai Fluorescence Reporter
seals
walrus
reprogramming
iPS cells
Sendai virus
тюлени
морж
репрограммирование
ИПСК
вирус Сендай
V. R. Beklemisheva
A. G. Menzorov
В. Р. Беклемишева
А. Г. Мензоров
Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts
topic_facet CytoTune EmGFP Sendai Fluorescence Reporter
seals
walrus
reprogramming
iPS cells
Sendai virus
тюлени
морж
репрограммирование
ИПСК
вирус Сендай
description Generation of induced pluripotent stem (iPS) cells expanded possibilities of pluripotency and early development studies. Generation of order Carnivora iPS cells from dog (Canis lupus familiaris), snow leopard (Panthera uncia), and American mink (Neovison vison) was previously reported. The aim of the current study was to examine conditions of pinniped fbroblast reprogramming. Pinnipeds are representatives of the suborder Caniformia sharing conservative genomes. There are several ways to deliver reprogramming transcription factors: RNA, proteins, plasmids, viral vectors etc. The most effective delivery systems for mouse and human cells are based on viral vectors. We compared a lentiviral vector which integrates into the genome and a Sendai virus­based vector, CytoTune EmGFP Sendai Fluorescence Reporter. The main advantage of Sendai virus­based vectors is that they do not integrate into the genome. We performed delivery of genetic constructions carrying fluorescent proteins to fbroblasts of seven Pinnipeds: northern fur seal (Callorhinus ursinus), Steller sea lion (Eumetopias jubatus), walrus (Odobenus rosmarus), bearded seal (Erignathus barbatus), Baikal seal (Pusa sibirica), ringed seal (Phoca hispida), and spotted seal (Phoca largha). We also transduced American mink (N. vison), human (Homo sapiens), and mouse (Mus musculus) fbroblasts as a control. We showed that the Sendai virus­based transduction system provides transgene expression one­two orders of magnitude higher than the lentiviral system at a comparable multiplicity of infection. Also, transgene expression after Sendai virus­based transduction is quite stable and changes only slightly at day four compared to day two. These data allow us to suggest that Sendai virus­based vectors are preferable for generation of Pinniped iPS cells. Получение индуцированных плюрипотентных стволовых клеток (ИПСК) млекопитающих расширило возможности изучения плюрипотентности и раннего эмбрионального развития. В литературе описаны ИПСК собаки (Canis lupus familiaris) и ...
format Article in Journal/Newspaper
author V. R. Beklemisheva
A. G. Menzorov
В. Р. Беклемишева
А. Г. Мензоров
author_facet V. R. Beklemisheva
A. G. Menzorov
В. Р. Беклемишева
А. Г. Мензоров
author_sort V. R. Beklemisheva
title Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts
title_short Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts
title_full Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts
title_fullStr Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts
title_full_unstemmed Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts
title_sort use of a sendai virus-based vector for effcient transduction of pinniped fbroblasts
publisher Institute of Cytology and Genetics of Siberian Branch of the RAS
publishDate 2019
url https://vavilov.elpub.ru/jour/article/view/1804
https://doi.org/10.18699/VJ18.445
genre bearded seal
Canis lupus
Erignathus barbatus
Odobenus rosmarus
Phoca hispida
ringed seal
Sibirica
Callorhinus ursinus
Northern fur seal
walrus*
Морж
genre_facet bearded seal
Canis lupus
Erignathus barbatus
Odobenus rosmarus
Phoca hispida
ringed seal
Sibirica
Callorhinus ursinus
Northern fur seal
walrus*
Морж
op_source Vavilov Journal of Genetics and Breeding; Том 22, № 8 (2018); 1020-1025
Вавиловский журнал генетики и селекции; Том 22, № 8 (2018); 1020-1025
2500-3259
op_relation https://vavilov.elpub.ru/jour/article/view/1804/1160
Борода А.В., Питерсон С.Е., Монтэгю С.К., Пиварофф К.Дж., Штейн Дж., Ли Ч.Я., Лорин Дж.Ф., Одинцова Н.А. Получение индуцированных плюрипотентных стволовых клеток из замороженных в жидком азоте биоптатов кожи байкальской нерпы (Pusa sibirica) и сивуча (Eumetopias jubatus). Морские млекопитающие Голарктики. Сб. науч. тр. по матер. VIII междунар. конф. Санкт-Петербург, 22-27 сентября 2014 г. М., 2015;1:73-77.
