Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period

P align=justify>Cymodocea nodosa plants were dark incubated for four months. The potential of reactivating photosynthesis was tested in an experiment in which half of the plants were reilluminated (HL) while the other half were grown under very low irradiance levels (LL). Photosynthesis was measu...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Malta, Erik-Jan, Brun, Fernando G., Vergara, Juan J., Hernández, Ignacio, Pérez-Lloréns, J. Lucas
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2006
Subjects:
luz
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/93
https://doi.org/10.3989/scimar.2006.70n3413
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/93
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic Cymodocea nodosa
chlorophyll fluorescence
light
carbohydrates
survival
fluorescencia de clorofila
luz
hidratos de carbono
supervivencia
spellingShingle Cymodocea nodosa
chlorophyll fluorescence
light
carbohydrates
survival
fluorescencia de clorofila
luz
hidratos de carbono
supervivencia
Malta, Erik-Jan
Brun, Fernando G.
Vergara, Juan J.
Hernández, Ignacio
Pérez-Lloréns, J. Lucas
Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period
topic_facet Cymodocea nodosa
chlorophyll fluorescence
light
carbohydrates
survival
fluorescencia de clorofila
luz
hidratos de carbono
supervivencia
description P align=justify>Cymodocea nodosa plants were dark incubated for four months. The potential of reactivating photosynthesis was tested in an experiment in which half of the plants were reilluminated (HL) while the other half were grown under very low irradiance levels (LL). Photosynthesis was measured using PAM fluorescence and tissue nutrient and carbohydrate contents were analysed. Photosynthetic efficiency (Fv/Fm) in HL plants increased from 0 to 0.58, whereas LL plants remained inactive. Photosynthetic parameters also increased, resulting in a final Ik of 97.5 µmol m-2 s-1. Leaf shedding led to a negative mean RGR in HL plants. Tissue C and N dropped considerably during dark incubation in both rhizomes and shoots. Starch content was nearly equal for rhizomes and shoots (4.3 mg /g DW) and was not affected by dark incubation. In contrast, sucrose content dropped from 40.0 mg /g DW to zero in shoots and from 240 to 40.0 mg /g DW in rhizomes in HL plants. We conclude that C. nodosa is capable of recovering photosynthetic activity after four months darkness, which is considerably longer than the 80 d recorded so far for a seagrass. Stored carbohydrates, more specifically sucrose, play an important role in both survival and reactivation. La capacidad de recuperación de la fotosíntesis se ha investigado en la fanerógama marina Cymodocea nodosa. Para ello, se diseñó un experimento en el que la mitad de las plantas se cultivaron en condiciones de luz saturante (HL) y la otra mitad en condiciones de luz muy baja (LL), tras un precultivo de 4 meses en oscuridad. Se examinó la actividad fotosintética mediante la señal de fluorescencia del PAM y se determinó el contenido interno en nutrientes y de hidratos de carbono. La eficacia fotosintética (Fv/Fm) se incrementó desde 0 hasta 0,58 en las plantas de HL, mientras las plantas de LL permanecieron fotosintéticamente inactivas. Los parámetros fotosintéticos también se incrementaron, obteniéndose valores finales para Ik de 97,5 μmol fotones m-2 s-1. Las plantas de HL mostraron valores medios negativos de la tasa de crecimiento relativo, atribuible al desprendimiento de hojas. El contenido interno de carbono y nitrógeno disminuyó considerablemente durante el periodo de oscuridad tanto en la biomasa epigea como hipogea. El contenido interno en almidón permaneció constante en ambos tejidos (4,3 mg /g DW), no estando afectado por el periodo de oscuridad. El contenido interno de sacarosa mostró un patrón opuesto, disminuyendo desde 40 mg /g DW a valores cercanos a cero en haces, y en rizomas desde 240 a 40 mg /g DW, en plantas de HL. En conclusión, C. nodosa recuperó la actividad fotosintética tras 4 meses en oscuridad, un periodo considerablemente mayor al registrado anteriormente para otras especies de fanerógamas (80 días). Los carbohidratos de reserva, y más concretamente la sacarosa, juega un papel crucial tanto en la supervivencia como en la reactivación fotosintética.
format Article in Journal/Newspaper
author Malta, Erik-Jan
Brun, Fernando G.
