Growth patterns of the lanternfish Ceratoscopelus maderensis in the western Mediterranean Sea

The age and growth patterns of the mesopelagic fish Ceratoscopelus maderensis (family Myctophidae) of the western Mediterranean Sea were described throughout its entire life cycle (from larvae to adult stages) using the sagittae otoliths of 59 individuals collected in December 2009. Three characteri...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Real, Enric, Bernal, Ainhoa, Morales-Nin, Beatriz, Molí, Balbina, Alvarez, Itziar, Pilar Olivar, M.
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2021
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893
https://doi.org/10.3989/scimar.05106.007
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1893
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic daily growth
larval growth
mesopelagic fish
Myctophidae
otolith microstructure
crecimiento larvario
crecimiento diario
microestructura del otolito
peces mesopelágicos
spellingShingle daily growth
larval growth
mesopelagic fish
Myctophidae
otolith microstructure
crecimiento larvario
crecimiento diario
microestructura del otolito
peces mesopelágicos
Real, Enric
Bernal, Ainhoa
Morales-Nin, Beatriz
Molí, Balbina
Alvarez, Itziar
Pilar Olivar, M.
Growth patterns of the lanternfish Ceratoscopelus maderensis in the western Mediterranean Sea
topic_facet daily growth
larval growth
mesopelagic fish
Myctophidae
otolith microstructure
crecimiento larvario
crecimiento diario
microestructura del otolito
peces mesopelágicos
description The age and growth patterns of the mesopelagic fish Ceratoscopelus maderensis (family Myctophidae) of the western Mediterranean Sea were described throughout its entire life cycle (from larvae to adult stages) using the sagittae otoliths of 59 individuals collected in December 2009. Three characteristic zones were identified along the cross-section of the sagittae (larval, metamorphic and juvenile-adult zones). Assuming growth rings as daily increments, the age of the analysed individuals (from 3.5 to 64 mm standard length [SL]) would range from 7 to 332 days. The relationship between the number of increments and the fish SL was fitted to a von Bertalanffy growth model (SL=70.5899Å~(1–exp(–0.0501(t+2.6705))). The growth pattern of C. maderensis in the western Mediterranean Sea was similar to that reported for this species in the northeast Atlantic Ocean. Though from a body size of 40-45 mm SL, growth rates declined more slowly in individuals from the western Mediterranean Sea, growth differences between these individuals and those from the northeast Atlantic Ocean were not statistically significant. This study provides new insights into the age and growth patterns of one of the most abundant mesopelagic fish species in the Mediterranean Sea that have clear implications for the study and management of marine ecosystems. En el presente trabajo se describen la edad y los patrones de crecimiento desde la fase larvaria hasta la fase adulta del pez mesopelágico Ceratoscopelus maderensis (familia Myctophidae) del Mediterráneo occidental. Para ello, se analizó el otolito sagitta de 59 individuos capturados en diciembre de 2009. Se identificaron tres zonas en la sagitta, cada una de las cuales se corresponde con una fase del desarrollo ontogenético del pez: larvaria, metamórfica y juvenil-adulta. Asumiendo que los anillos de crecimiento son diarios, la edad de los individuos analizados (de 3.5 a 64 mm de longitud estándar [SL]) oscilaría entre 7 y 332 días. La relación entre el número de incrementos y la SL de los peces se ajustó al modelo de crecimiento de von Bertalanffy (SL=70.5899×(1–exp(–0.0501(t+2.6705))). El patrón de crecimiento de C. maderensis en el Mediterráneo occidental fue similar al previamente descrito para esta especie en el Noreste del Océano Atlántico. A pesar de que, a partir de 40-45 mm SL, las tasas de crecimiento disminuyeron más lentamente en los individuos del Mediterráneo occidental, las diferencias de crecimiento entre estos individuos y los del Noreste del Océano Atlántico no fueron estadísticamente significativas. Los resultados de este estudio aportan nuevos conocimientos sobre la edad y el crecimiento de una de las especies más abundantes del Mar Mediterráneo, lo cual tiene claras implicaciones de cara al estudio y la gestión de los ecosistemas marinos.
