Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory

UV radiation is a factor affecting the distribution and physiology of photosynthetic organisms in an aquatic ecosystem. Studies with macroalgae indicate diverse biological disturbances in response to UV radiation. This work aimed to study sensitivity of the brown macroalga Sargassum filipendula expo...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Polo, Luz K., Chow, Fungyi
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2020
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844
https://doi.org/10.3989/scimar.04982.22A
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1844
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic algae
growth rate
photosynthetic pigments
proteins
ultraviolet radiation
UV-absorbing compounds
algas
tasa de crecimiento
pigmentos fotosintéticos
proteínas
radiación ultravioleta
compuestos absorbentes de rayos UV
spellingShingle algae
growth rate
photosynthetic pigments
proteins
ultraviolet radiation
UV-absorbing compounds
algas
tasa de crecimiento
pigmentos fotosintéticos
proteínas
radiación ultravioleta
compuestos absorbentes de rayos UV
Polo, Luz K.
Chow, Fungyi
Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory
topic_facet algae
growth rate
photosynthetic pigments
proteins
ultraviolet radiation
UV-absorbing compounds
algas
tasa de crecimiento
pigmentos fotosintéticos
proteínas
radiación ultravioleta
compuestos absorbentes de rayos UV
description UV radiation is a factor affecting the distribution and physiology of photosynthetic organisms in an aquatic ecosystem. Studies with macroalgae indicate diverse biological disturbances in response to UV radiation. This work aimed to study sensitivity of the brown macroalga Sargassum filipendula exposed to UV radiation: PAR (control), PAR+UVA+UVB(++) and PAR+UVA(++)+UVB. Changes in the physiological parameters growth rate, total soluble proteins, photosynthetic pigments and the UV-vis absorbing compounds were analysed after T0, T4, T7 and T10 (days) of UV exposure. Physiological parameters showed little variation between treatments and over time, suggesting that moderate UV radiation doses could regulate resistance responses to re-establish the cellular homoeostasis condition through activation of an antioxidant defence system, such as an overproduction of phenolic compounds. Responses recorded in S. filipendula would be related to acclimation mechanisms against acute UV radiation stress, triggering resistance responses to avoid serious damage to the metabolic machinery, activating control systems to maintain hormesis, and homoeostasis of deleterious actions of reactive species, similar to the phenomenon known as preparation for oxidative stress. Finally, UV-visible absorption spectra showed absorption bands evidencing the presence of mainly UV-absorbing compounds with photoprotective function, such as phlorotannins, flavonoids and carotenoids, which could provide adaptive advantages for organisms exposed to UV radiation. La radiación UV es un factor que afecta la distribución y la fisiología de los organismos fotosintéticos en el ecosistema acuático. Los estudios con macroalgas indican diversas alteraciones biológicas en respuesta a la radiación UV. Este trabajo tuvo como objetivo estudiar la sensibilidad de la macroalga parda Sargassum filipendula expuesta a radiación UV: PAR (control), PAR + UVA + UVB (++) y PAR + UVA (++) + UVB. Los cambios en la tasa de crecimiento, proteínas solubles totales, pigmentos fotosintéticos y compuestos absorbentes de UV-vis se analizaron después de T0, T4, T7 y T10 (días) de exposición a UV. Los parámetros fisiológicos mostraron poca variación entre los tratamientos y con el tiempo, lo que sugiere que dosis moderadas de radiación UV podrían regular las respuestas de resistencia para restablecer la condición de homeostasis celular a través de la activación del sistema de defensa antioxidante, como la sobreproducción de compuestos fenólicos. Las respuestas registradas en S. filipendula estarían relacionadas con mecanismos de aclimatación contra el estrés agudo por radiación UV, desencadenando respuestas de resistencia para evitar daños severos en la maquinaria metabólica, activando sistemas de control para mantener la hormesis y homeostasis de acciones deletéreas de especies reactivas, similar al fenómeno llamado preparación para el estrés oxidativo (POS). Finalmente, los espectros de absorción UV-visible mostraron bandas de absorción que evidencian la presencia de compuestos absorbentes de UV principalmente con función fotoprotectora, como los florotaninos, flavonoides y carotenoides que podrían proporcionar ventajas adaptativas para los organismos expuestos a la radiación UV.
format Article in Journal/Newspaper
author Polo, Luz K.