Vergara, Juan J.
Hernández, Ignacio
Pérez-Lloréns, J. Lucas
author_facet Malta, Erik-Jan
Brun, Fernando G.
Vergara, Juan J.
Hernández, Ignacio
Pérez-Lloréns, J. Lucas
author_sort Malta, Erik-Jan
title Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period
title_short Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period
title_full Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period
title_fullStr Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period
title_full_unstemmed Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period
title_sort recovery of cymodocea nodosa (ucria) ascherson photosynthesis after a four-month dark period
publisher Consejo Superior de Investigaciones Científicas
publishDate 2006
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/93
https://doi.org/10.3989/scimar.2006.70n3413
geographic Baja
geographic_facet Baja
genre Arctic
genre_facet Arctic
op_source Scientia Marina; Vol. 70 No. 3 (2006); 413-422
Scientia Marina; Vol. 70 Núm. 3 (2006); 413-422
1886-8134
0214-8358
10.3989/scimar.2006.70n3
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/93/90
Beer, S. and M. Björk. – 2000. Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquat. Bot., 66: 69-76. doi:10.1016/S0304-3770(99)00020-0
Bischof, K., D. Hanelt and C. Wiencke. – 2000. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta, 211: 555-562. doi:10.1007/s004250000313 PMid:11030555
Björkman, O. and B. Demmig. – 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170: 489-504. doi:10.1007/BF00402983
Box, G.E.P. and D.R. Cox. – 1964. An analysis of transformations. J. Roy. Stat. Soc. B, 26: 211-234.
Brun, F.G., I. Hernández, J.J. Vergara, G. Peralta and J.L. Pérez- Lloréns. – 2002. Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Mar. Ecol. Progr. Ser., 225: 177-187. doi:10.3354/meps225177
Brun, F.G., I. Hernandez, J.J. Vergara and J.L. Pérez-Lloréns. –2003. Growth, carbon allocation and proteolytic activity in the seagrass Zostera noltii shaded by Ulva canopies. Funct. Plant Biol., 30: 551-560. doi:10.1071/FP03010
Bulthuis, D.A. – 1983. Effects of in situ light reduction on density and growth of the seagrass Heterozostera tasmanica (Martens ex Aschers) den Hartog in Western Port, Victoria, Australia. J. Exp. Mar. Biol. Ecol., 67: 91-103. doi:10.1016/0022-0981(83)90137-5
Cabello-Pasini, A., C. Lara-Turrent and R.C. Zimmerman. – 2002. Effect of storms on photosynthesis, carbohydrate content and survival of eelgrass populations from a coastal lagoon and the adjacent open ocean. Aquat. Bot., 74: 149-164. doi:10.1016/S0304-3770(02)00076-1
Ceccherelli, G. and F. Cinelli. – 1999. A pilot study of nutrient enrichment sediments in a Cymodocea nodosa bed invaded by the introduced alga Caulerpa taxifolia. Bot. Mar., 42: 409-417. doi:10.1515/BOT.1999.047
Duarte, C.M. – 1990. Seagrass nutrient content. Mar. Ecol. Progr. Ser., 67: 201-207. doi:10.3354/meps067201
Enríquez, S., M. Merino and R. Iglesias-Prieto. – 2002. Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar. Biol., 140: 891-900. doi:10.1007/s00227-001-0760-y
Gordon, D.M., K.A. Grey, S.C. Chase and C.J. Simpson. – 1994. Changes to the structure and productivity of a Posidonia sinuosa meadow during and after imposed shading. Aquat. Bot., 47: 265-275. doi:10.1016/0304-3770(94)90057-4
Hanelt, D. – 1992. Photoinhibition of photosynthesis in marine macrophytes of the South Chinese Sea. Mar. Ecol. Progr. Ser., 82: 199-206. doi:10.3354/meps082199
Hanelt, D. – 1998. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. Biol., 131: 361-369. doi:10.1007/s002270050329
Hauxwell, J., J. Cebrián, C. Furlong and I. Valiela. – 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology, 82: 1007-1022.
