Phylogenetic relationship within Cumacea (Crustacea: Peracarida) and genetic variability of two Antarctic species of the family Leuconidae

Phylogenetic hypotheses for the peracarid order Cumacea are scarce and have not provided a solution to the full extent. In the present study, a fragment of the mitochondrial 16S rDNA was used to erect a phylogenetic hypothesis for three cumacean families, Diastylidae, Bodotriidae and Leuconidae, alo...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Rehm, Peter, Thatje, Sven, Leese, Florian, Held, Christoph
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2020
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1873
https://doi.org/10.3989/scimar.05053.17A
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1873
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic 16S rDNA
biogeography
cryptic speciation
cryptic species
mitochondrial DNA
molecular phylogeny
rDNA 16S
biogeografía
especiación críptica
especies crípticas
ADN mitocondrial
filogenia molecular
spellingShingle 16S rDNA
biogeography
cryptic speciation
cryptic species
mitochondrial DNA
molecular phylogeny
rDNA 16S
biogeografía
especiación críptica
especies crípticas
ADN mitocondrial
filogenia molecular
Rehm, Peter
Thatje, Sven
Leese, Florian
Held, Christoph
Phylogenetic relationship within Cumacea (Crustacea: Peracarida) and genetic variability of two Antarctic species of the family Leuconidae
topic_facet 16S rDNA
biogeography
cryptic speciation
cryptic species
mitochondrial DNA
molecular phylogeny
rDNA 16S
biogeografía
especiación críptica
especies crípticas
ADN mitocondrial
filogenia molecular
description Phylogenetic hypotheses for the peracarid order Cumacea are scarce and have not provided a solution to the full extent. In the present study, a fragment of the mitochondrial 16S rDNA was used to erect a phylogenetic hypothesis for three cumacean families, Diastylidae, Bodotriidae and Leuconidae, along with intra-family relationships of the latter. The Cumacea resolved monophyletic with tanaids and isopods as outgroup taxa. The Diastylidae were the only family with good support for monophyly. The genus Leucon resolved paraphyletic, whereas the subgenus Crymoleucon was monophyletic. Furthermore, the genetic structure was analysed for two leuconid species, Leucon antarcticus Zimmer, 1907 and L. intermedius Mühlenhardt-Siegel, 1996, from the Weddell Sea and the Ross Sea. The two species showed different patterns of intraspecific genetic variability. In contrast to L. intermedius, a bimodal distribution of pairwise genetic distances was observed for L. antarcticus, which is correlated with geographical and depth distributions between the Ross Sea and the Weddell Sea. Although a clear evaluation of cryptic speciation in these species requires additional work on more specimens from more geographic regions and broader depth ranges, differences shown in the sequences of 16S rDNA can only be explained by genetic separation of populations between the Weddell Sea and the Ross Sea for an extended period of time. Las hipótesis filogenéticas para los peracáridos del orden Cumacea son escasas y no han proporcionado una solución definitiva. En el presente estudio se utilizó un fragmento del rDNA 16S mitocondrial para formular una hipótesis filogenética para tres familias de cumáceos, Diastylidae, Bodotriidae y Leuconidae. Además se han analizado las relaciones intrafamiliares de esta última. Los cumáceos es un grupo monofilético con tanaidáceos e isópodos como taxones externos. De las tres familias analizadas, los Diastylidae fueron la única con buen apoyo para la monofilia. El género Leucon se resolvió parafilético mientras que el subgénero Crymoleucon fue monofilético. Además, se analizó la estructura genética de dos especies de leucónidos Leucon antarcticus Zimmer, 1907 y L. intermedius Mühlenhardt-Siegel, 1996 del mar de Weddell y el mar de Ross respectivamente. Ambas especies