Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters

European hake (Merluccius merluccius) is a commercially important resource in Iberian Atlantic waters. Despite the recovery plan implemented in 2006 and the multiannual management plan for western waters, fishing mortality is still higher than that corresponding to the maximum sustainable yield for...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Lojo, Davinia, Cousido-Rocha, Marta, Cerviño, Santiago, Dominguez-Petit, Rosario, Sainza, María, Pennino, Maria Grazia
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2022
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1935
https://doi.org/10.3989/scimar.05287.046
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1935
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic North Atlantic Oscillation
life history
reproductive traits
relative condition factor
southern European stock
Oscilación del Atlántico Norte
historia de vida
rasgos reproductivos
factor de condición relativa
población del sur de Europa
spellingShingle North Atlantic Oscillation
life history
reproductive traits
relative condition factor
southern European stock
Oscilación del Atlántico Norte
historia de vida
rasgos reproductivos
factor de condición relativa
población del sur de Europa
Lojo, Davinia
Cousido-Rocha, Marta
Cerviño, Santiago
Dominguez-Petit, Rosario
Sainza, María
Pennino, Maria Grazia
Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters
topic_facet North Atlantic Oscillation
life history
reproductive traits
relative condition factor
southern European stock
Oscilación del Atlántico Norte
historia de vida
rasgos reproductivos
factor de condición relativa
población del sur de Europa
description European hake (Merluccius merluccius) is a commercially important resource in Iberian Atlantic waters. Despite the recovery plan implemented in 2006 and the multiannual management plan for western waters, fishing mortality is still higher than that corresponding to the maximum sustainable yield for the southern European hake stock. The biological processes underlying the dynamics of this stock and its life history traits are essential for assessing population productivity and resilience, making them basic information for management. We analysed the temporal variability of size at maturity (L50) of this species and the main factors influencing it in Atlantic Iberian waters from 1982 to 2019. The annual variability of L50 for each sex was modelled with generalized additive models, considering explanatory environmental variables (Atlantic Multidecadal Oscillation, North Atlantic Oscillation and sea surface temperature) and biological variables (biomass, spawning biomass at length and relative condition factor). The results showed that the L50 of males decreased by a total of 12.9 cm and L50 of females decreased by a total of 10.9 cm from 1982 to 2019. For females the significant explanatory variables were year, spawning biomass at length, biomass and the North Atlantic Oscillation, while for males only year was an explanatory variable. These results are important for understanding the status of the European hake population, signalling that L50 is a good indicator for predicting future population dynamics. La merluza europea (Merluccius merluccius) es un recurso comercialmente importante en aguas Atlánticas Ibéricas. A pesar del plan de recuperación puesto en marcha en 2006 y del plan de gestión plurianual de las aguas occidentales, la mortalidad por pesca sigue siendo superior a la correspondiente al rendimiento máximo sostenible de la población de merluza del sur de Europa. Comprender los procesos biológicos que subyacen a la dinámica de este stock y proporcionar información sobre los rasgos de la historia de ...
format Article in Journal/Newspaper
author Lojo, Davinia
Cousido-Rocha, Marta
Cerviño, Santiago
Dominguez-Petit, Rosario
Sainza, María
Pennino, Maria Grazia
author_facet Lojo, Davinia
Cousido-Rocha, Marta
Cerviño, Santiago
Dominguez-Petit, Rosario
Sainza, María
Pennino, Maria Grazia
author_sort Lojo, Davinia
title Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters
title_short Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters
title_full Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters
title_fullStr Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters
title_full_unstemmed Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters
title_sort assessing changes in size at maturity for the european hake (merluccius merluccius) in atlantic iberian waters
publisher Consejo Superior de Investigaciones Científicas
publishDate 2022
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1935
https://doi.org/10.3989/scimar.05287.046
long_lat ENVELOPE(15.612,15.612,66.797,66.797)
geographic Hake
geographic_facet Hake
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source Scientia Marina; Vol. 86 No. 4 (2022); e046
Scientia Marina; Vol. 86 Núm. 4 (2022); e046
1886-8134
0214-8358
10.3989/scimar.2022.86n4
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1935/2904
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1935/2905
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1935/2906
Albo-Puigserver M., Pennino M.G., Bellido J.M., et al. 2021. Changes in life history traits of small pelagic fish in the western Mediterranean Sea. Front. Mar. Sci. 8: 1197.
