Holocene neoglacial events in the Bransfield Strait (Antarctica). Palaeocenographic and paleoclimatic significance

Geochemical analysis, micropalaeontological analysis and radiometric dating techniques were performed on four gravity cores, G-1, G-2, A-3 and A-6, recovered during the BIO Hesperides expeditions GEBRA-93 and FRUELA-96 from the Bransfield Strait (Antarctica). Moreover, in order to improve the sedime...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Bárcena, María Ángeles, Fabrés, Joan, Isla, Enrique, Flores, José Abel, Sierro, Francisco Javier, Canals, Miquel, Palanques, Albert
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2006
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/67
https://doi.org/10.3989/scimar.2006.70n4607
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/67
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic diatoms
geochemistry
neoglacial events
palaeoceanography
palaeocliomatology
Holocene
Bransfield Strait
Antarctica
diatomeas
geoquímica
eventos neoglaciales
paleoceanografía
paleoclimatología
Holoceno
Estrecho de Bransfield
Antártida
spellingShingle diatoms
geochemistry
neoglacial events
palaeoceanography
palaeocliomatology
Holocene
Bransfield Strait
Antarctica
diatomeas
geoquímica
eventos neoglaciales
paleoceanografía
paleoclimatología
Holoceno
Estrecho de Bransfield
Antártida
Bárcena, María Ángeles
Fabrés, Joan
Isla, Enrique
Flores, José Abel
Sierro, Francisco Javier
Canals, Miquel
Palanques, Albert
Holocene neoglacial events in the Bransfield Strait (Antarctica). Palaeocenographic and paleoclimatic significance
topic_facet diatoms
geochemistry
neoglacial events
palaeoceanography
palaeocliomatology
Holocene
Bransfield Strait
Antarctica
diatomeas
geoquímica
eventos neoglaciales
paleoceanografía
paleoclimatología
Holoceno
Estrecho de Bransfield
Antártida
description Geochemical analysis, micropalaeontological analysis and radiometric dating techniques were performed on four gravity cores, G-1, G-2, A-3 and A-6, recovered during the BIO Hesperides expeditions GEBRA-93 and FRUELA-96 from the Bransfield Strait (Antarctica). Moreover, in order to improve the sedimentation rate control we tentatively relate abundance variations in the sea-ice taxa group (SITG) to air temperature estimations based on Deuterium contents in Vostok ice-core. The results of diatom analyses were related to the sequence of neoglacial events that have occurred over the last three millennia. For these periods, a restricted communication between the Weddell, Bransfield and Bellingshausen seas has been proposed. The abundance patterns of diatom valves, resting spores (RS) of the diatom Chaetoceros and opal content agree with the high productivity values previously reported for the area. The significant reduction Chaetoceros RS towards the present is interpreted as a reduction in surface productivity. Trend differences between Chaetoceros RS and TOC contents are explained in terms of organic matter preservation. Diatom communities from the Bransfield Strait did not play an important role in the global CO2 cycle during cold periods. Bio- and geochemical changes have overprinted high frequency cyclicity at about 200-300 yr, which might be related to the 200-yr solar cycle. Se han realizado análisis geoquímicos y micropaleontológicos, así como técnicas de datación radiométricas sobre cuatro testigos de gravedad (G-1, G2, A-3 y A-6) recuperados durante las campañas del BIO Hespérides Gebra-93 y Fruela-96 en el Estrecho de Bransfield (Antártida). Se han correlacionado las estimaciones de temperatura del aire, derivadas del contenido en Deuterio en el testigo de hielo Vostok, con la abundancia del grupo de taxones de mar helado (SITG). Los resultados obtenidos del análisis de diatomeas han sido relacionados con la secuencia de eventos neoglaciales que tuvieron lugar durante los últimos 3000 años. Se propone una restricción en la comunicación entre el Mar de Weddel, Estrecho de Bransfield y Mar de Bellingshausen durante los episodios neoglaciales. Los patrones de abundancia de valvas de diatomeas, esporas (RS) de Chaetoceros y el contenido en ópalo biogénico indican valores altos en productividad, previamente descritos para el área. La progresiva reducción en Chaetoceros (RS) hacia techo se ha interpretado como reducción en la productividad superficial. Las diferencias entre la abundancia de Chaetoceros (RS) y el contenido en carbono orgánico (TOC) puede deberse a diferencias en la preservación de la materia orgánica. Por otro lado, los datos analizados indican que las comunidades de diatomeas del estrecho de Bransfield no jugaron un papel determinante en el ciclo global del CO2 durante los episodios fríos. Los cambios bio-geoquímicos están marcados por una ciclicidad de alta frecuencia de 200-300 años que podría estar relacionada con el ciclo solar de 200 años.