mostraron diferentes patrones de variabilidad genética intraespecífica. A diferencia de L. intermedius, para L. antarcticus se observó una distribución bimodal del mismatch distribution, que se correlaciona con las distribuciones geográficas y de profundidad entre el mar de Ross y el mar de Weddell. Aunque una evaluación clara de la especiación críptica en estas especies requiere trabajo adicional con más especímenes de más regiones geográficas y rangos de profundidad más amplios, las diferencias que se muestran en las secuencias del rDNA 16S solo pueden explicarse por la separación genética de poblaciones entre el mar de Weddell y el mar de Ross durante un período de tiempo prolongado
format Article in Journal/Newspaper
author Rehm, Peter
Thatje, Sven
Leese, Florian
Held, Christoph
author_facet Rehm, Peter
Thatje, Sven
Leese, Florian
Held, Christoph
author_sort Rehm, Peter
title Phylogenetic relationship within Cumacea (Crustacea: Peracarida) and genetic variability of two Antarctic species of the family Leuconidae
title_short Phylogenetic relationship within Cumacea (Crustacea: Peracarida) and genetic variability of two Antarctic species of the family Leuconidae
title_full Phylogenetic relationship within Cumacea (Crustacea: Peracarida) and genetic variability of two Antarctic species of the family Leuconidae
title_fullStr Phylogenetic relationship within Cumacea (Crustacea: Peracarida) and genetic variability of two Antarctic species of the family Leuconidae
title_full_unstemmed Phylogenetic relationship within Cumacea (Crustacea: Peracarida) and genetic variability of two Antarctic species of the family Leuconidae
title_sort phylogenetic relationship within cumacea (crustacea: peracarida) and genetic variability of two antarctic species of the family leuconidae
publisher Consejo Superior de Investigaciones Científicas
publishDate 2020
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1873
https://doi.org/10.3989/scimar.05053.17A
long_lat ENVELOPE(-36.000,-36.000,-54.601,-54.601)
geographic Antarctic
mar de Weddell
Ross Sea
Weddell
Weddell Sea
geographic_facet Antarctic
mar de Weddell
Ross Sea
Weddell
Weddell Sea
genre Antarc*
Antarctic
antarcticus
Mar de Ross
Mar de Weddell
Ross Sea
Weddell Sea
genre_facet Antarc*
Antarctic
antarcticus
Mar de Ross
Mar de Weddell
Ross Sea
Weddell Sea
op_source Scientia Marina; Vol. 84 No. 4 (2020); 385-392
Scientia Marina; Vol. 84 Núm. 4 (2020); 385-392
1886-8134
0214-8358
10.3989/scimar.2020.84n4
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1873/2753
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1873/2726
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1873/2754
Allcock A.L., Brierley A.S., Thorpe J.P., et al. 1997. Restricted gene flow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar. Biol. 129: 97-102. https://doi.org/10.1007/s002270050150
Arango C.P., Soler-Membrives A., Miller K.J. 2011. Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep-Sea Res. II 58: 212-219. https://doi.org/10.1016/j.dsr2.2010.05.019
Băcescu M., Muradian Z. 1974. Campylaspenis, Styoptocuma, Atlantocuma, new genera of Cumacea from the deep waters of the Atlantic. Rev. Roum. Biol. 19: 71-78.
Băcescu M., Petrescu I. 1999. Ordre des Cumacés (Cumacea Krøyer, 1846). Mém. Inst. Océanogr. (Monaco) 19: 391-428.
Baird H.P., Miller K.J., Stark J.S. 2011. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Mol. Ecol. 20: 3439-3454. https://doi.org/10.1111/j.1365-294X.2011.05173.x PMid:21733028
Beermann J., Westbury M.V., Hofreiter M., et al. 2018. Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida). Sci. Rep. 8: 6893. https://doi.org/10.1038/s41598-018-25225-x PMid:29720606 PMCid:PMC5931980
Błażewicz M., Heard W.H. 1999. First record of the family Gynodiastylidae Stebbing, 1912 (Crustacea: Malacostraca: Cumacea) from Antarctic waters with the description of Gynodiastylis jazdzewskii, a new species. Proc. Biol. Soc. Wash. 112: 362-367.