Chow, Fungyi
author_facet Polo, Luz K.
Chow, Fungyi
author_sort Polo, Luz K.
title Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory
title_short Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory
title_full Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory
title_fullStr Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory
title_full_unstemmed Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory
title_sort physiological performance by growth rate, pigment and protein content of the brown seaweed sargassum filipendula (ochrophyta: fucales) induced by moderate uv radiation exposure in the laboratory
publisher Consejo Superior de Investigaciones Científicas
publishDate 2020
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844
https://doi.org/10.3989/scimar.04982.22A
long_lat ENVELOPE(-63.715,-63.715,-64.867,-64.867)
ENVELOPE(13.782,13.782,67.054,67.054)
geographic Expuesta
Tuvo
geographic_facet Expuesta
Tuvo
genre Arctic
genre_facet Arctic
op_source Scientia Marina; Vol. 84 No. 1 (2020); 59-70
Scientia Marina; Vol. 84 Núm. 1 (2020); 59-70
1886-8134
0214-8358
10.3989/scimar.2020.84n1
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844/2667
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844/2651
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844/2668
Abdala-Diaz R.T., Cabello-Pasini A., Pérez-Rodríguez E., et al. 2006. Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar. Biol. 148: 459-465. https://doi.org/10.1007/s00227-005-0102-6
Abirami R.G., Kowsalya S. 2017. Quantification and correlation study on derived phenols and antioxidant activity of seaweeds from Gulf of Mannar. J. Herbs, Spices Med. Plants 23: 9-17. https://doi.org/10.1080/10496475.2016.1240132
Al-Azzawie H.F., Alhamdani M.S.S. 2006. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 78: 1371-1377. https://doi.org/10.1016/j.lfs.2005.07.029 PMid:16236331
Altamirano M., Flores-Moya A., Figueroa F.L. 2003. Effects of UV radiation and temperature on growth of germlings of three species of Fucus (Phaeophyceae). Aquat. Bot. 75: 9-20. https://doi.org/10.1016/S0304-3770(02)00149-3
Amado Filho G.M., Andrade L.R., Karez C.S., et al. 1999. Brown algae species as biomonitors of Zn and Cd at Sepetiba Bay, Rio de Janeiro, Brazil. Mar. Environ. Res. 48: 213-224. https://doi.org/10.1016/S0141-1136(99)00042-2
Aro E.M., Virgin I., Andersson B. 1993. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. BBA - Bioenerg. 1143: 113-134. https://doi.org/10.1016/0005-2728(93)90134-2
Ayres-Ostrock L.M., Plastino E.M. 2014. Effects of short-term exposure to ultraviolet-B radiation on photosynthesis and pigment content of red (wild types), greenish-brown, and green strains of Gracilaria birdiae (Gracilariales, Rhodophyta). J. Appl. Phycol. 26: 867-879. https://doi.org/10.1007/s10811-013-0131-3
Bais A.F., McKenzie R.L., Bernhard G., et al. 2015. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 14: 19-52. https://doi.org/10.1039/C4PP90032D PMid:25380284
Barufi J., Korbee N., Oliveira M., et al. 2011. Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. J. Appl. Phycol. 23: 457-466. https://doi.org/10.1007/s10811-010-9603-x
Behrenfeld M.J., Lean D.R.S., Lee H. 1995. Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J. Phycol. 31: 25-36. https://doi.org/10.1111/j.0022-3646.1995.00025.x
Berglin M., Delage L., Potin P., et al. 2004. Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromolecules 5: 2376-2383. https://doi.org/10.1021/bm0496864 PMid:15530054
Bischof K., Hanelt D., Tüg H., et al. 1998. Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol. 20: 388-395. https://doi.org/10.1007/s003000050319
Bischof K., Hanelt D., Wiencke C. 2000a. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211: 555-562. https://doi.org/10.1007/s004250000313 PMid:11030555