format Article in Journal/Newspaper
author Real, Enric
Bernal, Ainhoa
Morales-Nin, Beatriz
Molí, Balbina
Alvarez, Itziar
Pilar Olivar, M.
author_facet Real, Enric
Bernal, Ainhoa
Morales-Nin, Beatriz
Molí, Balbina
Alvarez, Itziar
Pilar Olivar, M.
author_sort Real, Enric
title Growth patterns of the lanternfish Ceratoscopelus maderensis in the western Mediterranean Sea
title_short Growth patterns of the lanternfish Ceratoscopelus maderensis in the western Mediterranean Sea
title_full Growth patterns of the lanternfish Ceratoscopelus maderensis in the western Mediterranean Sea
title_fullStr Growth patterns of the lanternfish Ceratoscopelus maderensis in the western Mediterranean Sea
title_full_unstemmed Growth patterns of the lanternfish Ceratoscopelus maderensis in the western Mediterranean Sea
title_sort growth patterns of the lanternfish ceratoscopelus maderensis in the western mediterranean sea
publisher Consejo Superior de Investigaciones Científicas
publishDate 2021
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893
https://doi.org/10.3989/scimar.05106.007
long_lat ENVELOPE(161.100,161.100,-82.750,-82.750)
geographic Cara
geographic_facet Cara
genre Northeast Atlantic
genre_facet Northeast Atlantic
op_source Scientia Marina; Vol. 85 No. 2 (2021); 71-80
Scientia Marina; Vol. 85 Núm. 2 (2021); 71-80
1886-8134
0214-8358
10.3989/scimar.2021.85n2
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893/2788
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893/2789
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893/2790
Aguilar-Pereira A., Quijano-Puerto L. 2016. Relations between fish length to weight, and otolith length and weight, of the lionfish Pterois volitans in the Parque Nacional Arrecife Alacranes, southern Gulf of Mexico. Rev. Biol. Mar. Oceanogr. 51: 469-474. https://doi.org/10.4067/S0718-19572016000200025
Anderson T.R., Martin A.P., Lampitt R.S., et al. 2019. Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. ICES J. Mar. Sci. 76: 690-701. https://doi.org/10.1093/icesjms/fsx234
Bernal A. Olivar M.P., Maynou F., et al. 2015. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Progr. Oceanogr. 135: 1-17. https://doi.org/10.1016/j.pocean.2015.03.005
Brothers E.B., Mathews C. P., Lasker R. 1976. Daily growth increments in otoliths from larval and adult fishes. Fish. Bull. 74: 1-8.
Burnham K.P., Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer-Verlag, New York.
Burnham K.P., Anderson D.R. 2004. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res., 33: 261-304. https://doi.org/10.1177/0049124104268644
Cavallaro M., Battaglia P., Guerrera M.C., et al. 2019. Structure and ultrastructure study on photophores of the Madeira lanternfish, Ceratoscopelus maderensis (Lowe, 1839), Pisces: Myctophidae. Acta Zool. 100: 89-95. https://doi.org/10.1111/azo.12236
Contreras T., Olivar M.P., Bernal A., et al. 2015. Comparative feeding patterns of early stages of mesopelagic fishes with vertical habitat partitioning. Mar. Biol. 162: 2265-2277. https://doi.org/10.1007/s00227-015-2749-y
Degens E.T., Deuser W.G., Haedrich, R.L.1969. Molecular structure and composition of fish otoliths. Mar. Biol. 2: 105-113. https://doi.org/10.1007/BF00347005
Eckmann R. 2000. The influence of photoperiod and feeding frequency on the distinctness of daily otolith increments in larval whitefish (Coregonus lavaretus L.). Limnologica 30: 102-105. https://doi.org/10.1016/S0075-9511(00)80003-1
Emery W.J., Meincke J. 1986. Global water masses: summary and review. Oceanol. Acta, 9: 383-391.