format Article in Journal/Newspaper
author Bárcena, María Ángeles
Fabrés, Joan
Isla, Enrique
Flores, José Abel
Sierro, Francisco Javier
Canals, Miquel
Palanques, Albert
author_facet Bárcena, María Ángeles
Fabrés, Joan
Isla, Enrique
Flores, José Abel
Sierro, Francisco Javier
Canals, Miquel
Palanques, Albert
author_sort Bárcena, María Ángeles
title Holocene neoglacial events in the Bransfield Strait (Antarctica). Palaeocenographic and paleoclimatic significance
title_short Holocene neoglacial events in the Bransfield Strait (Antarctica). Palaeocenographic and paleoclimatic significance
title_full Holocene neoglacial events in the Bransfield Strait (Antarctica). Palaeocenographic and paleoclimatic significance
title_fullStr Holocene neoglacial events in the Bransfield Strait (Antarctica). Palaeocenographic and paleoclimatic significance
title_full_unstemmed Holocene neoglacial events in the Bransfield Strait (Antarctica). Palaeocenographic and paleoclimatic significance
title_sort holocene neoglacial events in the bransfield strait (antarctica). palaeocenographic and paleoclimatic significance
publisher Consejo Superior de Investigaciones Científicas
publishDate 2006
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/67
https://doi.org/10.3989/scimar.2006.70n4607
long_lat ENVELOPE(-58.133,-58.133,-62.083,-62.083)
ENVELOPE(-60.783,-60.783,-62.467,-62.467)
ENVELOPE(-85.000,-85.000,-71.000,-71.000)
ENVELOPE(-58.888,-58.888,-62.165,-62.165)
geographic Alta
Bransfield Strait
Weddell
Hielo
Estrecho
De Bellingshausen
mar de Bellingshausen
geographic_facet Alta
Bransfield Strait
Weddell
Hielo
Estrecho
De Bellingshausen
mar de Bellingshausen
genre Antarc*
Antarctica
Antártica
Antártida
Bransfield Strait
ice core
Sea ice
genre_facet Antarc*
Antarctica
Antártica
Antártida
Bransfield Strait
ice core
Sea ice
op_source Scientia Marina; Vol. 70 No. 4 (2006); 607-619
Scientia Marina; Vol. 70 Núm. 4 (2006); 607-619
1886-8134
0214-8358
10.3989/scimar.2006.70n4
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/67/64
Abelmann, A. and R. Gersonde. – 1991. Biosiliceous particle flux in the Southern Ocean. Mar. Chem., 35: 503-536.
Amos A.F. – 1987. RACER: Physical oceanography of the western Bransfield Strait. Antarct. J. US., 22: 137-140.
Aristegui, J., M.F. Montero, S. Ballesteros, G. Basterretxea and K. van Lenning. – 1996. Planktonic primary production and microbial respiration measured by 14C assimilation and dissolved oxygen changes in coastal waters of the Antarctic Peninsula during austral summer: implications for carbon flux studies. Mar. Ecol. Prog. Ser., 132: 191-201. doi:10.3354/meps132191
Armand, L.K.T, X. Crosta, O. Romero, J.J. Pichon. – 2005. The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeogr. Palaeocl. Palaeoecol., 223: 93-126. doi:10.1016/j.palaeo.2005.02.015
Bacastow, R. B. – 1996. The effect of temperature change of the warm surface waters of the oceans on atmospheric CO2. Global Biogeochem. Cy., 10: 319-333. doi:10.1029/96GB00039
Bárcena, M.A. and F. Abrantes. – 1998. Evidence of a high-productivity area off the coast of Málaga from studies of diatoms in surface sediments. Mar. Micropaleontol., 35: 91-103. doi:10.1016/S0377-8398(98)00012-7
Bárcena, M.A., R. Gersonde, S. Ledesma, J. Fabrés, A.M. Calafat, M. Canals, F.J. Sierro, and J.A. Flores. – 1998. Record of Holocene glacial oscillations in the Bransfield Basin as revealed by siliceous microfossil assemblages. Antarct. Sci., 10(3): 269-285.