Bischof K., Kräbs G., Hanelt D., et al. 2000b. Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: A competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline? Helgol. Mar. Res. 54: 47-52. https://doi.org/10.1007/s101520050035
Björn L.O. 2007. Stratospheric ozone, ultraviolet radiation, and cryptogams. Biol. Conserv. 135: 326-333. https://doi.org/10.1016/j.biocon.2006.10.006
Bornman J.F., Teramura A.H. 1993. Effects of enhanced UV-B radiation on terrestrial plants. In: Young A.R., Bjorn L.O., et al. (eds) Environmental UV Photobiology. Plenum Press, New York, pp, 427-471. https://doi.org/10.1007/978-1-4899-2406-3_14
Bouzon Z.L., Chow F., Zitta C.S., et al. 2012. Effects of natural radiation, photosynthetically active radiation and artificial ultraviolet radiation-b on the chloroplast organization and metabolism of Porphyra acanthophora var. brasiliensis (Rhodophyta, Bangiales). Microsc. Microanal. 18: 1467-1479. https://doi.org/10.1017/S1431927612013359 PMid:23153514
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Buma A.G.J., Walter Helbling E., Karin De Boer M., et al. 2001. Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation. J. Photochem. Photobiol. B Biol. 62: 9-18. https://doi.org/10.1016/S1011-1344(01)00156-7
Celis-Plá P.S.M., Korbee N., Gómez-Garreta A., et al. 2014. Patrones estacionales de fotoaclimatación en el alga intermareal, Cystoseira tamariscifolia (Ochrophyta). Sci. Mar. 78: 377-388. https://doi.org/10.3989/scimar.04053.05A
Celis-Plá P.S.M., Brown M.T., Santillán-Sarmiento A., et al. 2018. Ecophysiological and metabolic responses to interactive exposure to nutrients and copper excess in the brown macroalga Cystoseira tamariscifolia. Mar. Pollut. Bull. 128: 214-222. https://doi.org/10.1016/j.marpolbul.2018.01.005 PMid:29571366
Chakraborty K., Joseph D. 2016. Antioxidant potential and phenolic compounds of brown seaweeds Turbinaria conoides and Turbinaria ornata (Class: Phaeophyceae). J. Aquat. Food. Prod. Technol. 25: 1249-1265. https://doi.org/10.1080/10498850.2015.1054540
Chow F., De Oliveira M.C. 2008. Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta): Influence of different nitrogen sources. J. Appl. Phycol. 20: 775-782. https://doi.org/10.1007/s10811-008-9310-z
Cruces E., Huovinen P., Gómez I. 2013. Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar. Biol. 160: 1-13. https://doi.org/10.1007/s00227-012-2049-8
Cullen J., Neale P. 1994. Ultraviolet radiation, ozone depletation, and marine photosynthesis. Photosynth. Res. 39: 303-320. https://doi.org/10.1007/BF00014589 PMid:24311127
D'Orazio N., Gemello E., Gammone M.A., et al. 2012. Fucoxantin: A treasure from the sea. Mar. Drugs 10: 604-616. https://doi.org/10.3390/md10030604 PMid:22611357 PMCid:PMC3347018
Dahms H.U., Dobretsov S., Lee J.S. 2011. Effects of UV radiation on marine ectotherms in polar regions. Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 153: 363-371. https://doi.org/10.1016/j.cbpc.2011.01.004 PMid:21300175
Diffey B.L. 2002. Sources and measurement of ultraviolet radiation. Methods 28: 4-13. https://doi.org/10.1016/S1046-2023(02)00204-9
Döhler G. 1997. Impact of UV radiation of different wavebands on pigments and assimilation of 15N-ammonium and 15N-nitrate by natural phytoplankton and ice algae in Antarctica. J. Plant. Physiol. 151: 550-555. https://doi.org/10.1016/S0176-1617(97)80229-5
Döhler G., Hagmeier E., David C. 1995. Effects of solar and artificial UV irradiation on pigments and assimilation of 15N ammonium and 15N nitrate by macroalgae. J. Photochem. Photobiol. B Biol. 30: 179-187. https://doi.org/10.1016/1011-1344(95)07189-9
Edwards P. 1970. Illustre ated guide of seaweeds and sea grasses in vicinity of Porto Arkansas, Texas. Contrib. Mar. Sci. 15: 1-228.