Estrada M. 1985. Primary production at the deep chlorophyll maximum in the western Mediterranean. In: Gibbs P.E. (ed): Proc. Nineteenth Eur. Mar. Biol. Symp., pp. 135-143. https://doi.org/10.1007/978-1-4899-2248-9_12
Gartner J.V.Jr. 1991a. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. Mar. Biol. 111: 11-20. https://doi.org/10.1007/BF01986339
Gartner J.V.Jr. 1991b. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico (II). Age and growth patterns. Mar. Biol. 111: 21-27. https://doi.org/10.1007/BF01986340
Goodyear R.H., Gibbs R.H.Jr., Roper C.F.E., et al. 1972. Mediterranean biological studies. Smithson. Institution Washington DC Rep. 1-278.
Greely T.M., Gartner J.V.Jr., J.J. Torres. 1999. Age and growth of Electrona Antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Mar. Biol. 133: 145-158. https://doi.org/10.1007/s002270050453
Gjosaeter H. 1987. Primary growth increments in otoliths of six tropical myctophid species. Biol. Oceanogr. 4: 359-382.
Gjosaeter J., Kawaguchi K.A. 1980. A review of the world resources of mesopelagic fish. FAO Fisheries Technical Paper 193: 1-151.
Handeland S.O., Imsland A.K., Stefansson S.O. 2008. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture. 283: 36-42. https://doi.org/10.1016/j.aquaculture.2008.06.042
Harvey J.T., Loughlin T.R., Perez M.A., et al. 2000. Relationship between fish size and otolith length for 63 species of fishes from the eastern North Pacific Ocean. NOAA/National Marine Fisheries Service, Seattle. NOAA Tech. Rep. NMFS 150: 1-36.
Hayashi A., Kawaguchi K., Watanabe H., et al. 2001. Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum (Pisces: Myctophidae). Fish. Sci. 67: 811-817. https://doi.org/10.1046/j.1444-2906.2001.00327.x
Houpert L., Testor P., Durrieu de Madron X., et al. 2015. Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Prog. Oceanogr. 132: 333-352. https://doi.org/10.1016/j.pocean.2014.11.004
Hulley P.A. 1981. Results of the research cruises of FRV "Walther Herwig" to South America. LVIII. Family Myctophidae. Archiv. Fischwiss. 31: 1-300.
Hulley P.A. 1984. Myctophidae. In: Whitehead P.J.P., Bauchot M.L., et al. (eds), Fishes of the North-eastern Atlantic and the Mediterranean. UNESCO. 1: 429-483.
Jonsson G. 1992. Islenskir fiskar. Fiolvi. Reykjavik, Iceland. pp. 568. Kendall A. W., Ahlstrom E.H., Moser H.G. 1984. Early life history stages of fishes and their characters. In: Moser H.G., Richards W.J., Cohen D.M et al. (eds), Ontogeny and Systematics of Fishes, Am. Soc. Ichthyol. Herpetol. 1: 11-22.
Linkowsky T.B., Radtke R.L., Lenz, P.H., 1993. Otolith microstructure, age and growth of two species of Ceratoscopelus (Osteichthyes: Myctophidae) from the eastern North Atlantic. Jour. Exp. Mar. Biol. Ecol. 167: 237-260. https://doi.org/10.1016/0022-0981(93)90033-K
Methot R.D. Jr, Kramer D. 1981. Growth of northern anchovy, Engraulis mordax, and northern lampfish, Stenobrachius leucopsarus. Rapp. P-v. R.un. Cons. Int. l'Explor. Mer 178: 424-431.