Calman W.T. 1907. Crustacea. II. Cumacea. National Antarctic Expedition 1901-1904. Brit. Mus. Nat. Hist. Rep. Zool. 2: 1-6.
Cartes J.E. 1993. Diets of two deep-sea decapods: Nematocarcinus exilis (Caridea: Nematocarcinidae) and Munida tenuimana (Anomura: Galatheidae) on the Western Mediterranean slope. Ophelia 37: 213-229. https://doi.org/10.1080/00785326.1993.10429919
Clarke A., Crame J.A. 1989. The origin of the Southern Ocean marine fauna. In: Crame J.A. (ed.) Origins and evolution of the Antarctic biota. Geol. Soc. Lond. Spec. Publ. 47: 253-268. https://doi.org/10.1144/GSL.SP.1989.047.01.19
Dornburg A., Federman S., Eytan R.I., et al. 2016. Cryptic species diversity in sub-Antarctic islands: A case study of Lepidonotothen. Mol. Phyl. Evol. 194: 32-43. https://doi.org/10.1016/j.ympev.2016.07.013 PMid:27421566
Fraser C.I., Zuccarello G.C., Spencer H.G., et al. 2013. Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. PLoS ONE 8: e69138. https://doi.org/10.1371/journal.pone.0069138 PMid:23894421 PMCid:PMC3718832
Gutell R.R., Gray M.W., Schnare M.N. 1993. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res. 21: 3055-3074. https://doi.org/10.1093/nar/21.13.3055 PMid:8332527 PMCid:PMC309733
Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
Haye P.A. 2002. Systematics of the Cumacea (Crustacea). PhD Thesis, University of Maine, 266 pp.
Haye P.A. 2007. Systematics of the genera of Bodotriidae (Crustacea: Cumacea). Zool. J. Linn. Soc. 151: 1-58. https://doi.org/10.1111/j.1096-3642.2007.00322.x
Haye P.A., Kornfield I., Watling L. 2004. Molecular insights into Cumacean family relationships (Crustacea, Cumacea). Mol. Phyl. Evol. 30: 798-809. https://doi.org/10.1016/j.ympev.2003.08.003 PMid:15012957
Held C. 2000. Speziation im Südpolarmeer - Systematik und Biogeographie der Serolidae und Arcturidae (Crustacea, Isopoda). PhD Thesis, University of Bielefeld, 144 pp.
Held C. 2003. Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes A.H., Geiskes W.W., et al. (eds), Antarctic biology in a global context. Backhuys Publishers, Leiden, 135-139.
Held C., Wägele J.W. 2005. Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaertiliidae). Sci. Mar. 69: 175-181. https://doi.org/10.3989/scimar.2005.69s2175
Hessler R.R. 1983. A defense of the caridoid facies: wherein the early evolution of the Eumalacostraca is discussed. In: Schram F.R, (ed.) Crustacean Phylogeny, Crustacean Issues, A.A. Balkema, Rotterdam, pp. 145-164.
Hillis D.M., Moritz C., Mable B.K. (eds). 1996. Molecular Systematics, 2nd ed., Palgrave Macmillan, 655 pp. https://doi.org/10.2307/1447682
Huelsenbeck J.P., Ronquist F.R. 2001. MrBayes: Bayesian inference of phylogeny. Biometrics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754 PMid:11524383
Jones N.S. 1984. The family Nannastacidae (Crustacea: Cumacea) from the deep Atlantic. Bull. Brit. Mus. Nat. Hist. Zool. 46: 207-289. https://doi.org/10.5962/bhl.part.15965
Kalendar R. 2003. FastPCR: A Program for fast design PCR Primer, DNA and Protein manipulation. (2.5.59).
Karaman S. 1953. Über subterrane Isopoden und Amphipoden des Karstes von Dubrovnik und seines Hinterlandes. Acta Musei Macedonici Sci. Nat. 1(7): 137-167.