Пристяжнюк И.Е., Мензоров А.Г. Получение индуцированных плюрипотентных стволовых клеток американской норки: протокол. Вавиловский журнал генетики и селекции. 2017;21(6):701- 709. DOI 10.18699/VJ17.288.
Baird A., Barsby T., Guest D.J. Derivation of canine induced pluripotent stem cells. Reprod. Domest. Anim. 2015;50(4):669-676. DOI 10.1111/rda.12562.
Ban H., Nishishita N., Fusaki N., Tabata T., Saeki K., Shikamura M., Takada N., Inoue M., Hasegawa M., Kawamata S., Nishikawa S. Effcient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc. Natl. Acad. Sci. USA. 2011;108(34):14234-14239. DOI 10.1073/pnas.1103509108.
Coppiello G., Abizanda G., Aguado N., Iglesias E., Arellano-Viera E., Rodriguez-Madoz J.R., Carvajal-Vergara X., Prosper F., Aranguren X.L. Generation of Macaca fascicularis iPS cell line ATCiMF1 from adult skin fbroblasts using non-integrative Sendai viruses. Stem Cell Res. 2017;21:1-4. DOI 10.1016/j.scr.2017.03.008.
Cronin J., Zhang X.Y., Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 2005;5(4):387-398.
Cubitt A.B., Woollenweber L.A., Heim R. Understanding structurefunction relationships in the Aequorea victoria green fluorescent protein. Met. Cell Biol. 1999;58:19-30.
Fujie Y., Fusaki N., Katayama T., Hamasaki M., Soejima Y., Soga M., Ban H., Hasegawa M., Yamashita S., Kimura S., Suzuki S., Matsuzawa T., Akari H., Era T. New type of Sendai virus vector provides transgene-free iPS cells derived from chimpanzee blood. PLoS One. 2014;9(12):e113052. DOI 10.1371/journal.pone.0113052.
Fusaki N., Ban H., Nishiyama A., Saeki K., Hasegawa M. Effcient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009; 85(8):348-362.
Galat V., Galat Y., Perepitchka M., Jennings L.J., Iannaccone P.M., Hendrix M.J. Transgene reactivation in induced pluripotent stem cell derivatives and reversion to pluripotency of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Dev. 2016; 25(14):1060-1072. DOI 10.1089/scd.2015.0366.
Karwacki-Neisius V., Göke J., Osorno R., Halbritter F., Ng J.H., Weiße A.Y., Wong F.C., Gagliardi A., Mullin N.P., Festuccia N., Colby D., Tomlinson S.R., Ng H.H., Chambers I. Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell. 2013;12(5):531-545. DOI 10.1016/j.stem.2013.04.023.
Koh S., Thomas R., Tsai S., Bischoff S., Lim J.-H., Breen M., Olby N.J., Piedrahita J.A. Growth requirements and chromosomal instability of induced pluripotent stem cells (iPSC) generated from adult canine fbroblasts. Stem Cells Dev. 2012;22(6):951-963. DOI 10.1089/scd.2012.0393.
Lee A.S., Xu D., Plews J.R., Nguyen P.K., Nag D., Lyons J.K., Han L., Hu S., Lan F., Liu J., Huang M., Narsinh K.H., Long C.T., de Almeida P.E., Levi B., Kooreman N., Bangs C., Pacharinsak C., Ikeno F., Yeung A.C., Gambhir S.S., Robbins R.C., Longaker M.T., Wu J.C. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J. Biol. Chem. 2011; 286(37):32697-32704. DOI 10.1074/jbc.M111.235739.