Bárcena, M.A., E. Isla, A. Plaza, J.A. Flores, F.J. Sierro, P. Masqué, J.A. Sánchez-Cabeza, and A. Palanques. – 2002. Bioaccumulation record and its relation with paleoclimatic evolution in the western Bransfield Strait. Deep-Sea Res. II, 49(4-5): 935-950. doi:10.1016/S0967-0645(01)00132-1
Bareille, G., M. Labracherie, L. Labeyrie, J.J. Pichon and J.L. Turon. – 1991. Biogenic silica accumulation rate during the Holocene in the southeastern Indian Ocean. Mar. Chemis., 35: 537-551.
Basterrechea, G. and J. Aristegui. – 1999. Phytoplankton biomass and productionduring late austral spring (1991) and summer (1993) in the Bransfield Strait. Polar Biol., 21: 11-22. doi:10.1007/s003000050328
Broecker, W.S. – 1981. Glacial to interglacial changes in ocean and atmosphere chemistry. In: A. Berger (ed.), Climatic variations and Variability: Facts and Theories, pp. 111-121. Redil Publishing Company.
Broecker, W.S. and T.H. Peng. – 1989. The cause of the glacial to interglacial atmospheric CO2 Change: A polar alkalinity hypothesis. Global Biogeochem. Cy., 3(3): 215-239. doi:10.1029/GB003i003p00215
Crespin, J., X. Crosta, V. Masson-Delmonte, A. Leventer. – 2004. Evolution of Holocene reservoir ages off Adelie Land, East Antarctica. ICP VIII, Program and Abstracts, Biarritz, 144.
Domack, E.W. – 2001. Holocene record from the Antarctic Peninsula: 200 to 1800 year oscillations. GSA Annual Meeting, November 5-8.
Domack, E.W. and P.A. Mayewski. – 1999. Bi-polar ocean linkages: evidence from late Holocene Antarctic Marine and Greenland ice-core records. Holocene 9 2): 237-241.
Ercilla, G., J. Baraza, B. Alonso, and M. Canals. – 1997. Recent geological processes in the Central Bransfield Basin (Western Antartic Peninsula). In: M.S. Stoker, D. Evans and A. Cramp (eds.), Geological Processes on Continental Margins: Sedimentation, Mass-Wasting and Stability, pp. 205-216. Geol. Soc. London, Sp. Publ.
Fabrés, J., A.M. Calafat, M. Canals, M. A. Bárcena, and J. A. Flores. – 2000. Bransfield Basin fine grained sediments: Late Holocene sedimentary processes and oceanographic and climatic conditions. Holocene, 10(9): 703-718. doi:10.1191/09596830094953
Gersonde, R. and Wefer G. – 1987. Sedimentation of biogenic siliceous particles in Antarctic waters from the Atlantic sector. Mar. Micropaleontol., 11: 311-332. doi:10.1016/0377-8398(87)90004-1
Gordon, A L. and W.D. Nowlin. – 1987. The basin waters of the Bransfield Strait. J. Phys. Oceanogr., 8: 258-264. doi:10.1175/1520-0485(1978)008<0258:TBWOTB>2.0.CO;2
Harden, S.L., D.J. DeMaster, and C.A. Nittrouer. – 1992. Developing sediment geochronologies for high-latitude continental shelf deposits: a radiochemical approach. Mar. Geol., 103: 69-97. doi:10.1016/0025-3227(92)90009-7
Indermühle, A., T.F. Stocker, F. Joss, H. Fisher, H.J. Smith, M. Wahlen, B.M. Deck, D. Mastroianni, J. Tschumi, T.M. Blunier, R. Meyer, and B. Stauffer - 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome (Antarctica). Nature, 398: 121-126. doi:10.1038/18158
Leventer, A., E. Domack, S.E. Ishman, S. Brachfeld, C.E. McClennen, and P. Manley. – 1996. Productivity cycles of 200-300 years in the Antarctic Peninsula region: Understanding linkages among the sun, atmosphere, oceans, se ice, and biota. Geol. Soc. Am. Bull., 108(12): 1626-1644. doi:10.1130/0016-7606(1996)108<1626:PCOYIT>2.3.CO;2
Mortlock, R. A. and P. N. Froelich. – 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res., 36(9): 1415-1426. doi:10.1016/0198-0149(89)90092-7
N.O.C. – 1985. Naval Oceanography Command Detachment, Asheville. Sea Ice Climatic Atlas, 1: Antarctic.