Moku M., Hayashi A., Mori K., et al. 2005. Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender-type spp. J. Fish Biol. 67: 1481-1485. https://doi.org/10.1111/j.0022-1112.2005.00824.x
Morales-Nin B.1992. Determination of growth in bony fishes from otolith microstructure. FAO Fisheries Technical Paper. No. 322. Rome, FAO. 51pp. http://www.fao.org/3/t0529e/T0529E00.htm
Morales-Nin B. 2000. Review of the growth regulation processes of otolith daily increment formation. Fish. Res. 46: 53-67. https://doi.org/10.1016/S0165-7836(00)00133-8
Morel A., Andr. J.M. 1991. Pigment Distribution and Primary Production in the western Mediterranean as derived and modelled from coastal zone color scanner observations. J. Geophys. Res., 96 C7: 12685-12698. https://doi.org/10.1029/91JC00788
Moser H.G., Watson W. 2006. Myctophidae. In: Richards W.J. (eds), Early Stages of Atlantic Fishes: An identification guide for the western central North Atlantic. Taylor and Francis Group, U.S., pp. 473-589.
Mytilineou C., Politou C.Y., Papaconstantinou C., et al. 2005. Deep-water fish fauna in the Eastern Ionian Sea. Belg. J. Zool. 135: 229-233.
Naciri M., Lemaire C., Borsa P. et al. 1999. Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax), J.Hered. 90: 591-596. https://doi.org/10.1093/jhered/90.6.591
Ogle D.H. 2016. Introductory fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton. https://doi.org/10.1201/b19232
Olivar M.P., Bernal A., Mol. B. et al. 2012. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep-Sea Res. I 62: 53-69. https://doi.org/10.1016/j.dsr.2011.12.014
Olivar M.P., Sabat.s A., Alemany F., et al. 2014. Diel-depth distributions of fish larvae off the Balearic Islands (western Mediterranean) under two environmental scenarios. J. Mar. Syst. 138: 127-138. https://doi.org/10.1016/j.jmarsys.2013.10.009
Olivar M.P., Contreras T., Hulley P.A., et al. 2018. Variation in the diel vertical distributions of larvae and transforming stages of oceanic fishes across the tropical and equatorial Atlantic. Progr. Oceanogr. 160: 83-100. https://doi.org/10.1016/j.pocean.2017.12.005
Ozawa T., Pe.aflor C. 1990. Otolith Microstructure and early ontogeny of a myctophid species, Benthosema pterotum. Nippon Suisan Gakk. 56: 1987-1995. https://doi.org/10.2331/suisan.56.1987
Ratke R.L., Dean J.M. 1982. Increment formation in the otoliths of embryos, larvae, and juveniles of the mummichog, Fundulus heteroclitus. Fish. Bull. 80: 201-215.
Richards W.J. 2005. Early stages of Atlantic fishes: An identification guide for the western central North Atlantic. Taylor & Francis, Boca Raton, FL. 1: 524-525. https://doi.org/10.1201/9780203500217
Ricker W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 207-211.