Li H.O., Zhu Y.F., Asakawa M., Kuma H., Hirata T., Ueda Y., Lee Y.S., Fukumura M., Iida A., Kato A., Nagai Y., Hasegawa M. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with effcient gene transfer and expression. J. Virol. 2000;74(14):6564- 6569.
Lu J., Liu H., Huang C.T., Chen H., Du Z., Liu Y., Sherafat M.A., Zhang S.C. Generation of integration¬free and region-specifc neural progenitors from primate fbroblasts. Cell Rep. 2013;3(5):1580- 1591. DOI 10.1016/j.celrep.2013.04.004.
Luo J., Suhr S.T., Chang E.A., Wang K., Ross P.J., Nelson L.L., Venta P.J., Knott J.G., Cibelli J.B. Generation of leukemia inhibitory factor and basic fbroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev. 2011;20(10):1669-1678. DOI 10.1089/scd.2011.0127.
Maherali N., Sridharan R., Xie W., Utikal J., Eminli S., Arnold K., Stadtfeld M., Yachechko R., Tchieu J., Jaenisch R., Plath K., Hochedlinger K. Directly reprogrammed fbroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1(1):55-70. DOI 10.1016/j.stem.2007.05.014.
Menzorov A.G., Matveeva N.M., Markakis M.N., Fishman V.S., Christensen K., Khabarova A.A., Pristyazhnyuk I.E., Kizilova E.A., Cirera S., Anistoroaei R., Serov O.L. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes. BMC Genomics. 2015;16(Suppl. 13):S6. DOI 10.1186/1471-2164-16-S13-S6.
Niwa H., Miyazaki J., Smith A.G. Quantitative expression of Oct-3/4 defnes differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 2000;24(4):372-376. DOI 10.1038/74199.
Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-317. DOI 10.1038/nature05934.
Shimada H., Nakada A., Hashimoto Y., Shigeno K., Shionoya Y., Nakamura T. Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol. Reprod. Dev. 2010;77(1):2. DOI 10.1002/mrd.21117.
Takahashi K., Okita K., Nakagawa M., Yamanaka S. Induction of pluripotent stem cells from fbroblast cultures. Nat. Protoc. 2007;2(12): 3081-3089. DOI 10.1038/nprot.2007.418.
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fbroblast cultures by defned factors. Cell. 2006;126(4):663-676. DOI 10.1016/j.cell.2006.07.024.
Tsukamoto M., Nishimura T., Yodoe K., Kanegi R., Tsujimoto Y., Alam M.E., Kuramochi M., Kuwamura M., Ohtaka M., Nishimura K., Nakanishi M., Inaba T., Sugiura K., Hatoya S. Generation of footprint-free canine induced pluripotent stem cells using auto-erasable Sendai virus vector. Stem Cells Dev. 2018;27(22):1577-1586. [Epub ahead of print]. DOI 10.1089/scd.2018.0084.
Tucker B.A., Anfnson K.R., Mullins R.F., Stone E.M., Young M.J. Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl. Med. 2013;2(1):16-24. DOI 10.5966/sctm.2012-0040.
Verma R., Holland M.K., Temple-Smith P., Verma P.J. Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid. Theriogenology. 2012;77(1):220-228, 228.e221- 222. DOI 10.1016/j.theriogenology.2011.09.022.
Wernig M., Meissner A., Foreman R., Brambrink T., Ku M., Hochedlinger K., Bernstein B.E., Jaenisch R. In vitro reprogramming of fbroblasts into a pluripotent ES-cell-like state. Nature. 2007;448: 318-324. DOI 10.1038/nature05944.
Whitworth D.J., Ovchinnikov D.A., Wolvetang E.J. Generation and Characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal Fibroblasts. Stem Cells Dev. 2012;21(12): 2288-2297. DOI 10.1089/scd.2011.0608.
Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917- 1920. DOI 10.1126/science.1151526.
https://vavilov.elpub.ru/jour/article/view/1804
doi:10.18699/VJ18.445
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.18699/VJ18.445
container_title Vavilov Journal of Genetics and Breeding
container_volume 22
container_issue 8
container_start_page 1020
op_container_end_page 1025
_version_ 1810434722006827008
spelling ftjvavilov:oai:oai.vavilov.elpub.ru:article/1804 2024-09-15T17:58:20+00:00 Use of a Sendai virus-based vector for effcient transduction of pinniped fbroblasts Использование вектора на основе вируса Сендай для эффективной трансдукции фибробластов ластоногих V. R. Beklemisheva A. G. Menzorov В. Р. Беклемишева А. Г. Мензоров 2019-01-01 application/pdf https://vavilov.elpub.ru/jour/article/view/1804 https://doi.org/10.18699/VJ18.445 rus rus Institute of Cytology and Genetics of Siberian Branch of the RAS https://vavilov.elpub.ru/jour/article/view/1804/1160 Борода А.В., Питерсон С.Е., Монтэгю С.К., Пиварофф К.Дж., Штейн Дж., Ли Ч.Я., Лорин Дж.Ф., Одинцова Н.А. Получение индуцированных плюрипотентных стволовых клеток из замороженных в жидком азоте биоптатов кожи байкальской нерпы (Pusa sibirica) и сивуча (Eumetopias jubatus). Морские млекопитающие Голарктики. Сб. науч. тр. по матер. VIII междунар. конф. Санкт-Петербург, 22-27 сентября 2014 г. М., 2015;1:73-77. Пристяжнюк И.Е., Мензоров А.Г. Получение индуцированных плюрипотентных стволовых клеток американской норки: протокол. Вавиловский журнал генетики и селекции. 2017;21(6):701- 709. DOI 10.18699/VJ17.288. Baird A., Barsby T., Guest D.J. Derivation of canine induced pluripotent stem cells. Reprod. Domest. Anim. 2015;50(4):669-676. DOI 10.1111/rda.12562. Ban H., Nishishita N., Fusaki N., Tabata T., Saeki K., Shikamura M., Takada N., Inoue M., Hasegawa M., Kawamata S., Nishikawa S. Effcient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc. Natl. Acad. Sci. USA. 2011;108(34):14234-14239. DOI 10.1073/pnas.1103509108. Coppiello G., Abizanda G., Aguado N., Iglesias E., Arellano-Viera E., Rodriguez-Madoz J.R., Carvajal-Vergara X., Prosper F., Aranguren X.L. Generation of Macaca fascicularis iPS cell line ATCiMF1 from adult skin fbroblasts using non-integrative Sendai viruses. Stem Cell Res. 2017;21:1-4. DOI 10.1016/j.scr.2017.03.008. Cronin J., Zhang X.Y., Reiser J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 2005;5(4):387-398. Cubitt A.B., Woollenweber L.A., Heim R. Understanding structurefunction relationships in the Aequorea victoria green fluorescent protein. Met. Cell Biol. 1999;58:19-30. Fujie Y., Fusaki N., Katayama T., Hamasaki M., Soejima Y., Soga M., Ban H., Hasegawa M., Yamashita S., Kimura S., Suzuki S., Matsuzawa T., Akari H., Era T. New type of Sendai virus vector provides transgene-free iPS cells derived from chimpanzee blood. PLoS One. 2014;9(12):e113052. DOI 10.1371/journal.pone.0113052. Fusaki N., Ban H., Nishiyama A., Saeki K., Hasegawa M. Effcient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009; 85(8):348-362. Galat V., Galat Y., Perepitchka M., Jennings L.J., Iannaccone P.M., Hendrix M.J. Transgene reactivation in induced pluripotent stem cell derivatives and reversion to pluripotency of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Dev. 2016; 25(14):1060-1072. DOI 10.1089/scd.2015.0366. Karwacki-Neisius V., Göke J., Osorno R., Halbritter F., Ng J.H., Weiße A.Y., Wong F.C., Gagliardi A., Mullin N.P., Festuccia N., Colby D., Tomlinson S.R., Ng H.H., Chambers I. Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell. 2013;12(5):531-545. DOI 10.1016/j.stem.2013.04.023. Koh S., Thomas R., Tsai S., Bischoff S., Lim J.-H., Breen M., Olby N.J., Piedrahita J.A. Growth requirements and chromosomal instability of induced pluripotent stem cells (iPSC) generated from adult canine fbroblasts. Stem Cells Dev. 2012;22(6):951-963. DOI 10.1089/scd.2012.0393. Lee A.S., Xu D., Plews J.R., Nguyen P.K., Nag D., Lyons J.K., Han L., Hu S., Lan F., Liu J., Huang M., Narsinh K.H., Long C.T., de Almeida P.E., Levi B., Kooreman N., Bangs C., Pacharinsak C., Ikeno F., Yeung A.C., Gambhir S.S., Robbins R.C., Longaker M.T., Wu J.C. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J. Biol. Chem. 2011; 286(37):32697-32704. DOI 10.1074/jbc.M111.235739. Li H.O., Zhu Y.F., Asakawa M., Kuma H., Hirata T., Ueda Y., Lee Y.S., Fukumura M., Iida A., Kato A., Nagai Y., Hasegawa M. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with effcient gene transfer and expression. J. Virol. 2000;74(14):6564- 6569. Lu J., Liu H., Huang C.T., Chen H., Du Z., Liu Y., Sherafat M.A., Zhang S.C. Generation of integration¬free and region-specifc neural progenitors from primate fbroblasts. Cell Rep. 2013;3(5):1580- 1591. DOI 10.1016/j.celrep.2013.04.004. Luo J., Suhr S.T., Chang E.A., Wang K., Ross P.J., Nelson L.L., Venta P.J., Knott J.G., Cibelli J.B. Generation of leukemia inhibitory factor and basic fbroblast growth factor-dependent induced pluripotent stem cells from canine adult somatic cells. Stem Cells Dev. 2011;20(10):1669-1678. DOI 10.1089/scd.2011.0127. Maherali N., Sridharan R., Xie W., Utikal J., Eminli S., Arnold K., Stadtfeld M., Yachechko R., Tchieu J., Jaenisch R., Plath K., Hochedlinger K. Directly reprogrammed fbroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007;1(1):55-70. DOI 10.1016/j.stem.2007.05.014. Menzorov A.G., Matveeva N.M., Markakis M.N., Fishman V.S., Christensen K., Khabarova A.A., Pristyazhnyuk I.E., Kizilova E.A., Cirera S., Anistoroaei R., Serov O.L. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes. BMC Genomics. 2015;16(Suppl. 13):S6. DOI 10.1186/1471-2164-16-S13-S6. Niwa H., Miyazaki J., Smith A.G. Quantitative expression of Oct-3/4 defnes differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 2000;24(4):372-376. DOI 10.1038/74199. Okita K., Ichisaka T., Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313-317. DOI 10.1038/nature05934. Shimada H., Nakada A., Hashimoto Y., Shigeno K., Shionoya Y., Nakamura T. Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol. Reprod. Dev. 2010;77(1):2. DOI 10.1002/mrd.21117. Takahashi K., Okita K., Nakagawa M., Yamanaka S. Induction of pluripotent stem cells from fbroblast cultures. Nat. Protoc. 2007;2(12): 3081-3089. DOI 10.1038/nprot.2007.418. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fbroblast cultures by defned factors. Cell. 2006;126(4):663-676. DOI 10.1016/j.cell.2006.07.024. Tsukamoto M., Nishimura T., Yodoe K., Kanegi R., Tsujimoto Y., Alam M.E., Kuramochi M., Kuwamura M., Ohtaka M., Nishimura K., Nakanishi M., Inaba T., Sugiura K., Hatoya S. Generation of footprint-free canine induced pluripotent stem cells using auto-erasable Sendai virus vector. Stem Cells Dev. 2018;27(22):1577-1586. [Epub ahead of print]. DOI 10.1089/scd.2018.0084. Tucker B.A., Anfnson K.R., Mullins R.F., Stone E.M., Young M.J. Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl. Med. 2013;2(1):16-24. DOI 10.5966/sctm.2012-0040. Verma R., Holland M.K., Temple-Smith P., Verma P.J. Inducing pluripotency in somatic cells from the snow leopard (Panthera uncia), an endangered felid. Theriogenology. 