Paillard, D., L. Labeyrie, and P. Yiou. – 1996. Macintosh program performs timeseries analyses. Eos Trans, AGU, 77: 379. doi:10.1029/96EO00259
Palanques, A., E. Isla, P. Puig, J.A. Sánchez-Cabeza, and P. Masqué. – 2002. Annual evolution of downward particle fluxes in the Western Bransfield Strait (Antarctica) during the FRUELA project. Deep-Sea Res. II, 49(4-5): 903-920. doi:10.1016/S0967-0645(01)00130-8
Petit, J.R., D. Raynaud, C. Lorius, J. Joudel, G. Delaygue, N.I. Barkov, and V.M. Kotlyakov. – 2000. Historical isotopic temperature record from the Vostok ice core. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, J.S. Department of Energy, Oak Ridge, Tenn., J.S.A.
Sarnthein, M., K. Winn, and R. Zahn. – 1987. Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic changes during deglaciation times. In: W.H. Berger and L.D. Labeyrie (eds.), Abrupt Climate Change, Proceedings of the NATO/NSF A.R.W. Symposium at Biviers/Grenoble 1985, pp. 311-337.
Schrader H.J. and R. Gersonde. – 1978. Diatoms and silicoflagellates. In: W.J. Zachariasse et al. (eds.), Micropaleontological counting methods andtechniques- an exercise on an eight metres section of the lower Pliocene of Capo Rossello, Sicily. Utrecht Micropal. Bull., 17: 129-176.
Stuiver, M., G.H. Denton, T.J. Hughes, J.L. Fastook. – 1981. History of the marine ice sheet in west Antarctica during the last glaciation: A working hypothesis. In: G. Denton and T. Hughes (eds.), The Last Great Ice Sheets, pp. 319-436. John Wiley and Sons, New York.
Varela, M., E. Fernández and P. Serret. – 2002. Side-fractionated phytoplankton biomass and primary production in the Gerlache and South Bransfield Straits (Antarctic Peninsula) in the austral summer 95-96. Deep-Sea Res. II, 49: 749-768. doi:10.1016/S0967-0645(01)00122-9
Villanueva, J. – 1996. Estudi de les variacions climàtiques y oceanogràiques a l’Atlantic Nord durant els últims 3000000 anys mitjançant l’anàlisi de marcadors moleculars. Ph.D. thesis, Univ. Ramon Llull.
Wefer, G., G. Fischer, D.K. Fütterer and R. Gersonde. – 1988. Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Res., 35(6): 891-898. doi:10.1016/0198-0149(88)90066-0
Zielinski, J. and R. Gersonde. – 1997. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): Implications for palaeoenvironmental reconstructions. Palaeogeogr. Palaeocl. Palaeoecol., 129: 213-250. doi:10.1016/S0031-0182(96)00130-7
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/67
doi:10.3989/scimar.2006.70n4607
op_rights Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.2006.70n4607
https://doi.org/10.3989/scimar.2006.70n4
https://doi.org/10.3354/meps132191
https://doi.org/10.1016/j.palaeo.2005.02.015
https://doi.org/10.1029/96GB00039
https://doi.org/10.1016/S0377-8398(98)00012-7
container_title Scientia Marina
container_volume 70
container_issue 4
container_start_page 607
op_container_end_page 619
_version_ 1766159145608675328
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/67 2023-05-15T13:41:51+02:00 Holocene neoglacial events in the Bransfield Strait (Antarctica). Palaeocenographic and paleoclimatic significance Eventos neoglaciales del Holoceno en el estrecho de Bransfield (Antártica). Significado paleoceanográfico y plaeoclimático Bárcena, María Ángeles Fabrés, Joan Isla, Enrique Flores, José Abel Sierro, Francisco Javier Canals, Miquel Palanques, Albert 2006-12-30 application/pdf https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/67 https://doi.org/10.3989/scimar.2006.70n4607 eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/67/64 Abelmann, A. and R. Gersonde. – 1991. Biosiliceous particle flux in the Southern Ocean. Mar. Chem., 35: 503-536. Amos A.F. – 1987. RACER: Physical oceanography of the western Bransfield Strait. Antarct. J. US., 22: 137-140. Aristegui, J., M.F. Montero, S. Ballesteros, G. Basterretxea