Hemminga, M.A. and C.M. Duarte. – 2000. Seagrass Ecology. Cambridge University Press, Cambridge.
Hubber, S.C. and D.W. Israel. – 1982. Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max Merr.) leaves. Plant Physiol., 69: 691–696.
Jassby, A.D. and T. Platt. – 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21: 540-547.
Kamermans, P., M.A. Hemminga and D.J. de Jong. – 1999. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, The Netherlands). Mar. Biol., 133: 527-539. doi:10.1007/s002270050493
Lee, K.-S. and K.H. Dunton. – 1997. Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex König. J. Exp. Mar. Biol. Ecol., 210: 53-73. doi:10.1016/S0022-0981(96)02720-7
Longstaff, B.J. and W.C. Dennison. – 1999. Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halodule ovalis. Aquat. Bot., 65: 105-121. doi:10.1016/S0304-3770(99)00035-2
Longstaff, B.J., N.R. Loneragan, M.J. O’Donohue and W.C. Dennison. – 1999. Effect of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R. Br.) Hook. J. Exp. Mar. Biol. Ecol., 234: 1-27. doi:10.1016/S0022-0981(98)00137-3
Magnusson, G. – 1997. Diurnal measurements of Fv/Fm used to improve productivity estimates in macroalgae. Mar. Biol., 130: 203-208. doi:10.1007/s002270050239
Marbà, N. and C.M. Duarte. – 1994. Growth response of the seagrass Cymodocea nodosa to experimental burial and erosion. Mar. Ecol. Progr. Ser., 107: 307-311. doi:10.3354/meps107307
Marbà, N., M.A. Hemminga, M.A. Mateo, C.M. Duarte, Y.E.M. Maas, J. Terrados and E. Gacia. – 2002. Carbon and nitrogen translocation between seagrass ramets. Mar. Ecol. Progr. Ser., 226: 287-300. doi:10.3354/meps226287
McGlathery, K.J. – 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J. Phycol., 37: 453-456. doi:10.1046/j.1529-8817.2001.037004453.x
Moore, K.A., R.L. Wetzel and R.J. Orth. – 1997. Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. J. Exp. Mar. Biol. Ecol., 215: 115-134. doi:10.1016/S0022-0981(96)02774-8
Olesen, B., S. Enríquez, C.M. Duarte and K. Sand-Jensen. – 2002. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Progr. Ser., 236: 89-97. doi:10.3354/meps236089
Onuf, C. – 1996. Seagrass responses to long-term light reduction by brown tide in upper Laguna Madre, Texas: distribution and biomass patterns. Mar. Ecol. Progr. Ser., 138: 219-231. doi:10.3354/meps138219
Peralta, G., J.L. Pérez-Lloréns, I. Hernández and J.J. Vergara. – 2002. Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem. J. Exp. Mar. Biol. Ecol., 269: 9-26. doi:10.1016/S0022-0981(01)00393-8
Ralph, P.J. and M.D. Burchett. – 1995. Photosynthetic responses of the seagrass Halophila ovalis (R. Br.) Hook f. to high irradiance stress, using chlorophyll a fluorescence. Aquat. Bot., 51: 55-66. doi:10.1016/0304-3770(95)00456-A
Ralph, P.J., R. Gademann and W.C. Dennison. – 1998. In situ seagrass photosynthesis measured using a submersible, pulseamplitude modulated fluorometer. Mar. Biol., 132: 367-373. doi:10.1007/s002270050403
Ruiz, J.M. and J. Romero. – 2001. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Progr. Ser., 215: 107-120. doi:10.3354/meps215107
Schreiber, U., W. Bilger and C. Neubauer. – 1994. 3 Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: E.D. Schulze and M.M. Caldwell (eds.), Ecophysiology of photosynthesis, pp. 49-70. Springer, Berlin.
Schreiber, U., W. Bilger, H. Hormann and C. Neubauer. – 1999. Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: D.O. Hall and K.K. Rao (eds.), Photosynthesis, pp. 321-336. Cambridge University Press, Cambridge.