Ali M., Nicieza A., Wootton R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish. Fish. 4: 147-190.
Ashton W.D. 1972. The logit transformation with special reference to its uses in bioassay. Haffner Publishing Co., INC., New York, 88 pp.
Barot S, Heino M, O’Brien L, Dieckmann U. 2004. Estimating reaction norms for age and size at maturation when age at first reproduction is unknown. Evol. Ecol. Res. 6: 659-678.
Cerviño S., Domínguez R., Jardim E., et al. 2013. Impact of egg production and stock structure on MSY reference points. Implications for Southern hake management. Fish. Res. 138: 168-178.
Dalgleish H.J., Koons D.N., Adler P.B. 2010. Can life-history traits predict the response of populations to changes in climate variability? J. Ecol. 98: 209-217.
Dominguez-Petit R. 2007. Study of reproductive potential of Merluccius merluccius in the Galician shelf. Doctoral Thesis. University of Vigo, Spain.
Dominguez-Petit R., Korta M., Saborido-Rey F., et al. 2008. Changes in size at maturity of European hake Atlantic populations in relation with stock structure and environmental regimes. J. Mar. Syst. 71: 260-278.
Dominguez-Petit R., García-Fernandez C., Leonarduzzi E., et al. 2022. Parental effects and reproductive potential of fish and marine invertebrates: Cross-generational impact of environmental experiences. In: Domínguez-Petit R. (ed). Impact of Environmental Stress on Reproductive Processes of Aquatic Animals. Fishes 7: 188.
Drinkwater K.F. 2005. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J. Mar. Sci. 62: 1327-1337.
Engelhard G.H., Heino M. 2004. Maturity changes in Norwegian spring spawning herring Clupea harengus: compensatory or evolutionary responses? Mar. Ecol. Prog. Ser. 272: 245-256.
Fox J., Weisberg S. 2019. An R Companion to Applied Regression (Third). SAGE Publications Inc, pp. 608.
Godø O.R., Haug T. 1999. Growth rate and sexual maturity in cod (Gadus morhua) and Atlantic halibut (Hippoglosus hippoglossus). J. Northwest Atl. Fish. Sci. 25: 115-123.
Goikoetxea N., Irigoien X. 2013. Links between the recruitment success of northern European hake (Merluccius merluccius L.) and a regime shift on the NE Atlantic continental shelf. Fish. Oceanogr. 22: 459-476.
Greene C.H., Pershing A.J. 2000. The response of Calanus finmarchicus populations to climate variability in the Northwest Atlantic: basin-scale forcing associated with the North Atlantic Oscillation. ICES J. Mar. Sci. 57: 1536-1544.
Haug T., Tjemsland T. 1986. Changes in size and age distribution and age at sexual maturity in Atlantic Halibut, Hippoglossus hippoglossus, caught in North Norwegian waters. Fish. Res. 4: 145-155.
Hidalgo M., Rouyer T., Bartolino V., et al. 2012. Context-dependent interplays between truncated demographies and climate variation shape the population growth rate of a harvested species. Ecography 35: 637-649.
Hidalgo M., Rouyer T., Molinero J.C., et al. 2014. Contrasting evolutionary demography induced by fishing: The role of adaptive phenotypic plasticity. Ecol. App. 24:1101-1114.
Hixon M.A., Johnson D.W., Sogard S.M. 2014. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J. Mar. Sci. 71: 2171-2185.
Hjermann D.Ø., Stenseth N.C., Ottersen G. 2004. Indirect climatic forcing of the Barents Sea capelin: a cohort effect. Mar. Ecol. Prog. Ser. 273: 229-238.