Leese F., Agrawal S., Held C. 2010. Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften, 97: 583-594. https://doi.org/10.1007/s00114-010-0674-y PMid:20454771
Ledoyer M. 1993. Cumacea (Crustacea) de la campagne EPOS 3 du R.V. Polarstern en mare de Weddell (est Antarctique). J. Nat. Hist. 27: 1041-1096. https://doi.org/10.1080/00222939300770661
Linse K., Cope T., Lörz A.N., et al. 2007. Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol. 30: 1059-1068. https://doi.org/10.1007/s00300-007-0265-3
Lomakina M. 1968. Stroenie pecenocinih diverticul u cumovih rakov (Cumacea) i ego filogeneticeskoe znancenie. Zool. J. 47: 60-72.
Löytynoja A., Milinkovitch M.C. 2003. ProAlign, a probabilistic multiple alignment program (version 0.5a0). Bioinformatics 19: 1505-1513. https://doi.org/10.1093/bioinformatics/btg193 PMid:12912831
Martin J.W., Davis G.E. 2001. An updated classification of the recent Crustacea. Nat. Hist. Mus. Los Ang. Count., Sci. Ser. 39: 124 pp.
Mühlenhardt-Siegel U. 1999. On the biogeography of Cumacea (Crustacea, Malacostraca). A comparison between South America, the Subantarctic Islands, and Antarctica: present state of the art. Sci. Mar. 63(Suppl. 1): 295-302. https://doi.org/10.3989/scimar.1999.63s1295
Pabis K., Błażewicz-Paszkowycz M. 2011. Distribution and diversity of cumacean assemblages in Admiralty Bay, King George Island. Polish Polar Res. 32: 341-354. https://doi.org/10.2478/v10183-011-0024-6
Palumbi S.R., Martin A., Romano S., et al. 1991. The Simple Fool's Guide to PCR, version 2. University of Hawaii Press, Honolulu, 43 pp.
Posada D., Crandall K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818. https://doi.org/10.1093/bioinformatics/14.9.817 PMid:9918953
Raupach M.J., Wägele J.W. 2006. Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)-a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Ant. Sci. 18: 191-198. https://doi.org/10.1017/S0954102006000228
Rehm P., Heard R. 2008. Leucon (Crymoleucon) rossi, a new species (Crustacea: Cumacea: Leuconidae) from the shelf waters of the Ross Sea (Antarctica), with a key to the genus Leucon south of 60°S. Sci. Mar. 72: 683-691. https://doi.org/10.3989/scimar.2008.72n4683
Rehm P., Thatje S., Mühlenhardt-Siegel U., et al. 2007. Composition and distribution of the peracarid crustacean fauna along a latitudinal transect off Victoria Land (Ross Sea, Antarctica) with special emphasis on the Cumacea. Polar Biol. 30: 871-881. https://doi.org/10.1007/s00300-006-0247-x
Richter S., Scholz G.S. 2001. Phylogenetic analysis of the Malacostraca (Crustacea). J. Zool. Syst. Evo. Res. 39: 113-136. https://doi.org/10.1046/j.1439-0469.2001.00164.x
San Vicente C., Ramos A., Jimeno A., et al. 1997. Suprabenthic assemblages from South Shetland Islands and Bransfield Strait (Antarctica): preliminary observations on faunistical composition, bathymetric and near-bottom distribution. Polar Biol. 18: 415-422. https://doi.org/10.1007/s003000050208
Sars G.O. 1873. Beskrivelse af syv nye Cumaceer fravestindien og det syd-Atlantiske Ocean. Kongl Svenska Vetenskaps-Akademiens Handlingar 11: 3-30.
Sars G.O. 1887. Report on the Cumacea collected by H.M.S Challenger during the years 1873-1876. Rep. Sci. Res. Voy. HMS Chall. Zool. 19: 1-78. https://doi.org/10.5962/bhl.title.10403
Schlacher T.A, Wooldridge T.H. 1996. Patterns of selective predation by juvenile, benthivorous fish on estuarine macrofauna. Mar. Biol. 125: 241-247. https://doi.org/10.1007/BF00346304
Schram F.R. 1986. Crustacea. Oxford University Press, New York, 606 pp.