Short, F.T., D.M. Burdick and J.E. Kaldy. – 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnol. Oceanogr., 40: 740-749.
Short, F.T. and S. Wylie-Echeverria S. – 1996. Natural and human-induced disturbance of seagrasses. Environ. Conserv., 23: 17-27.
Sokal, R.R. and F.J. Rolhf. – 1995. Biometry. 3rd edition. Freemand and Company, New-York.
Spjøtvoll, E. and M.R. Stoline. – 1973. An extension of the Tmethod of multiple comparison to include the cases with unequal sample sizes. J. Am. Stat. Assoc., 68: 976-978.
StatSoft. – 1999. STATISTICA for Windows (Computer program manual). StatSoft Inc.
Terrados, J., C.M. Duarte, and W.J. Kenworthy. 1997a. Experimental evidence for apical dominance in the seagrass Cymodocea nodosa. Mar. Ecol. Progr. Ser. 148: 263-268. doi:10.3354/meps148263
Terrados, J., C.M. Duarte, and W.J. Kenworthy. 1997b. Is the apical growth of Cymodocea nodosa dependent on clonal integration? Mar. Ecol. Progr. Ser. 158: 103-110. doi:10.3354/meps158103
Terrados, J. and J.D. Ross. 1995. Temperature effects on photosynthesis and depth distribution of the seagrass Cymodocea nodosa (Ucria) Ascherson in a Mediterranean coastal lagoon: the Mar Menor (SE Spain). PSZNI Mar. Ecol. 16: 133-144. doi:10.1111/j.1439-0485.1995.tb00400.x
Touchette, B.W. and J.M. Burkholder. – 2000. Overview of the physiological ecology of carbon metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 250: 169-205. doi:10.1016/S0022-0981(00)00196-9 PMid:10969168
White, A.J. and C. Critchley. – 1999. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth. Res., 59: 63-72. doi:10.1023/A:1006188004189
Yemn, E.W. and A.J. Willis. – 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57: 508–514.
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/93
doi:10.3989/scimar.2006.70n3413
op_rights Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.2006.70n3413
https://doi.org/10.3989/scimar.2006.70n3
https://doi.org/10.1016/S0304-3770(99)00020-0
https://doi.org/10.1007/s004250000313
https://doi.org/10.1007/BF00402983
https://doi.org/10.3354/meps225177
http
container_title Scientia Marina
container_volume 70
container_issue 3
container_start_page 413
op_container_end_page 422
_version_ 1766302648888197120
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/93 2023-05-15T14:28:29+02:00 Recovery of Cymodocea nodosa (Ucria) Ascherson photosynthesis after a four-month dark period Recuperación Fotosintéctica de Cymodocea nodosa (Ucria) Ascherson después un periodo de cuatro meses en oscuridad Malta, Erik-Jan Brun, Fernando G. Vergara, Juan J. Hernández, Ignacio Pérez-Lloréns, J. Lucas 2006-09-30 application/pdf https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/93 https://doi.org/10.3989/scimar.2006.70n3413 eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/93/90 Beer, S. and M. Björk. – 2000. Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquat. Bot., 66: 69-76. doi:10.1016/S0304-3770(99)00020-0 Bischof, K., D. Hanelt and C. Wiencke. – 2000. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta, 211: 555-562. doi:10.1007/s004250000313 PMid:11030555 Björkman, O. and B. Demmig. – 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170: 489-504. doi:10.1007/BF00402983 Box, G.E.P. and D.R. Cox. – 1964. An analysis of transformations. J. Roy. Stat. Soc. B, 26: 211-234. Brun, F.G., I. Hernández, J.J. Vergara, G. Peralta and J.L. Pérez- Lloréns. – 2002. Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Mar. Ecol. Progr. Ser., 225: 177-187. doi:10.3354/meps225177 Brun, F.G., I. Hernandez, J.J. Vergara and J.L. Pérez-Lloréns. –2003. Growth, carbon allocation and proteolytic activity in the seagrass Zostera noltii shaded by Ulva canopies. Funct. Plant Biol., 30: 551-560. doi:10.1071/FP03010 Bulthuis, D.A. – 1983. Effects of in situ light reduction on density and growth of the seagrass Heterozostera tasmanica (Martens ex Aschers) den Hartog in Western Port, Victoria, Australia. J. Exp. Mar. Biol. Ecol., 67: 91-103. doi:10.1016/0022-0981(83)90137-5 Cabello-Pasini, A., C. Lara-Turrent and R.C. Zimmerman. – 2002. Effect of storms on photosynthesis, carbohydrate content and survival of eelgrass populations from a coastal lagoon and the adjacent open ocean. Aquat. Bot., 74: 149-164. doi:10.1016/S0304-3770(02)00076-1 Ceccherelli, G. and F. Cinelli. – 1999. A pilot study of nutrient enrichment sediments in a Cymodocea nodosa bed invaded by the introduced alga Caulerpa taxifolia. Bot. Mar., 42: 409-417. doi:10.1515/BOT.1999.047 Duarte, C.M. – 1990. Seagrass nutrient content. Mar. Ecol. Progr. Ser., 67: 201-207. doi:10.3354/meps067201 Enríquez, S., M. Merino and R. Iglesias-Prieto. – 2002. Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar. Biol., 140: 891-900. doi:10.1007/s00227-001-0760-y Gordon, D.M., K.A. Grey, S.C. Chase and C.J. Simpson. – 1994. Changes to the structure and productivity of a Posidonia sinuosa meadow during and after imposed shading. Aquat. Bot., 47: 265-275. doi:10.1016/0304-3770(94)90057-4 Hanelt, D. – 1992. Photoinhibition of photosynthesis in marine macrophytes of the South Chinese Sea. Mar. Ecol. Progr. Ser., 82: 199-206. doi:10.3354/meps082199 Hanelt, D. – 1998. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. Biol., 131: 361-369. doi:10.1007/s002270050329 Hauxwell, J., J. Cebrián, C. Furlong and I. Valiela. – 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology, 82: 1007-1022. Hemminga, M.A. and C.M. Duarte. – 2000. Seagrass Ecology. Cambridge University Press, Cambridge. Hubber, S.C. and D.W. Israel. – 1982. Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max Merr.) leaves. Plant Physiol., 69: 691–696. Jassby, A.D. and T. Platt. – 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr., 21: 540-547. Kamermans, P., M.A. Hemminga and D.J. de Jong. – 1999. Significance of salinity and silicon levels for growth of a formerly estuarine eelgrass (Zostera marina) population (Lake Grevelingen, The Netherlands). Mar. Biol., 133: 527-539. doi:10.1007/s002270050493 Lee, K.-S. and K.H. Dunton. – 1997. Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex König. J. Exp. Mar. Biol. Ecol., 210: 53-73. doi:10.1016/S0022-0981(96)02720-7 Longstaff, B.J. and W.C. Dennison. – 1999. Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halodule ovalis. Aquat. Bot., 65: 105-121. doi:10.1016/S0304-3770(99)00035-2 Longstaff, B.J., N.R. Loneragan, M.J. O’Donohue and W.C. Dennison. – 1999. Effect of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R. Br.) Hook. J. Exp. Mar. Biol. Ecol., 234: 1-27. doi:10.1016/S0022-0981(98)00137-3 Magnusson, G. – 1997. Diurnal measurements of Fv/Fm used to improve productivity estimates in macroalgae. Mar. Biol., 130: 203-208. doi:10.1007/s002270050239 Marbà, N. and C.M. Duarte. – 1994. Growth response of the seagrass Cymodocea nodosa to experimental burial and erosion. Mar. Ecol. Progr. Ser., 107: 307-311. doi:10.3354/meps107307 Marbà, N., M.A. Hemminga, M.A. Mateo, C.M. Duarte, Y.E.M. Maas, J. Terrados and E. Gacia. – 2002. Carbon and nitrogen translocation between seagrass ramets. Mar. Ecol. Progr. Ser., 226: 287-300. doi:10.3354/meps226287 McGlathery, K.J. – 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J. Phycol., 37: 453-456. doi:10.1046/j.1529-8817.2001.037004453.x Moore, K.A., R.L. Wetzel and R.J. Orth. – 1997. Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. J. Exp. Mar. Biol. Ecol., 215: 115-134. doi:10.1016/S0022-0981(96)02774-8 Olesen, B., S. Enríquez, C.M. Duarte and K. Sand-Jensen. – 2002. Depth-acclimation of photosynthesis, morphology and demography of Posidonia oceanica and Cymodocea nodosa in the Spanish Mediterranean Sea. Mar. Ecol. Progr. Ser., 236: 89-97. doi:10.3354/meps236089 Onuf, C. – 1996. Seagrass responses to long-term light reduction by brown tide in upper Laguna Madre, Texas: distribution and biomass patterns. Mar. Ecol. Progr. Ser., 138: 219-231. doi:10.3354/meps138219 Peralta, G., J.L. Pérez-Lloréns, I. Hernández and J.J. Vergara. – 2002. Effects of light availability on growth, architecture and nutrient content of the seagrass Zostera noltii Hornem. J. Exp. Mar. Biol. Ecol., 269: 9-26. doi:10.1016/S0022-0981(01)00393-8 Ralph, P.J. and M.D. Burchett. – 1995. Photosynthetic responses of the seagrass Halophila ovalis (R. Br.) Hook f. to high irradiance stress, using chlorophyll a fluorescence. Aquat. Bot., 51: 55-66. doi:10.1016/0304-3770(95)00456-A Ralph, P.J., R. Gademann and W.C. Dennison. – 1998. In situ seagrass photosynthesis measured using a submersible, pulseamplitude modulated fluorometer. Mar. Biol., 132: 367-373. doi:10.1007/s002270050403 Ruiz, J.M. and J. Romero. – 2001. Effects of in situ experimental shading on the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Progr. Ser., 215: 107-120. doi:10.3354/meps215107 Schreiber, U., W. Bilger and C. Neubauer. – 1994. 3 Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: E.D. Schulze and M.M. Caldwell (eds.), Ecophysiology of photosynthesis, pp. 49-70. Springer, Berlin. Schreiber, U., W. Bilger, H. Hormann and C. Neubauer. – 1999. Chlorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: D.O. Hall and K.K. Rao (eds.), Photosynthesis, pp. 321-336. Cambridge University Press, Cambridge. Short, F.T., D.M. Burdick and J.E. Kaldy. – 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnol. Oceanogr., 40: 740-749. Short, F.T. and S. Wylie-Echeverria S. – 1996. Natural and human-induced disturbance of seagrasses. Environ. Conserv., 23: 17-27. Sokal, R.R. and F.J. Rolhf. – 1995. Biometry. 3rd edition. Freemand and Company, New-York. Spjøtvoll, E. and M.R. Stoline. – 1973. An extension of the Tmethod of multiple comparison to include the cases with unequal sample sizes. J. Am. Stat. Assoc., 68: 976-978. StatSoft. – 1999. STATISTICA for Windows (Computer program manual). StatSoft Inc. Terrados, J., C.M. Duarte, and W.J. Kenworthy. 1997a. Experimental evidence for apical dominance in the seagrass Cymodocea nodosa. Mar. Ecol. Progr. Ser. 148: 263-268. doi:10.3354/meps148263 Terrados, J., C.M. Duarte, and W.J. Kenworthy. 1997b. Is the apical growth of Cymodocea nodosa dependent on clonal integration? Mar. Ecol. Progr. Ser. 158: 103-110. doi:10.3354/meps158103 Terrados, J. and J.D. Ross. 1995. Temperature effects on photosynthesis and depth distribution of the seagrass Cymodocea nodosa (Ucria) Ascherson in a Mediterranean coastal lagoon: the Mar Menor (SE Spain). PSZNI Mar. Ecol. 16: 133-144. doi:10.1111/j.1439-0485.1995.tb00400.x Touchette, B.W. and J.M. Burkholder. – 2000. Overview of the physiological ecology of carbon metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 250: 169-205. doi:10.1016/S0022-0981(00)00196-9 PMid:10969168 White, A.J. and C. Critchley. – 1999. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth. Res., 59: 63-72. doi:10.1023/A:1006188004189 Yemn, E.W. and A.J. Willis. – 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57: 508–514. https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/93 doi:10.3989/scimar.2006.70n3413 Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 70 No. 3 (2006); 413-422 Scientia Marina; Vol. 70 Núm. 3 (2006); 413-422 1886-8134 0214-8358 10.3989/scimar.2006.70n3 Cymodocea nodosa chlorophyll fluorescence light carbohydrates survival fluorescencia de clorofila luz hidratos de carbono supervivencia info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2006 ftjscientiamarin https://doi.org/10.3989/scimar.2006.70n3413 https://doi.org/10.3989/scimar.2006.70n3 https://doi.org/10.1016/S0304-3770(99)00020-0 https://doi.org/10.1007/s004250000313 https://doi.org/10.1007/BF00402983 https://doi.org/10.3354/meps225177 http 2022-03-20T16:30:09Z P align=justify>Cymodocea nodosa plants were dark incubated for four months. The potential of reactivating photosynthesis was tested in an experiment in which half of the plants were reilluminated (HL) while the other half were grown under very low irradiance levels (LL). Photosynthesis was measured using PAM fluorescence and tissue nutrient and carbohydrate contents were analysed. Photosynthetic efficiency (Fv/Fm) in HL plants increased from 0 to 0.58, whereas LL plants remained inactive. Photosynthetic parameters also increased, resulting in a final Ik of 97.5 µmol m-2 s-1. Leaf shedding led to a negative mean RGR in HL plants. Tissue C and N dropped considerably during dark incubation in both rhizomes and shoots. Starch content was nearly equal for rhizomes and shoots (4.3 mg /g DW) and was not affected by dark incubation. In contrast, sucrose content dropped from 40.0 mg /g DW to zero in shoots and from 240 to 40.0 mg /g DW in rhizomes in HL plants. We conclude that C. nodosa is capable of recovering photosynthetic activity after four months darkness, which is considerably longer than the 80 d recorded so far for a seagrass. Stored carbohydrates, more specifically sucrose, play an important role in both survival and reactivation. La capacidad de recuperación de la fotosíntesis se ha investigado en la fanerógama marina Cymodocea nodosa. Para ello, se diseñó un experimento en el que la mitad de las plantas se cultivaron en condiciones de luz saturante (HL) y la otra mitad en condiciones de luz muy baja (LL), tras un precultivo de 4 meses en oscuridad. Se examinó la actividad fotosintética mediante la señal de fluorescencia del PAM y se determinó el contenido interno en nutrientes y de hidratos de carbono. La eficacia fotosintética (Fv/Fm) se incrementó desde 0 hasta 0,58 en las plantas de HL, mientras las plantas de LL permanecieron fotosintéticamente inactivas. Los parámetros fotosintéticos también se incrementaron, obteniéndose valores finales para Ik de 97,5 μmol fotones m-2 s-1. Las plantas de HL mostraron valores medios negativos de la tasa de crecimiento relativo, atribuible al desprendimiento de hojas. El contenido interno de carbono y nitrógeno disminuyó considerablemente durante el periodo de oscuridad tanto en la biomasa epigea como hipogea. El contenido interno en almidón permaneció constante en ambos tejidos (4,3 mg /g DW), no estando afectado por el periodo de oscuridad. El contenido interno de sacarosa mostró un patrón opuesto, disminuyendo desde 40 mg /g DW a valores cercanos a cero en haces, y en rizomas desde 240 a 40 mg /g DW, en plantas de HL. En conclusión, C. nodosa recuperó la actividad fotosintética tras 4 meses en oscuridad, un periodo considerablemente mayor al registrado anteriormente para otras especies de fanerógamas (80 días). Los carbohidratos de reserva, y más concretamente la sacarosa, juega un papel crucial tanto en la supervivencia como en la reactivación fotosintética. Article in Journal/Newspaper Arctic Scientia Marina (E-Journal) Baja Scientia Marina 70 3 413 422