Hobday A.J., Smith A.D.M., Stobutzki I.C., et al. 2011. Ecological risk assessment for the effects of fishing. Fish Res. 108: 372-384.
Hollins J., Thambithurai D., Koeck B., et al. 2018. A physiological perspective on fisheries-induced evolution. Evol. Appl. 11: 561-576.
ICES. 2019. Working Group for the Bay of Biscay and the Iberian Waters Ecoregion (WGBIE). ICES Sci. Rep. 1:31.
ICES. 2021. Working Group for the Bay of Biscay and the Iberian Waters Ecoregion (WGBIE).ICES Sci. Rep. 3:48.
Jørgensen C., Enberg K., Dunlop E.S., et al. 2007. Ecology: Managing Evolving Fish Stocks. Sci. 318: 1247-1248.
Junquera S., Roman E., Paz X., Ramilo G. 1999. Changes in Greenland halibut growth, condition and fecundity in the Northwest Atlantic (Flemish Pass, Flemish Cap and southern Grand Banks). Variations in maturation, growth, condition and spawning stock biomass production in groundfish. J. Northwest Atl. Fish. Sci. 25: 17-28.
Kell L.T., Pilling G.M., O’Brien C.M. 2005. Implications of the climate change for the management of North Sea cod (Gadus morhua). ICES J. Mar. Sci. 62: 1483-149.
Korta M., Domínguez-Petit R., Murua H., Saborido-Rey F. 2010. Regional variability in reproductive traits of European hake Merluccius merluccius L. populations. Fish. Res. 104: 64-72.
Korta M., García, D., Santurtún M., et al. 2015. “European Hake (Merluccius merluccius) in the North-east Atlantic,” in Hakes: biology and Explotation, ed. H. Arancibia (Hoboken: John Wiley & Sons, Ltd), 1-37.
Köster F.W., Möllmann C. Hinrichsen H.H., et al. 2005. Baltic cod Recruitment - the impact of climate variability on key processes. ICES J. Mar. Sci. 62: 1408-1425.
Law R. 2000. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57: 659-668.
Le Cren E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch. J. Anim. Ecol. 2: 201-219.
Liermann M., Hilborn R. 2001. Depensation: evidence, models and implications. Fish. Fish. 2: 33-58.
Lorenzen K., Camp E.V. 2019. Density-dependence in the life history of fishes: when is a fish recruited?. Fish. Res. 217: 5-10.
Marshall S., Elliott M. 1998. Environmental influences on the fish assemblage of the Humber estuary. U.K. Estuar. Coast. Shelf Sci. 46:175-184.
Marteinsdottir G., Begg G.A. 2002. Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 235:235-256.
Meiners-Mandujano C.G. 2007. Importancia de la variabilidad climática en las pesquerías y biología de la merluza europea Merluccius merluccius (Linnaeus, 1758) de la costa Noroccidental Africana. PH.D. Thesis. Universitat Politècnica de Catalunya (UPC) (Spain). 207 pp.
Moritz S., Bartz-Beielstein T. 2017. Imputets: Time Series Missing Value Imputation in R. R J. 9: 207-218.
Murua H. 2010. The biology and fisheries of European hake, Merluccius merluccius, in the north-east Atlantic. Adv. Mar. Biol. 58: 97-154.
Nye J.A., Link J.S., Hare J.A., Overholtz W.J. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111-129.
Nye J. A., Baker M.R., Bell R., et al. 2014. Ecosystem effects of the Atlantic Multidecadal Oscillation. J. Mar. Syst. 133, 103-116.
Öckinger E., Schweiger O., Crist T.O., et al. 2010 Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol. Lett. 13: 969-979.
Olsen E.M., Heino M., Lilly G.R., et al. 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature. 428: 932-935.
Olsen EM, Lilly GR, Heino M, et al. 2005. Assessing changes in age and size at maturation in collapsing populations of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 62:811-823.