Falkowski P., LaRoche J. 1990. Acclimation to spectral irradiance in algae. J. Phycol. 27: 8-14. https://doi.org/10.1111/j.0022-3646.1991.00008.x
Figueroa F.L., Domínguez-González B., Korbee N. 2014. Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar. Environ. Res. 97: 30-38. https://doi.org/10.1016/j.marenvres.2014.01.009 PMid:24556033
Gao K., Xu J. 2008. Effects of solar UV radiation on diurnal photosynthetic performance and growth of Gracilaria lemaneiformis (Rhodophyta). Eur. J. Phycol. 43: 297-307. https://doi.org/10.1080/09670260801986837
Goes J.I., Handa N., Taguchi S., et al. 1994. Effect of UV-B radiation on the fatty-acid composition of the marine-phytoplankton Tetraselmis sp.: relationship to cellular pigments. Mar. Ecol. Prog. Ser. 114: 259-274. https://doi.org/10.3354/meps114259
Gorostiaga J.M., Díez I. 1996. Changes in the sublittoral benthic marine macroalgae in the polluted area of Abra de Bilbao and proximal coast (Northern Spain). Mar. Ecol. Prog. Ser. 130: 157-167. https://doi.org/10.3354/meps130157
Häder D.-P., Kumar H.D., Smith R.C., et al. 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 6: 267-285. https://doi.org/10.1039/B700020K PMid:17344962
Heo S.J., Jeon Y.J. 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol. B Biol. 95: 101-107. https://doi.org/10.1016/j.jphotobiol.2008.11.011 PMid:19264501
Hermes-Lima M., Storey K. 1998. Role of antioxidant defenses in the tolerance of severe dehydration by anurans. The case of the leopard frog Rana pipiens. Mol. Cell. Biochem. 189: 79-89. https://doi.org/10.1023/A:1006868208476 PMid:9879657
Holzinger A., Lütz C. 2006. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37: 190-207. https://doi.org/10.1016/j.micron.2005.10.015 PMid:16376552
Holzinger A., di Piazza L., Lütz C., et al. 2011. Sporogenic and vegetative tissues of Saccharina latissima (Laminariales, Phaeophyceae) exhibit distinctive sensitivity to experimentally enhanced ultraviolet radiation: Photosynthetically active radiation ratio. Phycol. Res. 59: 221-235. https://doi.org/10.1111/j.1440-1835.2011.00620.x
Jeffrey S.W. 1963. Purification and Properties of Chlorophyll c from Sargassum flavicans. Biochem. J. 86: 313-318. https://doi.org/10.1042/bj0860313 PMid:13964566 PMCid:PMC1201755
Karentz D. 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms. Antarct. Res. Ser. 62: 93-110. https://doi.org/10.1029/AR062p0093
Khotimchenko S.V., Yakovleva I.M. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66: 73-79. https://doi.org/10.1016/j.phytochem.2004.10.024 PMid:15649513
Korbee N., Huovinen P., Figueroa F.L., et al. 2005. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar. Biol. 146: 645-654. https://doi.org/10.1007/s00227-004-1484-6
Kumar A., Tyagi M.B., Jha P.N. 2004. Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay. Biochem. Biophys. Res. Commun. 318: 1025-1030. https://doi.org/10.1016/j.bbrc.2004.04.129 PMid:15147976
Labuckas D.O., Maestri D.M., Perelló M., et al. 2008. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food. Chem. 107: 607-612. https://doi.org/10.1016/j.foodchem.2007.08.051
op_rights Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.04982.22A
https://doi.org/10.3989/scimar.2020.84n1
https://doi.org/10.1007/s00227-005-0102-6
https://doi.org/10.1080/10496475.2016.1240132
https://doi.org/10.1016/j.lfs.2005.07.029
https://doi.org/10.1016/S0304-377
container_title Scientia Marina
container_volume 84
container_issue 1
container_start_page 59
_version_ 1766302671101231104