2012;77(1):220-228, 228.e221- 222. DOI 10.1016/j.theriogenology.2011.09.022. Wernig M., Meissner A., Foreman R., Brambrink T., Ku M., Hochedlinger K., Bernstein B.E., Jaenisch R. In vitro reprogramming of fbroblasts into a pluripotent ES-cell-like state. Nature. 2007;448: 318-324. DOI 10.1038/nature05944. Whitworth D.J., Ovchinnikov D.A., Wolvetang E.J. Generation and Characterization of LIF-dependent canine induced pluripotent stem cells from adult dermal Fibroblasts. Stem Cells Dev. 2012;21(12): 2288-2297. DOI 10.1089/scd.2011.0608. Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917- 1920. DOI 10.1126/science.1151526. https://vavilov.elpub.ru/jour/article/view/1804 doi:10.18699/VJ18.445 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Vavilov Journal of Genetics and Breeding; Том 22, № 8 (2018); 1020-1025 Вавиловский журнал генетики и селекции; Том 22, № 8 (2018); 1020-1025 2500-3259 CytoTune EmGFP Sendai Fluorescence Reporter seals walrus reprogramming iPS cells Sendai virus тюлени морж репрограммирование ИПСК вирус Сендай info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjvavilov https://doi.org/10.18699/VJ18.445 2024-08-09T03:06:46Z Generation of induced pluripotent stem (iPS) cells expanded possibilities of pluripotency and early development studies. Generation of order Carnivora iPS cells from dog (Canis lupus familiaris), snow leopard (Panthera uncia), and American mink (Neovison vison) was previously reported. The aim of the current study was to examine conditions of pinniped fbroblast reprogramming. Pinnipeds are representatives of the suborder Caniformia sharing conservative genomes. There are several ways to deliver reprogramming transcription factors: RNA, proteins, plasmids, viral vectors etc. The most effective delivery systems for mouse and human cells are based on viral vectors. We compared a lentiviral vector which integrates into the genome and a Sendai virus­based vector, CytoTune EmGFP Sendai Fluorescence Reporter. The main advantage of Sendai virus­based vectors is that they do not integrate into the genome. We performed delivery of genetic constructions carrying fluorescent proteins to fbroblasts of seven Pinnipeds: northern fur seal (Callorhinus ursinus), Steller sea lion (Eumetopias jubatus), walrus (Odobenus rosmarus), bearded seal (Erignathus barbatus), Baikal seal (Pusa sibirica), ringed seal (Phoca hispida), and spotted seal (Phoca largha). We also transduced American mink (N. vison), human (Homo sapiens), and mouse (Mus musculus) fbroblasts as a control. We showed that the Sendai virus­based transduction system provides transgene expression one­two orders of magnitude higher than the lentiviral system at a comparable multiplicity of infection. Also, transgene expression after Sendai virus­based transduction is quite stable and changes only slightly at day four compared to day two. These data allow us to suggest that Sendai virus­based vectors are preferable for generation of Pinniped iPS cells. Получение индуцированных плюрипотентных стволовых клеток (ИПСК) млекопитающих расширило возможности изучения плюрипотентности и раннего эмбрионального развития. В литературе описаны ИПСК собаки (Canis lupus familiaris) и ... Article in Journal/Newspaper bearded seal Canis lupus Erignathus barbatus Odobenus rosmarus Phoca hispida ringed seal Sibirica Callorhinus ursinus Northern fur seal walrus* Морж Vavilov Journal of Genetics and Breeding Vavilov Journal of Genetics and Breeding 22 8 1020 1025