Schram F.R., Hof C.H.J. 1998. Fossils and the interrelationships of major Crustacean groups. In: Edgecombe G.D. (ed.), Arthropod Fossils and Phylogeny. New York, Columbia University Press: pp. 233-302.
Schubart C.D, Koller P. 2005. Genetic diversity of freshwater crabs (Brachyura: Sesarmidae) from central Jamaica with description of a new species. J. Nat. Hist. 39: 469-481. https://doi.org/10.1080/00222930410001671291
op_rights Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.05053.17A
https://doi.org/10.3989/scimar.2020.84n4
https://doi.org/10.1007/s002270050150
https://doi.org/10.1016/j.dsr2.2010.05.019
https://doi.org/10.1111/j.1365-294X.2011.05173.x
https://doi.org/10.1038/s41598-01
container_title Scientia Marina
container_volume 84
container_issue 4
container_start_page 385
op_container_end_page 392
_version_ 1766159344242524160
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1873 2023-05-15T13:41:51+02:00 Phylogenetic relationship within Cumacea (Crustacea: Peracarida) and genetic variability of two Antarctic species of the family Leuconidae Relación filogenética de los Cumacea (Crustacea: Peracarida) y variabilidad genética de dos especies antárticas de la familia Leuconidae Rehm, Peter Thatje, Sven Leese, Florian Held, Christoph 2020-12-11 text/html application/pdf text/xml https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1873 https://doi.org/10.3989/scimar.05053.17A eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1873/2753 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1873/2726 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1873/2754 Allcock A.L., Brierley A.S., Thorpe J.P., et al. 1997. Restricted gene flow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar. Biol. 129: 97-102. https://doi.org/10.1007/s002270050150 Arango C.P., Soler-Membrives A., Miller K.J. 2011. Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep-Sea Res. II 58: 212-219. https://doi.org/10.1016/j.dsr2.2010.05.019 Băcescu M., Muradian Z. 1974. Campylaspenis, Styoptocuma, Atlantocuma, new genera of Cumacea from the deep waters of the Atlantic. Rev. Roum. Biol. 19: 71-78. Băcescu M., Petrescu I. 1999. Ordre des Cumacés (Cumacea Krøyer, 1846). Mém. Inst. Océanogr. (Monaco) 19: 391-428. Baird H.P., Miller K.J., Stark J.S. 2011. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Mol. Ecol. 20: 3439-3454. https://doi.org/10.1111/j.1365-294X.2011.05173.x PMid:21733028 Beermann J., Westbury M.V., Hofreiter M., et al. 2018. Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida). Sci. Rep. 8: 6893. https://doi.org/10.1038/s41598-018-25225-x PMid:29720606 PMCid:PMC5931980 Błażewicz M., Heard W.H. 1999. First record of the family Gynodiastylidae Stebbing, 1912 (Crustacea: Malacostraca: Cumacea) from Antarctic waters with the description of Gynodiastylis jazdzewskii, a new species. Proc. Biol. Soc. Wash. 112: 362-367. Calman W.T. 1907. Crustacea. II. Cumacea. National Antarctic Expedition 1901-1904. Brit. Mus. Nat. Hist. Rep. Zool. 2: 1-6. Cartes J.E. 1993. Diets of two deep-sea decapods: Nematocarcinus exilis (Caridea: Nematocarcinidae) and Munida tenuimana (Anomura: Galatheidae) on the Western Mediterranean slope. Ophelia 37: 213-229. https://doi.org/10.1080/00785326.1993.10429919 Clarke A., Crame J.A. 1989. The origin of the Southern Ocean marine fauna. In: Crame J.A. (ed.) Origins and evolution of the Antarctic biota. Geol. Soc. Lond. Spec. Publ. 47: 253-268. https://doi.org/10.1144/GSL.SP.1989.047.01.19 Dornburg A., Federman S., Eytan R.I., et al. 2016. Cryptic species diversity in sub-Antarctic islands: A case study of Lepidonotothen. Mol. Phyl. Evol. 194: 32-43. https://doi.org/10.1016/j.ympev.2016.07.013 PMid:27421566 Fraser C.I., Zuccarello G.C., Spencer H.G., et al. 2013. Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. PLoS ONE 8: e69138. https://doi.org/10.1371/journal.pone.0069138 PMid:23894421 PMCid:PMC3718832 Gutell R.R., Gray M.W., Schnare M.N. 1993. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res. 21: 3055-3074. https://doi.org/10.1093/nar/21.13.3055 PMid:8332527 PMCid:PMC309733 Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98. Haye P.A. 2002. Systematics of the Cumacea (Crustacea). PhD Thesis, University of Maine, 266 pp. Haye P.A. 2007. Systematics of the genera of Bodotriidae (Crustacea: Cumacea). Zool. J. Linn. Soc. 151: 1-58. https://doi.org/10.1111/j.1096-3642.2007.00322.x Haye P.A., Kornfield I., Watling L. 2004. Molecular insights into Cumacean family relationships (Crustacea, Cumacea). Mol. Phyl. Evol. 30: 798-809. https://doi.org/10.1016/j.ympev.2003.08.003 PMid:15012957 Held C. 2000. Speziation im Südpolarmeer - Systematik und Biogeographie der Serolidae und Arcturidae (Crustacea, Isopoda). PhD Thesis, University of Bielefeld, 144 pp. Held C. 2003. Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes A.H., Geiskes W.W., et al. (eds), Antarctic biology in a global context. Backhuys Publishers, Leiden, 135-139. Held C., Wägele J.W. 2005. Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaertiliidae). Sci. Mar. 69: 175-181. https://doi.org/10.3989/scimar.2005.69s2175 Hessler R.R. 1983. A defense of the caridoid facies: wherein the early evolution of the Eumalacostraca is discussed. In: Schram F.R, (ed.) Crustacean Phylogeny, Crustacean Issues, A.A. Balkema, Rotterdam, pp. 145-164. Hillis D.M., Moritz C., Mable B.K. (eds). 1996. Molecular Systematics, 2nd ed., Palgrave Macmillan, 655 pp. https://doi.org/10.2307/1447682 Huelsenbeck J.P., Ronquist F.R. 2001. MrBayes: Bayesian inference of phylogeny. Biometrics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754 PMid:11524383 Jones N.S. 1984. The family Nannastacidae (Crustacea: Cumacea) from the deep Atlantic. Bull. Brit. Mus. Nat. Hist. Zool. 46: 207-289. https://doi.org/10.5962/bhl.part.15965 Kalendar R. 2003. FastPCR: A Program for fast design PCR Primer, DNA and Protein manipulation. (2.5.59). Karaman S. 1953. Über subterrane Isopoden und Amphipoden des Karstes von Dubrovnik und seines Hinterlandes. Acta Musei Macedonici Sci. Nat. 1(7): 137-167. Leese F., Agrawal S., Held C. 2010. Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften, 97: 583-594. https://doi.org/10.1007/s00114-010-0674-y PMid:20454771 Ledoyer M. 1993. Cumacea (Crustacea) de la campagne EPOS 3 du R.V. Polarstern en mare de Weddell (est Antarctique). J. Nat. Hist. 27: 1041-1096. https://doi.org/10.1080/00222939300770661 Linse K., Cope T., Lörz A.N., et al. 2007. Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol. 30: 1059-1068. https://doi.org/10.1007/s00300-007-0265-3 Lomakina M. 1968. Stroenie pecenocinih diverticul u cumovih rakov (Cumacea) i ego filogeneticeskoe znancenie. Zool. J. 47: 60-72. Löytynoja A., Milinkovitch M.C. 2003. ProAlign, a probabilistic multiple alignment program (version 0.5a0). Bioinformatics 19: 1505-1513. https://doi.org/10.1093/bioinformatics/btg193 PMid:12912831 Martin J.W., Davis G.E. 2001. An updated classification of the recent Crustacea. Nat. Hist. Mus. Los Ang. Count., Sci. Ser. 39: 124 pp. Mühlenhardt-Siegel U. 1999. On the biogeography of Cumacea (Crustacea, Malacostraca). A comparison between South America, the Subantarctic Islands, and Antarctica: present state of the art. Sci. Mar. 63(Suppl. 