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1844 2023-05-15T14:28:31+02:00 Physiological performance by growth rate, pigment and protein content of the brown seaweed Sargassum filipendula (Ochrophyta: Fucales) induced by moderate UV radiation exposure in the laboratory Rendimiento fisiológico de acuerdo a la tasa de crecimiento, contenido de pigmentos y proteínas de la macroalga parda Sargassum filipendula (Ochrophyta: Fucales) inducida a radiación UV en el laboratorio Polo, Luz K. Chow, Fungyi 2020-03-30 text/html application/pdf application/xml https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844 https://doi.org/10.3989/scimar.04982.22A eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844/2667 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844/2651 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1844/2668 Abdala-Diaz R.T., Cabello-Pasini A., Pérez-Rodríguez E., et al. 2006. Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar. Biol. 148: 459-465. https://doi.org/10.1007/s00227-005-0102-6 Abirami R.G., Kowsalya S. 2017. Quantification and correlation study on derived phenols and antioxidant activity of seaweeds from Gulf of Mannar. J. Herbs, Spices Med. Plants 23: 9-17. https://doi.org/10.1080/10496475.2016.1240132 Al-Azzawie H.F., Alhamdani M.S.S. 2006. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 78: 1371-1377. https://doi.org/10.1016/j.lfs.2005.07.029 PMid:16236331 Altamirano M., Flores-Moya A., Figueroa F.L. 2003. Effects of UV radiation and temperature on growth of germlings of three species of Fucus (Phaeophyceae). Aquat. Bot. 75: 9-20. https://doi.org/10.1016/S0304-3770(02)00149-3 Amado Filho G.M., Andrade L.R., Karez C.S., et al. 1999. Brown algae species as biomonitors of Zn and Cd at Sepetiba Bay, Rio de Janeiro, Brazil. Mar. Environ. Res. 48: 213-224. https://doi.org/10.1016/S0141-1136(99)00042-2 Aro E.M., Virgin I., Andersson B. 1993. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. BBA - Bioenerg. 1143: 113-134. https://doi.org/10.1016/0005-2728(93)90134-2 Ayres-Ostrock L.M., Plastino E.M. 2014. Effects of short-term exposure to ultraviolet-B radiation on photosynthesis and pigment content of red (wild types), greenish-brown, and green strains of Gracilaria birdiae (Gracilariales, Rhodophyta). J. Appl. Phycol. 26: 867-879. https://doi.org/10.1007/s10811-013-0131-3 Bais A.F., McKenzie R.L., Bernhard G., et al. 2015. Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol. Sci. 14: 19-52. https://doi.org/10.1039/C4PP90032D PMid:25380284 Barufi J., Korbee N., Oliveira M., et al. 2011. Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. J. Appl. Phycol. 23: 457-466. https://doi.org/10.1007/s10811-010-9603-x Behrenfeld M.J., Lean D.R.S., Lee H. 1995. Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J. Phycol. 31: 25-36. https://doi.org/10.1111/j.0022-3646.1995.00025.x Berglin M., Delage L., Potin P., et al. 2004. Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromolecules 5: 2376-2383. https://doi.org/10.1021/bm0496864 PMid:15530054 Bischof K., Hanelt D., Tüg H., et al. 1998. Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol. 20: 388-395. https://doi.org/10.1007/s003000050319 Bischof K., Hanelt D., Wiencke C. 2000a. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211: 555-562. https://doi.org/10.1007/s004250000313 PMid:11030555 Bischof K., Kräbs G., Hanelt D., et al. 2000b. Photosynthetic characteristics and mycosporine-like amino acids under UV radiation: A competitive advantage of Mastocarpus stellatus over Chondrus crispus at the Helgoland shoreline? Helgol. Mar. Res. 54: 47-52. https://doi.org/10.1007/s101520050035 Björn L.O. 2007. Stratospheric ozone, ultraviolet radiation, and cryptogams. Biol. Conserv. 