Rountrey A.N., Coulson P.G., Meeuwig J.J., et al. 2014. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate. Glob. Change Biol. 20: 2450-2458. https://doi.org/10.1111/gcb.12617 PMid:24862838
Salat J., Garc.a M.A., Cruzado A., et al. 2002. Seasonal changes of water mass structure and shelf slope exchanges at the Ebro shelf (NW Mediterranean). Cont. Shelf Res.22: 327-346. https://doi.org/10.1016/S0278-4343(01)00031-0
Sarmiento-Lezcano A., Triay-Portella R., Castro J.J., et al. 2018. Age-based life-history parameters of the mesopelagic fish Notoscopelus resplendens (Richardson, 1845) in the Central Eastern Atlantic. Fish. Res. 204: 412-423. https://doi.org/10.1016/j.fishres.2018.03.016
Sassa C., Takahashi M. 2018. Comparative larval growth and mortality of mesopelagic fishes and their predatory impact on zooplankton in the Kuroshio region. Deep-Sea Res. I 131: 121-132. https://doi.org/10.1016/j.dsr.2017.11.007
Sassa C., Kawaguchi K., Hirota Y., et al. 2007. Distribution depth of the transforming stage larvae of myctophid fishes in the subtropical-tropical waters of the western North Pacific. Deep-Sea Res. I 54: 2181-2193. https://doi.org/10.1016/j.dsr.2007.09.006
op_rights Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.05106.007
https://doi.org/10.3989/scimar.2021.85n2
https://doi.org/10.4067/S0718-19572016000200025
https://doi.org/10.1093/icesjms/fsx234
https://doi.org/10.1016/j.pocean.2015.03.005
https://doi.org/10.1177/0049124
container_title Scientia Marina
container_volume 85
container_issue 2
container_start_page 71
op_container_end_page 80
_version_ 1766143087438987264
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1893 2023-05-15T17:41:30+02:00 Growth patterns of the lanternfish Ceratoscopelus maderensis in the western Mediterranean Sea Patrones de crecimiento del pez linterna Ceratoscopelus maderensis en el Mediterráneo occidental Real, Enric Bernal, Ainhoa Morales-Nin, Beatriz Molí, Balbina Alvarez, Itziar Pilar Olivar, M. 2021-06-11 text/html application/pdf text/xml https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893 https://doi.org/10.3989/scimar.05106.007 eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893/2788 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893/2789 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1893/2790 Aguilar-Pereira A., Quijano-Puerto L. 2016. Relations between fish length to weight, and otolith length and weight, of the lionfish Pterois volitans in the Parque Nacional Arrecife Alacranes, southern Gulf of Mexico. Rev. Biol. Mar. Oceanogr. 51: 469-474. https://doi.org/10.4067/S0718-19572016000200025 Anderson T.R., Martin A.P., Lampitt R.S., et al. 2019. Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. ICES J. Mar. Sci. 76: 690-701. https://doi.org/10.1093/icesjms/fsx234 Bernal A. Olivar M.P., Maynou F., et al. 2015. Diet and feeding strategies of mesopelagic fishes in the western Mediterranean. Progr. Oceanogr. 135: 1-17. https://doi.org/10.1016/j.pocean.2015.03.005 Brothers E.B., Mathews C. P., Lasker R. 1976. Daily growth increments in otoliths from larval and adult fishes. Fish. Bull. 74: 1-8. Burnham K.P., Anderson D.R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer-Verlag, New York. Burnham K.P., Anderson D.R. 2004. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res., 33: 261-304. https://doi.org/10.1177/0049124104268644 Cavallaro M., Battaglia P., Guerrera M.C., et al. 2019. Structure and ultrastructure study on photophores of the Madeira lanternfish, Ceratoscopelus maderensis (Lowe, 1839), Pisces: Myctophidae. Acta Zool. 100: 89-95. https://doi.org/10.1111/azo.12236 Contreras T., Olivar M.P., Bernal A., et al. 2015. Comparative feeding patterns of early stages of mesopelagic fishes with vertical habitat partitioning. Mar. Biol. 162: 2265-2277. https://doi.org/10.1007/s00227-015-2749-y Degens E.T., Deuser W.G., Haedrich, R.L.1969. Molecular structure and composition of fish otoliths. Mar. Biol. 2: 105-113. https://doi.org/10.1007/BF00347005 Eckmann R. 2000. The influence of photoperiod and feeding frequency on the distinctness of daily otolith increments in larval whitefish (Coregonus lavaretus L.). Limnologica 30: 102-105. https://doi.org/10.1016/S0075-9511(00)80003-1 Emery W.J., Meincke J. 1986. Global water masses: summary and review. Oceanol. Acta, 9: 383-391. Estrada M. 1985. Primary production at the deep chlorophyll maximum in the western Mediterranean. In: Gibbs P.E. (ed): Proc. Nineteenth Eur. Mar. Biol. Symp., pp. 135-143. https://doi.org/10.1007/978-1-4899-2248-9_12 Gartner J.V.Jr. 1991a. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. Mar. Biol. 111: 11-20. https://doi.org/10.1007/BF01986339 Gartner J.V.Jr. 1991b. Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico (II). Age and growth patterns. Mar. Biol. 111: 21-27. https://doi.org/10.1007/BF01986340 Goodyear R.H., Gibbs R.H.Jr., Roper C.F.E., et al. 1972. Mediterranean biological studies. Smithson. Institution Washington DC Rep. 1-278. Greely T.M., Gartner J.V.Jr., J.J. Torres. 1999. Age and growth of Electrona Antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Mar. Biol. 133: 145-158. https://doi.org/10.1007/s002270050453 Gjosaeter H. 1987. Primary growth increments in otoliths of six tropical myctophid species. Biol. Oceanogr. 4: 359-382. Gjosaeter J., Kawaguchi K.A. 1980. A review of the world resources of mesopelagic fish. FAO Fisheries Technical Paper 193: 1-151. Handeland S.O., Imsland A.K., Stefansson S.O. 2008. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture. 283: 36-42. https://doi.org/10.1016/j.aquaculture.2008.06.042 Harvey J.T., Loughlin T.R., Perez M.A., et al. 2000. Relationship between fish size and otolith length for 63 species of fishes from the eastern North Pacific Ocean. NOAA/National Marine Fisheries Service, Seattle. NOAA Tech. Rep. NMFS 150: 1-36. Hayashi A., Kawaguchi K., Watanabe H., et al. 2001. Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum (Pisces: Myctophidae). Fish. Sci. 67: 811-817. https://doi.org/10.1046/j.1444-2906.2001.00327.x Houpert L., Testor P., Durrieu de Madron X., et al. 2015. Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Prog. Oceanogr. 132: 333-352. https://doi.org/10.1016/j.pocean.2014.11.004 Hulley P.A. 1981. Results of the research cruises of FRV "Walther Herwig" to South America. LVIII. Family Myctophidae. Archiv. Fischwiss. 31: 1-300. Hulley P.A. 1984. Myctophidae. In: Whitehead P.J.P., Bauchot M.L., et al. (eds), Fishes of the North-eastern Atlantic and the Mediterranean. UNESCO. 1: 429-483. Jonsson G. 1992. Islenskir fiskar. Fiolvi. Reykjavik, Iceland. pp. 568. Kendall A. W., Ahlstrom E.H., Moser H.G. 1984. Early life history stages of fishes and their characters. In: Moser H.G., Richards W.J., Cohen D.M et al. (eds), Ontogeny and Systematics of Fishes, Am. Soc. Ichthyol. Herpetol. 1: 11-22. Linkowsky T.B., Radtke R.L., Lenz, P.H., 1993. Otolith microstructure, age and growth of two species of Ceratoscopelus (Osteichthyes: Myctophidae) from the eastern North Atlantic. Jour. Exp. Mar. Biol. Ecol. 167: 237-260. https://doi.org/10.1016/0022-0981(93)90033-K Methot R.D. Jr, Kramer D. 1981. Growth of northern anchovy, Engraulis mordax, and northern lampfish, Stenobrachius leucopsarus. Rapp. P-v. R.un. Cons. Int. l'Explor. Mer 178: 424-431. Moku M., Hayashi A., Mori K., et al. 2005. Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender-type spp. J. Fish Biol. 67: 1481-1485. https://doi.org/10.1111/j.0022-1112.2005.00824.x Morales-Nin B.1992. Determination of growth in bony fishes from otolith microstructure. FAO Fisheries Technical Paper. No. 322. Rome, FAO. 51pp. http://www.fao.org/3/t0529e/T0529E00.htm Morales-Nin B. 2000. Review of the growth regulation processes of otolith daily increment formation. Fish. Res. 46: 53-67. https://doi.org/10.1016/S0165-7836(00)00133-8 Morel A., Andr. J.M. 1991. Pigment Distribution and Primary Production in the western Mediterranean as derived and modelled from coastal zone color scanner observations. J. Geophys. Res., 96 C7: 12685-12698. https://doi.org/10.1029/91JC00788 Moser H.G., Watson W. 2006. Myctophidae. In: Richards W.J. (eds), Early Stages of Atlantic Fishes: An identification guide for the western central North Atlantic. Taylor and Francis Group, U.S., pp. 473-589. Mytilineou C., Politou C.Y., Papaconstantinou C., et al. 2005. Deep-water fish fauna in the Eastern Ionian Sea. Belg. J. Zool. 135: 229-233. Naciri M., Lemaire C., Borsa P. et al. 1999. Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax), J.Hered. 90: 591-596. https://doi.org/10.1093/jhered/90.6.591 Ogle D.H. 2016. Introductory fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton. https://doi.org/10.1201/b19232 Olivar M.P., Bernal A., Mol. B. et al. 2012. Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean. Deep-Sea Res. I 62: 53-69. https://doi.org/10.1016/j.dsr.2011.12.014 Olivar M.P., Sabat.s A., Alemany F., et al. 2014. Diel-depth distributions of fish larvae off the Balearic Islands (western Mediterranean) under two environmental scenarios. J. Mar. Syst. 138: 127-138. https://doi.org/10.1016/j.jmarsys.2013.10.009 Olivar M.P., Contreras T., Hulley P.A., et al. 2018. Variation in the diel vertical distributions of larvae and transforming stages of oceanic fishes across the tropical and equatorial Atlantic. Progr. Oceanogr. 160: 83-100. https://doi.org/10.1016/j.pocean.2017.12.005 Ozawa T., Pe.aflor C. 1990. Otolith Microstructure and early ontogeny of a myctophid species, Benthosema pterotum. Nippon Suisan Gakk. 56: 1987-1995. https://doi.org/10.2331/suisan.56.1987 Ratke R.L., Dean J.M. 1982. Increment formation in the otoliths of embryos, larvae, and juveniles of the mummichog, Fundulus heteroclitus. Fish. Bull. 80: 201-215. Richards W.J. 2005. Early stages of Atlantic fishes: An identification guide for the western central North Atlantic. Taylor & Francis, Boca Raton, FL. 1: 524-525. https://doi.org/10.1201/9780203500217 Ricker W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 207-211. Rountrey A.N., Coulson P.G., Meeuwig J.J., et al. 2014. Water temperature and fish growth: otoliths predict growth patterns of a marine fish in a changing climate. Glob. Change Biol. 20: 2450-2458. https://doi.org/10.1111/gcb.12617 PMid:24862838 Salat J., Garc.a M.A., Cruzado A., et al. 2002. Seasonal changes of water mass structure and shelf slope exchanges at the Ebro shelf (NW Mediterranean). Cont. Shelf Res.22: 327-346. https://doi.org/10.1016/S0278-4343(01)00031-0 Sarmiento-Lezcano A., Triay-Portella R., Castro J.J., et al. 2018. Age-based life-history parameters of the mesopelagic fish Notoscopelus resplendens (Richardson, 1845) in the Central Eastern Atlantic. Fish. Res. 204: 412-423. https://doi.org/10.1016/j.fishres.2018.03.016 Sassa C., Takahashi M. 2018. Comparative larval growth and mortality of mesopelagic fishes and their predatory impact on zooplankton in the Kuroshio region. Deep-Sea Res. I 131: 121-132. https://doi.org/10.1016/j.dsr.2017.11.007 Sassa C., Kawaguchi K., Hirota Y., et al. 2007. Distribution depth of the transforming stage larvae of myctophid fishes in the subtropical-tropical waters of the western North Pacific. Deep-Sea