1): 295-302. https://doi.org/10.3989/scimar.1999.63s1295 Pabis K., Błażewicz-Paszkowycz M. 2011. Distribution and diversity of cumacean assemblages in Admiralty Bay, King George Island. Polish Polar Res. 32: 341-354. https://doi.org/10.2478/v10183-011-0024-6 Palumbi S.R., Martin A., Romano S., et al. 1991. The Simple Fool's Guide to PCR, version 2. University of Hawaii Press, Honolulu, 43 pp. Posada D., Crandall K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817-818. https://doi.org/10.1093/bioinformatics/14.9.817 PMid:9918953 Raupach M.J., Wägele J.W. 2006. Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)-a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Ant. Sci. 18: 191-198. https://doi.org/10.1017/S0954102006000228 Rehm P., Heard R. 2008. Leucon (Crymoleucon) rossi, a new species (Crustacea: Cumacea: Leuconidae) from the shelf waters of the Ross Sea (Antarctica), with a key to the genus Leucon south of 60°S. Sci. Mar. 72: 683-691. https://doi.org/10.3989/scimar.2008.72n4683 Rehm P., Thatje S., Mühlenhardt-Siegel U., et al. 2007. Composition and distribution of the peracarid crustacean fauna along a latitudinal transect off Victoria Land (Ross Sea, Antarctica) with special emphasis on the Cumacea. Polar Biol. 30: 871-881. https://doi.org/10.1007/s00300-006-0247-x Richter S., Scholz G.S. 2001. Phylogenetic analysis of the Malacostraca (Crustacea). J. Zool. Syst. Evo. Res. 39: 113-136. https://doi.org/10.1046/j.1439-0469.2001.00164.x San Vicente C., Ramos A., Jimeno A., et al. 1997. Suprabenthic assemblages from South Shetland Islands and Bransfield Strait (Antarctica): preliminary observations on faunistical composition, bathymetric and near-bottom distribution. Polar Biol. 18: 415-422. https://doi.org/10.1007/s003000050208 Sars G.O. 1873. Beskrivelse af syv nye Cumaceer fravestindien og det syd-Atlantiske Ocean. Kongl Svenska Vetenskaps-Akademiens Handlingar 11: 3-30. Sars G.O. 1887. Report on the Cumacea collected by H.M.S Challenger during the years 1873-1876. Rep. Sci. Res. Voy. HMS Chall. Zool. 19: 1-78. https://doi.org/10.5962/bhl.title.10403 Schlacher T.A, Wooldridge T.H. 1996. Patterns of selective predation by juvenile, benthivorous fish on estuarine macrofauna. Mar. Biol. 125: 241-247. https://doi.org/10.1007/BF00346304 Schram F.R. 1986. Crustacea. Oxford University Press, New York, 606 pp. Schram F.R., Hof C.H.J. 1998. Fossils and the interrelationships of major Crustacean groups. In: Edgecombe G.D. (ed.), Arthropod Fossils and Phylogeny. New York, Columbia University Press: pp. 233-302. Schubart C.D, Koller P. 2005. Genetic diversity of freshwater crabs (Brachyura: Sesarmidae) from central Jamaica with description of a new species. J. Nat. Hist. 39: 469-481. https://doi.org/10.1080/00222930410001671291 Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 84 No. 4 (2020); 385-392 Scientia Marina; Vol. 84 Núm. 4 (2020); 385-392 1886-8134 0214-8358 10.3989/scimar.2020.84n4 16S rDNA biogeography cryptic speciation cryptic species mitochondrial DNA molecular phylogeny rDNA 16S biogeografía especiación críptica especies crípticas ADN mitocondrial filogenia molecular info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2020 ftjscientiamarin https://doi.org/10.3989/scimar.05053.17A