135: 326-333. https://doi.org/10.1016/j.biocon.2006.10.006 Bornman J.F., Teramura A.H. 1993. Effects of enhanced UV-B radiation on terrestrial plants. In: Young A.R., Bjorn L.O., et al. (eds) Environmental UV Photobiology. Plenum Press, New York, pp, 427-471. https://doi.org/10.1007/978-1-4899-2406-3_14 Bouzon Z.L., Chow F., Zitta C.S., et al. 2012. Effects of natural radiation, photosynthetically active radiation and artificial ultraviolet radiation-b on the chloroplast organization and metabolism of Porphyra acanthophora var. brasiliensis (Rhodophyta, Bangiales). Microsc. Microanal. 18: 1467-1479. https://doi.org/10.1017/S1431927612013359 PMid:23153514 Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 Buma A.G.J., Walter Helbling E., Karin De Boer M., et al. 2001. Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation. J. Photochem. Photobiol. B Biol. 62: 9-18. https://doi.org/10.1016/S1011-1344(01)00156-7 Celis-Plá P.S.M., Korbee N., Gómez-Garreta A., et al. 2014. Patrones estacionales de fotoaclimatación en el alga intermareal, Cystoseira tamariscifolia (Ochrophyta). Sci. Mar. 78: 377-388. https://doi.org/10.3989/scimar.04053.05A Celis-Plá P.S.M., Brown M.T., Santillán-Sarmiento A., et al. 2018. Ecophysiological and metabolic responses to interactive exposure to nutrients and copper excess in the brown macroalga Cystoseira tamariscifolia. Mar. Pollut. Bull. 128: 214-222. https://doi.org/10.1016/j.marpolbul.2018.01.005 PMid:29571366 Chakraborty K., Joseph D. 2016. Antioxidant potential and phenolic compounds of brown seaweeds Turbinaria conoides and Turbinaria ornata (Class: Phaeophyceae). J. Aquat. Food. Prod. Technol. 25: 1249-1265. https://doi.org/10.1080/10498850.2015.1054540 Chow F., De Oliveira M.C. 2008. Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta): Influence of different nitrogen sources. J. Appl. Phycol. 20: 775-782. https://doi.org/10.1007/s10811-008-9310-z Cruces E., Huovinen P., Gómez I. 2013. Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar. Biol. 160: 1-13. https://doi.org/10.1007/s00227-012-2049-8 Cullen J., Neale P. 1994. Ultraviolet radiation, ozone depletation, and marine photosynthesis. Photosynth. Res. 39: 303-320. https://doi.org/10.1007/BF00014589 PMid:24311127 D'Orazio N., Gemello E., Gammone M.A., et al. 2012. Fucoxantin: A treasure from the sea. Mar. Drugs 10: 604-616. https://doi.org/10.3390/md10030604 PMid:22611357 PMCid:PMC3347018 Dahms H.U., Dobretsov S., Lee J.S. 2011. Effects of UV radiation on marine ectotherms in polar regions. Comp. Biochem. Physiol. - C Toxicol. Pharmacol. 153: 363-371. https://doi.org/10.1016/j.cbpc.2011.01.004 PMid:21300175 Diffey B.L. 2002. Sources and measurement of ultraviolet radiation. Methods 28: 4-13. https://doi.org/10.1016/S1046-2023(02)00204-9 Döhler G. 1997. Impact of UV radiation of different wavebands on pigments and assimilation of 15N-ammonium and 15N-nitrate by natural phytoplankton and ice algae in Antarctica. J. Plant. Physiol. 151: 550-555. https://doi.org/10.1016/S0176-1617(97)80229-5 Döhler G., Hagmeier E., David C. 1995. Effects of solar and artificial UV irradiation on pigments and assimilation of 15N ammonium and 15N nitrate by macroalgae. J. Photochem. Photobiol. B Biol. 30: 179-187. https://doi.org/10.1016/1011-1344(95)07189-9 Edwards P. 1970. Illustre ated guide of seaweeds and sea grasses in vicinity of Porto Arkansas, Texas. Contrib. Mar. Sci. 15: 1-228. Falkowski P., LaRoche J. 1990. Acclimation to spectral irradiance in algae. J. Phycol. 