and K. van Lenning. – 1996. Planktonic primary production and microbial respiration measured by 14C assimilation and dissolved oxygen changes in coastal waters of the Antarctic Peninsula during austral summer: implications for carbon flux studies. Mar. Ecol. Prog. Ser., 132: 191-201. doi:10.3354/meps132191 Armand, L.K.T, X. Crosta, O. Romero, J.J. Pichon. – 2005. The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeogr. Palaeocl. Palaeoecol., 223: 93-126. doi:10.1016/j.palaeo.2005.02.015 Bacastow, R. B. – 1996. The effect of temperature change of the warm surface waters of the oceans on atmospheric CO2. Global Biogeochem. Cy., 10: 319-333. doi:10.1029/96GB00039 Bárcena, M.A. and F. Abrantes. – 1998. Evidence of a high-productivity area off the coast of Málaga from studies of diatoms in surface sediments. Mar. Micropaleontol., 35: 91-103. doi:10.1016/S0377-8398(98)00012-7 Bárcena, M.A., R. Gersonde, S. Ledesma, J. Fabrés, A.M. Calafat, M. Canals, F.J. Sierro, and J.A. Flores. – 1998. Record of Holocene glacial oscillations in the Bransfield Basin as revealed by siliceous microfossil assemblages. Antarct. Sci., 10(3): 269-285. Bárcena, M.A., E. Isla, A. Plaza, J.A. Flores, F.J. Sierro, P. Masqué, J.A. Sánchez-Cabeza, and A. Palanques. – 2002. Bioaccumulation record and its relation with paleoclimatic evolution in the western Bransfield Strait. Deep-Sea Res. II, 49(4-5): 935-950. doi:10.1016/S0967-0645(01)00132-1 Bareille, G., M. Labracherie, L. Labeyrie, J.J. Pichon and J.L. Turon. – 1991. Biogenic silica accumulation rate during the Holocene in the southeastern Indian Ocean. Mar. Chemis., 35: 537-551. Basterrechea, G. and J. Aristegui. – 1999. Phytoplankton biomass and productionduring late austral spring (1991) and summer (1993) in the Bransfield Strait. Polar Biol., 21: 11-22. doi:10.1007/s003000050328 Broecker, W.S. – 1981. Glacial to interglacial changes in ocean and atmosphere chemistry. In: A. Berger (ed.), Climatic variations and Variability: Facts and Theories, pp. 111-121. Redil Publishing Company. Broecker, W.S. and T.H. Peng. – 1989. The cause of the glacial to interglacial atmospheric CO2 Change: A polar alkalinity hypothesis. Global Biogeochem. Cy., 3(3): 215-239. doi:10.1029/GB003i003p00215 Crespin, J., X. Crosta, V. Masson-Delmonte, A. Leventer. – 2004. Evolution of Holocene reservoir ages off Adelie Land, East Antarctica. ICP VIII, Program and Abstracts, Biarritz, 144. Domack, E.W. – 2001. Holocene record from the Antarctic Peninsula: 200 to 1800 year oscillations. GSA Annual Meeting, November 5-8. Domack, E.W. and P.A. Mayewski. – 1999. Bi-polar ocean linkages: evidence from late Holocene Antarctic Marine and Greenland ice-core records. Holocene 9 2): 237-241. Ercilla, G., J. Baraza, B. Alonso, and M. Canals. – 1997. Recent geological processes in the Central Bransfield Basin (Western Antartic Peninsula). In: M.S. Stoker, D. Evans and A. Cramp (eds.), Geological Processes on Continental Margins: Sedimentation, Mass-Wasting and Stability, pp. 205-216. Geol. Soc. London, Sp. Publ. Fabrés, J., A.M. Calafat, M. Canals, M. A. Bárcena, and J. A. Flores. – 2000. Bransfield Basin fine grained sediments: Late Holocene sedimentary processes and oceanographic and climatic conditions. Holocene, 10(9): 703-718. doi:10.1191/09596830094953 Gersonde, R. and Wefer G. – 1987. Sedimentation of biogenic siliceous particles in Antarctic waters from the Atlantic sector. Mar. Micropaleontol., 11: 311-332. doi:10.1016/0377-8398(87)90004-1 Gordon, A L. and W.D. Nowlin. – 1987. The basin waters of the Bransfield Strait. J. Phys. Oceanogr., 8: 258-264. doi:10.1175/1520-0485(1978)008<0258:TBWOTB>2.0.CO;2 Harden, S.L., D.J. DeMaster, and C.A. Nittrouer. – 1992. Developing sediment geochronologies for high-latitude continental