https://doi.org/10.3989/scimar.2020.84n4 https://doi.org/10.1007/s002270050150 https://doi.org/10.1016/j.dsr2.2010.05.019 https://doi.org/10.1111/j.1365-294X.2011.05173.x https://doi.org/10.1038/s41598-01 2022-03-20T16:31:46Z Phylogenetic hypotheses for the peracarid order Cumacea are scarce and have not provided a solution to the full extent. In the present study, a fragment of the mitochondrial 16S rDNA was used to erect a phylogenetic hypothesis for three cumacean families, Diastylidae, Bodotriidae and Leuconidae, along with intra-family relationships of the latter. The Cumacea resolved monophyletic with tanaids and isopods as outgroup taxa. The Diastylidae were the only family with good support for monophyly. The genus Leucon resolved paraphyletic, whereas the subgenus Crymoleucon was monophyletic. Furthermore, the genetic structure was analysed for two leuconid species, Leucon antarcticus Zimmer, 1907 and L. intermedius Mühlenhardt-Siegel, 1996, from the Weddell Sea and the Ross Sea. The two species showed different patterns of intraspecific genetic variability. In contrast to L. intermedius, a bimodal distribution of pairwise genetic distances was observed for L. antarcticus, which is correlated with geographical and depth distributions between the Ross Sea and the Weddell Sea. Although a clear evaluation of cryptic speciation in these species requires additional work on more specimens from more geographic regions and broader depth ranges, differences shown in the sequences of 16S rDNA can only be explained by genetic separation of populations between the Weddell Sea and the Ross Sea for an extended period of time. Las hipótesis filogenéticas para los peracáridos del orden Cumacea son escasas y no han proporcionado una solución definitiva. En el presente estudio se utilizó un fragmento del rDNA 16S mitocondrial para formular una hipótesis filogenética para tres familias de cumáceos, Diastylidae, Bodotriidae y Leuconidae. Además se han analizado las relaciones intrafamiliares de esta última. Los cumáceos es un grupo monofilético con tanaidáceos e isópodos como taxones externos. De las tres familias analizadas, los Diastylidae fueron la única con buen apoyo para la monofilia. El género Leucon se resolvió parafilético mientras que el subgénero Crymoleucon fue monofilético. Además, se analizó la estructura genética de dos especies de leucónidos Leucon antarcticus Zimmer, 1907 y L. intermedius Mühlenhardt-Siegel, 1996 del mar de Weddell y el mar de Ross respectivamente. Ambas especies mostraron diferentes patrones de variabilidad genética intraespecífica. A diferencia de L. intermedius, para L. antarcticus se observó una distribución bimodal del mismatch distribution, que se correlaciona con las distribuciones geográficas y de profundidad entre el mar de Ross y el mar de Weddell. Aunque una evaluación clara de la especiación críptica en estas especies requiere trabajo adicional con más especímenes de más regiones geográficas y rangos de profundidad más amplios, las diferencias que se muestran en las secuencias del rDNA 16S solo pueden explicarse por la separación genética de poblaciones entre el mar de Weddell y el mar de Ross durante un período de tiempo prolongado Article in Journal/Newspaper Antarc* Antarctic antarcticus Mar de Ross Mar de Weddell Ross Sea Weddell Sea Scientia Marina (E-Journal) Antarctic mar de Weddell ENVELOPE(-36.000,-36.000,-54.601,-54.601) Ross Sea Weddell Weddell Sea Scientia Marina 84 4 385 392