27: 8-14. https://doi.org/10.1111/j.0022-3646.1991.00008.x Figueroa F.L., Domínguez-González B., Korbee N. 2014. Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar. Environ. Res. 97: 30-38. https://doi.org/10.1016/j.marenvres.2014.01.009 PMid:24556033 Gao K., Xu J. 2008. Effects of solar UV radiation on diurnal photosynthetic performance and growth of Gracilaria lemaneiformis (Rhodophyta). Eur. J. Phycol. 43: 297-307. https://doi.org/10.1080/09670260801986837 Goes J.I., Handa N., Taguchi S., et al. 1994. Effect of UV-B radiation on the fatty-acid composition of the marine-phytoplankton Tetraselmis sp.: relationship to cellular pigments. Mar. Ecol. Prog. Ser. 114: 259-274. https://doi.org/10.3354/meps114259 Gorostiaga J.M., Díez I. 1996. Changes in the sublittoral benthic marine macroalgae in the polluted area of Abra de Bilbao and proximal coast (Northern Spain). Mar. Ecol. Prog. Ser. 130: 157-167. https://doi.org/10.3354/meps130157 Häder D.-P., Kumar H.D., Smith R.C., et al. 2007. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 6: 267-285. https://doi.org/10.1039/B700020K PMid:17344962 Heo S.J., Jeon Y.J. 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol. B Biol. 95: 101-107. https://doi.org/10.1016/j.jphotobiol.2008.11.011 PMid:19264501 Hermes-Lima M., Storey K. 1998. Role of antioxidant defenses in the tolerance of severe dehydration by anurans. The case of the leopard frog Rana pipiens. Mol. Cell. Biochem. 189: 79-89. https://doi.org/10.1023/A:1006868208476 PMid:9879657 Holzinger A., Lütz C. 2006. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37: 190-207. https://doi.org/10.1016/j.micron.2005.10.015 PMid:16376552 Holzinger A., di Piazza L., Lütz C., et al. 2011. Sporogenic and vegetative tissues of Saccharina latissima (Laminariales, Phaeophyceae) exhibit distinctive sensitivity to experimentally enhanced ultraviolet radiation: Photosynthetically active radiation ratio. Phycol. Res. 59: 221-235. https://doi.org/10.1111/j.1440-1835.2011.00620.x Jeffrey S.W. 1963. Purification and Properties of Chlorophyll c from Sargassum flavicans. Biochem. J. 86: 313-318. https://doi.org/10.1042/bj0860313 PMid:13964566 PMCid:PMC1201755 Karentz D. 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms. Antarct. Res. Ser. 62: 93-110. https://doi.org/10.1029/AR062p0093 Khotimchenko S.V., Yakovleva I.M. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66: 73-79. https://doi.org/10.1016/j.phytochem.2004.10.024 PMid:15649513 Korbee N., Huovinen P., Figueroa F.L., et al. 2005. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar. Biol. 146: 645-654. https://doi.org/10.1007/s00227-004-1484-6 Kumar A., Tyagi M.B., Jha P.N. 2004. Evidences showing ultraviolet-B radiation-induced damage of DNA in cyanobacteria and its detection by PCR assay. Biochem. Biophys. Res. Commun. 318: 1025-1030. https://doi.org/10.1016/j.bbrc.2004.04.129 PMid:15147976 Labuckas D.O., Maestri D.M., Perelló M., et al. 2008. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food. Chem. 107: 607-612. https://doi.org/10.1016/j.foodchem.2007.08.051 Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 84 No. 1 (2020); 59-70 Scientia Marina; Vol. 84 Núm. 1 (2020); 59-70 1886-8134 0214-8358 10.3989/scimar.2020.84n1 algae growth rate photosynthetic pigments proteins ultraviolet radiation UV-absorbing compounds algas tasa de crecimiento pigmentos fotosintéticos proteínas radiación ultravioleta compuestos absorbentes de rayos UV info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2020 ftjscientiamarin https://doi.org/10.3989/scimar.04982.22A https://doi.org/10.3989/scimar.2020.84n1 https://doi.org/10.1007/s00227-005-0102-6 