Res. I 54: 2181-2193. https://doi.org/10.1016/j.dsr.2007.09.006 Copyright (c) 2021 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 85 No. 2 (2021); 71-80 Scientia Marina; Vol. 85 Núm. 2 (2021); 71-80 1886-8134 0214-8358 10.3989/scimar.2021.85n2 daily growth larval growth mesopelagic fish Myctophidae otolith microstructure crecimiento larvario crecimiento diario microestructura del otolito peces mesopelágicos info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2021 ftjscientiamarin https://doi.org/10.3989/scimar.05106.007 https://doi.org/10.3989/scimar.2021.85n2 https://doi.org/10.4067/S0718-19572016000200025 https://doi.org/10.1093/icesjms/fsx234 https://doi.org/10.1016/j.pocean.2015.03.005 https://doi.org/10.1177/0049124 2022-03-20T16:31:46Z The age and growth patterns of the mesopelagic fish Ceratoscopelus maderensis (family Myctophidae) of the western Mediterranean Sea were described throughout its entire life cycle (from larvae to adult stages) using the sagittae otoliths of 59 individuals collected in December 2009. Three characteristic zones were identified along the cross-section of the sagittae (larval, metamorphic and juvenile-adult zones). Assuming growth rings as daily increments, the age of the analysed individuals (from 3.5 to 64 mm standard length [SL]) would range from 7 to 332 days. The relationship between the number of increments and the fish SL was fitted to a von Bertalanffy growth model (SL=70.5899Å~(1–exp(–0.0501(t+2.6705))). The growth pattern of C. maderensis in the western Mediterranean Sea was similar to that reported for this species in the northeast Atlantic Ocean. Though from a body size of 40-45 mm SL, growth rates declined more slowly in individuals from the western Mediterranean Sea, growth differences between these individuals and those from the northeast Atlantic Ocean were not statistically significant. This study provides new insights into the age and growth patterns of one of the most abundant mesopelagic fish species in the Mediterranean Sea that have clear implications for the study and management of marine ecosystems. En el presente trabajo se describen la edad y los patrones de crecimiento desde la fase larvaria hasta la fase adulta del pez mesopelágico Ceratoscopelus maderensis (familia Myctophidae) del Mediterráneo occidental. Para ello, se analizó el otolito sagitta de 59 individuos capturados en diciembre de 2009. Se identificaron tres zonas en la sagitta, cada una de las cuales se corresponde con una fase del desarrollo ontogenético del pez: larvaria, metamórfica y juvenil-adulta. Asumiendo que los anillos de crecimiento son diarios, la edad de los individuos analizados (de 3.5 a 64 mm de longitud estándar [SL]) oscilaría entre 7 y 332 días. La relación entre el número de incrementos y la SL de los peces se ajustó al modelo de crecimiento de von Bertalanffy (SL=70.5899×(1–exp(–0.0501(t+2.6705))). El patrón de crecimiento de C. maderensis en el Mediterráneo occidental fue similar al previamente descrito para esta especie en el Noreste del Océano Atlántico. A pesar de que, a partir de 40-45 mm SL, las tasas de crecimiento disminuyeron más lentamente en los individuos del Mediterráneo occidental, las diferencias de crecimiento entre estos individuos y los del Noreste del Océano Atlántico no fueron estadísticamente significativas. Los resultados de este estudio aportan nuevos conocimientos sobre la edad y el crecimiento de una de las especies más abundantes del Mar Mediterráneo, lo cual tiene claras implicaciones de cara al estudio y la gestión de los ecosistemas marinos. Article in Journal/Newspaper Northeast Atlantic Scientia Marina (E-Journal) Cara ENVELOPE(161.100,161.100,-82.750,-82.750) Scientia Marina 85 2 71 80