shelf deposits: a radiochemical approach. Mar. Geol., 103: 69-97. doi:10.1016/0025-3227(92)90009-7 Indermühle, A., T.F. Stocker, F. Joss, H. Fisher, H.J. Smith, M. Wahlen, B.M. Deck, D. Mastroianni, J. Tschumi, T.M. Blunier, R. Meyer, and B. Stauffer - 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome (Antarctica). Nature, 398: 121-126. doi:10.1038/18158 Leventer, A., E. Domack, S.E. Ishman, S. Brachfeld, C.E. McClennen, and P. Manley. – 1996. Productivity cycles of 200-300 years in the Antarctic Peninsula region: Understanding linkages among the sun, atmosphere, oceans, se ice, and biota. Geol. Soc. Am. Bull., 108(12): 1626-1644. doi:10.1130/0016-7606(1996)108<1626:PCOYIT>2.3.CO;2 Mortlock, R. A. and P. N. Froelich. – 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res., 36(9): 1415-1426. doi:10.1016/0198-0149(89)90092-7 N.O.C. – 1985. Naval Oceanography Command Detachment, Asheville. Sea Ice Climatic Atlas, 1: Antarctic. Paillard, D., L. Labeyrie, and P. Yiou. – 1996. Macintosh program performs timeseries analyses. Eos Trans, AGU, 77: 379. doi:10.1029/96EO00259 Palanques, A., E. Isla, P. Puig, J.A. Sánchez-Cabeza, and P. Masqué. – 2002. Annual evolution of downward particle fluxes in the Western Bransfield Strait (Antarctica) during the FRUELA project. Deep-Sea Res. II, 49(4-5): 903-920. doi:10.1016/S0967-0645(01)00130-8 Petit, J.R., D. Raynaud, C. Lorius, J. Joudel, G. Delaygue, N.I. Barkov, and V.M. Kotlyakov. – 2000. Historical isotopic temperature record from the Vostok ice core. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, J.S. Department of Energy, Oak Ridge, Tenn., J.S.A. Sarnthein, M., K. Winn, and R. Zahn. – 1987. Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic changes during deglaciation times. In: W.H. Berger and L.D. Labeyrie (eds.), Abrupt Climate Change, Proceedings of the NATO/NSF A.R.W. Symposium at Biviers/Grenoble 1985, pp. 311-337. Schrader H.J. and R. Gersonde. – 1978. Diatoms and silicoflagellates. In: W.J. Zachariasse et al. (eds.), Micropaleontological counting methods andtechniques- an exercise on an eight metres section of the lower Pliocene of Capo Rossello, Sicily. Utrecht Micropal. Bull., 17: 129-176. Stuiver, M., G.H. Denton, T.J. Hughes, J.L. Fastook. – 1981. History of the marine ice sheet in west Antarctica during the last glaciation: A working hypothesis. In: G. Denton and T. Hughes (eds.), The Last Great Ice Sheets, pp. 319-436. John Wiley and Sons, New York. Varela, M., E. Fernández and P. Serret. – 2002. Side-fractionated phytoplankton biomass and primary production in the Gerlache and South Bransfield Straits (Antarctic Peninsula) in the austral summer 95-96. Deep-Sea Res. II, 49: 749-768. doi:10.1016/S0967-0645(01)00122-9 Villanueva, J. – 1996. Estudi de les variacions climàtiques y oceanogràiques a l’Atlantic Nord durant els últims 3000000 anys mitjançant l’anàlisi de marcadors moleculars. Ph.D. thesis, Univ. Ramon Llull. Wefer, G., G. Fischer, D.K. Fütterer and R. Gersonde. – 1988. Seasonal particle flux in the Bransfield Strait, Antarctica. Deep-Sea Res., 35(6): 891-898. doi:10.1016/0198-0149(88)90066-0 Zielinski, J. and R. Gersonde. – 1997. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): Implications for palaeoenvironmental reconstructions. Palaeogeogr. Palaeocl. Palaeoecol., 129: 213-250. doi:10.1016/S0031-0182(96)00130-7 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/67 doi:10.3989/scimar.2006.70n4607 Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 70 No. 4 (2006); 607-619 Scientia Marina; Vol. 70 Núm. 4 (2006); 607-619 1886-8134 0214-8358 10.3989/scimar.2006.70n4 diatoms geochemistry neoglacial events palaeoceanography palaeocliomatology Holocene Bransfield Strait Antarctica diatomeas geoquímica eventos neoglaciales paleoceanografía paleoclimatología