https://doi.org/10.1080/10496475.2016.1240132 https://doi.org/10.1016/j.lfs.2005.07.029 https://doi.org/10.1016/S0304-377 2022-03-20T16:31:46Z UV radiation is a factor affecting the distribution and physiology of photosynthetic organisms in an aquatic ecosystem. Studies with macroalgae indicate diverse biological disturbances in response to UV radiation. This work aimed to study sensitivity of the brown macroalga Sargassum filipendula exposed to UV radiation: PAR (control), PAR+UVA+UVB(++) and PAR+UVA(++)+UVB. Changes in the physiological parameters growth rate, total soluble proteins, photosynthetic pigments and the UV-vis absorbing compounds were analysed after T0, T4, T7 and T10 (days) of UV exposure. Physiological parameters showed little variation between treatments and over time, suggesting that moderate UV radiation doses could regulate resistance responses to re-establish the cellular homoeostasis condition through activation of an antioxidant defence system, such as an overproduction of phenolic compounds. Responses recorded in S. filipendula would be related to acclimation mechanisms against acute UV radiation stress, triggering resistance responses to avoid serious damage to the metabolic machinery, activating control systems to maintain hormesis, and homoeostasis of deleterious actions of reactive species, similar to the phenomenon known as preparation for oxidative stress. Finally, UV-visible absorption spectra showed absorption bands evidencing the presence of mainly UV-absorbing compounds with photoprotective function, such as phlorotannins, flavonoids and carotenoids, which could provide adaptive advantages for organisms exposed to UV radiation. La radiación UV es un factor que afecta la distribución y la fisiología de los organismos fotosintéticos en el ecosistema acuático. Los estudios con macroalgas indican diversas alteraciones biológicas en respuesta a la radiación UV. Este trabajo tuvo como objetivo estudiar la sensibilidad de la macroalga parda Sargassum filipendula expuesta a radiación UV: PAR (control), PAR + UVA + UVB (++) y PAR + UVA (++) + UVB. Los cambios en la tasa de crecimiento, proteínas solubles totales, pigmentos fotosintéticos y compuestos absorbentes de UV-vis se analizaron después de T0, T4, T7 y T10 (días) de exposición a UV. Los parámetros fisiológicos mostraron poca variación entre los tratamientos y con el tiempo, lo que sugiere que dosis moderadas de radiación UV podrían regular las respuestas de resistencia para restablecer la condición de homeostasis celular a través de la activación del sistema de defensa antioxidante, como la sobreproducción de compuestos fenólicos. Las respuestas registradas en S. filipendula estarían relacionadas con mecanismos de aclimatación contra el estrés agudo por radiación UV, desencadenando respuestas de resistencia para evitar daños severos en la maquinaria metabólica, activando sistemas de control para mantener la hormesis y homeostasis de acciones deletéreas de especies reactivas, similar al fenómeno llamado preparación para el estrés oxidativo (POS). Finalmente, los espectros de absorción UV-visible mostraron bandas de absorción que evidencian la presencia de compuestos absorbentes de UV principalmente con función fotoprotectora, como los florotaninos, flavonoides y carotenoides que podrían proporcionar ventajas adaptativas para los organismos expuestos a la radiación UV. Article in Journal/Newspaper Arctic Scientia Marina (E-Journal) Expuesta ENVELOPE(-63.715,-63.715,-64.867,-64.867) Tuvo ENVELOPE(13.782,13.782,67.054,67.054) Scientia Marina 84 1 59