Ottersen G., Planque B., Belgrano A., et al. 2001. Ecological effects of the North Atlantic Oscillation. Oecologia. 128: 1-14.
Oven L.S. 2004. Resorption of Vitellogenous Oocytes as an Indicator of the State of the Black Sea Fish Populations and Their Environment. Journal of Ichthyology, 44: 115-119.
Pepin P. 2015. Reconsidering the impossible - linking environmental drivers to growth, mortality, and recruitment of fish. Can. J. Fish. Aquat. Sci. 73: 205-215.
op_rights Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.05287.046
https://doi.org/10.3989/scimar.2022.86n4
container_title Scientia Marina
container_volume 86
container_issue 4
container_start_page e046
_version_ 1766127569869996032
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1935 2023-05-15T17:30:41+02:00 Assessing changes in size at maturity for the European hake (Merluccius merluccius) in Atlantic Iberian waters Evaluación de los cambios en la talla de madurez de la merluza europea (Merluccius merluccius) en las aguas atlánticas ibéricas Lojo, Davinia Cousido-Rocha, Marta Cerviño, Santiago Dominguez-Petit, Rosario Sainza, María Pennino, Maria Grazia 2022-12-14 text/html application/pdf text/xml https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1935 https://doi.org/10.3989/scimar.05287.046 eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1935/2904 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1935/2905 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1935/2906 Albo-Puigserver M., Pennino M.G., Bellido J.M., et al. 2021. Changes in life history traits of small pelagic fish in the western Mediterranean Sea. Front. Mar. Sci. 8: 1197. Ali M., Nicieza A., Wootton R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish. Fish. 4: 147-190. Ashton W.D. 1972. The logit transformation with special reference to its uses in bioassay. Haffner Publishing Co., INC., New York, 88 pp. Barot S, Heino M, O’Brien L, Dieckmann U. 2004. Estimating reaction norms for age and size at maturation when age at first reproduction is unknown. Evol. Ecol. Res. 6: 659-678. Cerviño S., Domínguez R., Jardim E., et al. 2013. Impact of egg production and stock structure on MSY reference points. Implications for Southern hake management. Fish. Res. 138: 168-178. Dalgleish H.J., Koons D.N., Adler P.B. 2010. Can life-history traits predict the response of populations to changes in climate variability? J. Ecol. 98: 209-217. Dominguez-Petit R. 2007. Study of reproductive potential of Merluccius merluccius in the Galician shelf. Doctoral Thesis. University of Vigo, Spain. Dominguez-Petit R., Korta M., Saborido-Rey F., et al. 2008. Changes in size at maturity of European hake Atlantic populations in relation with stock structure and environmental regimes. J. Mar. Syst. 71: 260-278. Dominguez-Petit R., García-Fernandez C., Leonarduzzi E., et al. 2022. Parental effects and reproductive potential of fish and marine invertebrates: Cross-generational impact of environmental experiences. In: Domínguez-Petit R. (ed). Impact of Environmental Stress on Reproductive Processes of Aquatic Animals. Fishes 7: 188. Drinkwater K.F. 2005. The response of Atlantic cod (Gadus morhua) to future climate change. ICES J. Mar. Sci. 62: 1327-1337. Engelhard G.H., Heino M. 2004. Maturity changes in Norwegian spring spawning herring Clupea harengus: compensatory or evolutionary responses? Mar. Ecol. Prog. Ser. 272: 245-256. Fox J., Weisberg S. 2019. An R Companion to Applied Regression (Third). SAGE Publications Inc, pp. 608. Godø O.R., Haug T. 1999. Growth rate and sexual maturity in cod (Gadus morhua) and Atlantic halibut (Hippoglosus hippoglossus). J. Northwest Atl. Fish. Sci. 25: 115-123. Goikoetxea N., Irigoien X. 2013. Links between the recruitment success of northern European hake (Merluccius merluccius L.) and a regime shift on the NE Atlantic continental shelf. Fish. Oceanogr. 