Holoceno Estrecho de Bransfield Antártida info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2006 ftjscientiamarin https://doi.org/10.3989/scimar.2006.70n4607 https://doi.org/10.3989/scimar.2006.70n4 https://doi.org/10.3354/meps132191 https://doi.org/10.1016/j.palaeo.2005.02.015 https://doi.org/10.1029/96GB00039 https://doi.org/10.1016/S0377-8398(98)00012-7 2022-03-20T16:30:09Z Geochemical analysis, micropalaeontological analysis and radiometric dating techniques were performed on four gravity cores, G-1, G-2, A-3 and A-6, recovered during the BIO Hesperides expeditions GEBRA-93 and FRUELA-96 from the Bransfield Strait (Antarctica). Moreover, in order to improve the sedimentation rate control we tentatively relate abundance variations in the sea-ice taxa group (SITG) to air temperature estimations based on Deuterium contents in Vostok ice-core. The results of diatom analyses were related to the sequence of neoglacial events that have occurred over the last three millennia. For these periods, a restricted communication between the Weddell, Bransfield and Bellingshausen seas has been proposed. The abundance patterns of diatom valves, resting spores (RS) of the diatom Chaetoceros and opal content agree with the high productivity values previously reported for the area. The significant reduction Chaetoceros RS towards the present is interpreted as a reduction in surface productivity. Trend differences between Chaetoceros RS and TOC contents are explained in terms of organic matter preservation. Diatom communities from the Bransfield Strait did not play an important role in the global CO2 cycle during cold periods. Bio- and geochemical changes have overprinted high frequency cyclicity at about 200-300 yr, which might be related to the 200-yr solar cycle. Se han realizado análisis geoquímicos y micropaleontológicos, así como técnicas de datación radiométricas sobre cuatro testigos de gravedad (G-1, G2, A-3 y A-6) recuperados durante las campañas del BIO Hespérides Gebra-93 y Fruela-96 en el Estrecho de Bransfield (Antártida). Se han correlacionado las estimaciones de temperatura del aire, derivadas del contenido en Deuterio en el testigo de hielo Vostok, con la abundancia del grupo de taxones de mar helado (SITG). Los resultados obtenidos del análisis de diatomeas han sido relacionados con la secuencia de eventos neoglaciales que tuvieron lugar durante los últimos 3000 años. Se propone una restricción en la comunicación entre el Mar de Weddel, Estrecho de Bransfield y Mar de Bellingshausen durante los episodios neoglaciales. Los patrones de abundancia de valvas de diatomeas, esporas (RS) de Chaetoceros y el contenido en ópalo biogénico indican valores altos en productividad, previamente descritos para el área. La progresiva reducción en Chaetoceros (RS) hacia techo se ha interpretado como reducción en la productividad superficial. Las diferencias entre la abundancia de Chaetoceros (RS) y el contenido en carbono orgánico (TOC) puede deberse a diferencias en la preservación de la materia orgánica. Por otro lado, los datos analizados indican que las comunidades de diatomeas del estrecho de Bransfield no jugaron un papel determinante en el ciclo global del CO2 durante los episodios fríos. Los cambios bio-geoquímicos están marcados por una ciclicidad de alta frecuencia de 200-300 años que podría estar relacionada con el ciclo solar de 200 años. Article in Journal/Newspaper Antarc* Antarctica Antártica Antártida Bransfield Strait ice core Sea ice Scientia Marina (E-Journal) Alta Bransfield Strait Weddell Hielo ENVELOPE(-58.133,-58.133,-62.083,-62.083) Estrecho ENVELOPE(-60.783,-60.783,-62.467,-62.467) De Bellingshausen ENVELOPE(-85.000,-85.000,-71.000,-71.000) mar de Bellingshausen ENVELOPE(-58.888,-58.888,-62.165,-62.165) Scientia Marina 70 4 607 619