22: 459-476. Greene C.H., Pershing A.J. 2000. The response of Calanus finmarchicus populations to climate variability in the Northwest Atlantic: basin-scale forcing associated with the North Atlantic Oscillation. ICES J. Mar. Sci. 57: 1536-1544. Haug T., Tjemsland T. 1986. Changes in size and age distribution and age at sexual maturity in Atlantic Halibut, Hippoglossus hippoglossus, caught in North Norwegian waters. Fish. Res. 4: 145-155. Hidalgo M., Rouyer T., Bartolino V., et al. 2012. Context-dependent interplays between truncated demographies and climate variation shape the population growth rate of a harvested species. Ecography 35: 637-649. Hidalgo M., Rouyer T., Molinero J.C., et al. 2014. Contrasting evolutionary demography induced by fishing: The role of adaptive phenotypic plasticity. Ecol. App. 24:1101-1114. Hixon M.A., Johnson D.W., Sogard S.M. 2014. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J. Mar. Sci. 71: 2171-2185. Hjermann D.Ø., Stenseth N.C., Ottersen G. 2004. Indirect climatic forcing of the Barents Sea capelin: a cohort effect. Mar. Ecol. Prog. Ser. 273: 229-238. Hobday A.J., Smith A.D.M., Stobutzki I.C., et al. 2011. Ecological risk assessment for the effects of fishing. Fish Res. 108: 372-384. Hollins J., Thambithurai D., Koeck B., et al. 2018. A physiological perspective on fisheries-induced evolution. Evol. Appl. 11: 561-576. ICES. 2019. Working Group for the Bay of Biscay and the Iberian Waters Ecoregion (WGBIE). ICES Sci. Rep. 1:31. ICES. 2021. Working Group for the Bay of Biscay and the Iberian Waters Ecoregion (WGBIE).ICES Sci. Rep. 3:48. Jørgensen C., Enberg K., Dunlop E.S., et al. 2007. Ecology: Managing Evolving Fish Stocks. Sci. 318: 1247-1248. Junquera S., Roman E., Paz X., Ramilo G. 1999. Changes in Greenland halibut growth, condition and fecundity in the Northwest Atlantic (Flemish Pass, Flemish Cap and southern Grand Banks). Variations in maturation, growth, condition and spawning stock biomass production in groundfish. J. Northwest Atl. Fish. Sci. 25: 17-28. Kell L.T., Pilling G.M., O’Brien C.M. 2005. Implications of the climate change for the management of North Sea cod (Gadus morhua). ICES J. Mar. Sci. 62: 1483-149. Korta M., Domínguez-Petit R., Murua H., Saborido-Rey F. 2010. Regional variability in reproductive traits of European hake Merluccius merluccius L. populations. Fish. Res. 104: 64-72. Korta M., García, D., Santurtún M., et al. 2015. “European Hake (Merluccius merluccius) in the North-east Atlantic,” in Hakes: biology and Explotation, ed. H. Arancibia (Hoboken: John Wiley & Sons, Ltd), 1-37. Köster F.W., Möllmann C. Hinrichsen H.H., et al. 2005. Baltic cod Recruitment - the impact of climate variability on key processes. ICES J. Mar. Sci. 62: 1408-1425. Law R. 2000. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57: 659-668. Le Cren E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch. J. Anim. Ecol. 2: 201-219. Liermann M., Hilborn R. 2001. Depensation: evidence, models and implications. Fish. Fish. 2: 33-58. Lorenzen K., Camp E.V. 2019. Density-dependence in the life history of fishes: when is a fish recruited?. Fish. Res. 217: 5-10. Marshall S., Elliott M. 1998. Environmental influences on the fish assemblage of the Humber estuary. U.K. Estuar. Coast. Shelf Sci. 46:175-184. Marteinsdottir G., Begg G.A. 2002. Essential relationships incorporating the influence of age, size and condition on variables required for estimation of reproductive potential in Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 235:235-256. Meiners-Mandujano C.G. 2007. Importancia de la variabilidad climática en las pesquerías y biología de la merluza europea Merluccius merluccius (Linnaeus, 1758) de la costa Noroccidental Africana. PH.D. Thesis. Universitat Politècnica de Catalunya (UPC) (Spain). 207 pp. Moritz S., Bartz-Beielstein T. 2017. Imputets: Time Series Missing Value Imputation in R. R J. 9: 207-218. Murua H. 2010. The biology and fisheries of European hake, Merluccius merluccius, in the north-east Atlantic. Adv. Mar. Biol. 58: 97-154. Nye J.A., Link J.S., Hare J.A., Overholtz W.J. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111-129. Nye J. A., Baker M.R., Bell R., et al. 2014. Ecosystem effects of the Atlantic Multidecadal Oscillation. J. Mar. Syst. 133, 103-116. Öckinger E., Schweiger O., Crist T.O., et al. 2010 Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol. Lett. 13: 969-979. Olsen E.M., Heino M., Lilly G.R., et al. 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature. 428: 932-935. Olsen EM, Lilly GR, Heino M, et al. 2005. Assessing changes in age and size at maturation in collapsing populations of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 62:811-823. Ottersen G., Planque B., Belgrano A., et al. 2001. Ecological effects of the North Atlantic Oscillation. Oecologia. 128: 1-14. Oven L.S. 2004. Resorption of Vitellogenous Oocytes as an Indicator of the State of the Black Sea Fish Populations and Their Environment. Journal of Ichthyology, 44: 115-119. Pepin P. 2015. Reconsidering the impossible - linking environmental drivers to growth, mortality, and recruitment of fish. Can. J. Fish. Aquat. Sci. 73: 205-215. Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 86 No. 4 (2022); e046 Scientia Marina; Vol. 86 Núm. 4 (2022); e046 1886-8134 0214-8358 10.3989/scimar.2022.86n4 North Atlantic Oscillation life history reproductive traits relative condition factor southern European stock Oscilación del Atlántico Norte historia de vida rasgos reproductivos factor de condición relativa población del sur de Europa info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2022 ftjscientiamarin https://doi.org/10.3989/scimar.05287.046 https://doi.org/10.3989/scimar.2022.86n4 2022-12-21T00:40:41Z European hake (Merluccius merluccius) is a commercially important resource in Iberian Atlantic waters. Despite the recovery plan implemented in 2006 and the multiannual management plan for western waters, fishing mortality is still higher than that corresponding to the maximum sustainable yield for the southern European hake stock. The biological processes underlying the dynamics of this stock and its life history traits are essential for assessing population productivity and resilience, making them basic information for management. We analysed the temporal variability of size at maturity (L50) of this species and the main factors influencing it in Atlantic Iberian waters from 1982 to 2019. The annual variability of L50 for each sex was modelled with generalized additive models, considering explanatory environmental variables (Atlantic Multidecadal Oscillation, North Atlantic Oscillation and sea surface temperature) and biological variables (biomass, spawning biomass at length and relative condition factor). The results showed that the L50 of males decreased by a total of 12.9 cm and L50 of females decreased by a total of 10.9 cm from 1982 to 2019. For females the significant explanatory variables were year, spawning biomass at length, biomass and the North Atlantic Oscillation, while for males only year was an explanatory variable. These results are important for understanding the status of the European hake population, signalling that L50 is a good indicator for predicting future population dynamics. La merluza europea (Merluccius merluccius) es un recurso comercialmente importante en aguas Atlánticas Ibéricas. A pesar del plan de recuperación puesto en marcha en 2006 y del plan de gestión plurianual de las aguas occidentales, la mortalidad por pesca sigue siendo superior a la correspondiente al rendimiento máximo sostenible de la población de merluza del sur de Europa. Comprender los procesos biológicos que subyacen a la dinámica de este stock y proporcionar información sobre los rasgos de la historia de ... Article in Journal/Newspaper North Atlantic North Atlantic oscillation Scientia Marina (E-Journal) Hake ENVELOPE(15.612,15.612,66.797,66.797) Scientia Marina 86 4 e046