Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features

The temporal and spatial changes of zooplankton and chlorophyll a concentration were studied during the warm stratification period (early June) at three stations whose traits corresponded to the coastal, frontal, and offshore-dome water conditions described for the Catalan Sea. We sampled the statio...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Alcaraz, Miquel, Calbet, Albert, Isari, Stamatina, Irigoien, Xabier, Trepat, Isabel, Saiz, Enric
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2016
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1659
https://doi.org/10.3989/scimar.04353.15A
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1659
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic zooplankton biomass
NW Mediterranean
spatial distribution
short-term variability
biomasa de zooplankton
Mediterráneo noroccidental
distribución espacial
variabilidad de corto plazo
spellingShingle zooplankton biomass
NW Mediterranean
spatial distribution
short-term variability
biomasa de zooplankton
Mediterráneo noroccidental
distribución espacial
variabilidad de corto plazo
Alcaraz, Miquel
Calbet, Albert
Isari, Stamatina
Irigoien, Xabier
Trepat, Isabel
Saiz, Enric
Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features
topic_facet zooplankton biomass
NW Mediterranean
spatial distribution
short-term variability
biomasa de zooplankton
Mediterráneo noroccidental
distribución espacial
variabilidad de corto plazo
description The temporal and spatial changes of zooplankton and chlorophyll a concentration were studied during the warm stratification period (early June) at three stations whose traits corresponded to the coastal, frontal, and offshore-dome water conditions described for the Catalan Sea. We sampled the stations for 12 days at a frequency ranging from less than 10 to 102 h, with a spatial resolution ranging from 10 to 104 m. The objective was to determine the variability of mesozooplankton and phytoplankton (chlorophyll a) biomass, and average individual size (mass) across a coast-offshore transect in relation to the stratification conditions prevailing in the NW Mediterranean during summer. The vertical distribution of phytoplankton biomass displayed a clear deep maximum at 60 m depth except at the coastal station. This maximum exists during most of the year and is especially important during the density stratification period. It was accompanied during daylight hours by a coherent zooplankton maximum. At sunset mesozooplankton ascended and dispersed, with larger organisms from deeper layers joining the migrating community and increasing the average individual mass. The highest variability of mesozooplankton biomass, individual mass and chlorophyll a concentration occurred at the front station due to the coupling between the vertical migration of zooplankton and the particular characteristics of the front. According to the data shown, the highest variability was observed at the lowest scales. Durante el periodo de estratificación térmica (principios de junio) se estudiaron los cambios temporales y espaciales de concentración de zooplancton y clorofila a en tres estaciones cuyos rasgos corresponden a las condiciones de aguas costeras, frontal y domo central descritas para el Mar Catalán. Muestreamos las estaciones a lo largo de 12 días con una frecuencia que varió entre 10 h y 102 h, y con una resolución espacial entre 10 y 104 m. El objetivo fue determinar la variabilidad de la biomasa del fitoplancton (clorofila a) y del mesozooplancton, así como de su tamaño individual promedio a lo largo de un transecto costa-mar abierto en relación con las condiciones de estratificación térmica típicas del Mediterráneo del Noroccidental desde finales de primavera a finales de verano. La distribución vertical de la biomasa de fitoplancton mostró la existencia de un máximo profundo a 60 m de profundidad, excepto en la estación costera. Aunque cierta heterogeneidad vertical en la biomasa de fitoplancton suele observarse durante la mayor parte del año, es especialmente importante durante el período de estratificación de densidad. El máximo de fitoplancton estuvo acompañado durante las horas de luz por un máximo de zooplancton, que en la crepúsculo ascendía y se dispersaba, y al que se unían organismos de mayor tamaño procedentes de zonas más profundas, contribuyendo a aumentar la masa individual promedio. La mayor variabilidad de biomasa mesozooplanctónica, de la masa individual y de la concentración de clorofila a se observó en la estación frontal debido al acoplamiento entre la migración vertical del zooplancton y las características particulares del frente. Según los datos presentados la mayor variabilidad fue observada en las escalas espaciales y temporales más bajas.
format Article in Journal/Newspaper
author Alcaraz, Miquel
Calbet, Albert
Isari, Stamatina
Irigoien, Xabier
Trepat, Isabel
Saiz, Enric
author_facet Alcaraz, Miquel
Calbet, Albert
Isari, Stamatina
Irigoien, Xabier
Trepat, Isabel
Saiz, Enric
author_sort Alcaraz, Miquel
title Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features
title_short Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features
title_full Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features
title_fullStr Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features
title_full_unstemmed Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features
title_sort variability of mesozooplankton biomass and individual size in a coast-offshore transect in the catalan sea: relationships with chlorophyll a and hydrographic features
publisher Consejo Superior de Investigaciones Científicas
publishDate 2016
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1659
https://doi.org/10.3989/scimar.04353.15A
long_lat ENVELOPE(-59.683,-59.683,-62.517,-62.517)
ENVELOPE(-60.783,-60.783,-62.450,-62.450)
geographic Alta
Catalán
Corto
geographic_facet Alta
Catalán
Corto
genre Arctic
genre_facet Arctic
op_source Scientia Marina; Vol. 80 No. S1 (2016); 79-87
Scientia Marina; Vol. 80 Núm. S1 (2016); 79-87
1886-8134
0214-8358
10.3989/scimar.2016.80s1
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1659/2138
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1659/2139
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1659/2140
Abelló P., Oro D. 1998. Offshore distribution and assemblages of breeding seabirds in the Catalano-Balearic Sea (northwestern Mediterranean). Colonial Waterbirds 21: 422-426.
Acinas S.G., Rodríguez-Valera F., Pedrós-Alió C. 1997. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol. Ecol. 24: 27-40. http://dx.doi.org/10.1111/j.1574-6941.1997.tb00420.x
Agawin N.S.R., Agustí S. 1997. Abundance, frequency of dividing cells and growth rates of Synechococcus sp. (cyanobacteria) in the stratified Northwestern Mediterranean Sea. J. Plankton Res. 19: 1599-1615. http://dx.doi.org/10.1093/plankt/19.11.1599
Alcaraz M. 1977. Muestreo cuantitativo de zooplancton: análisis comparativo de la eficacia de mangas y botellas en un sistema estuárico. Inv. Pesq., 41: 258-294.
Alcaraz M. 1980. Evolución y distribución vertical de la biomasa de zooplancton expresada en carbono y nitrógeno orgánicos, relación C/N y carbono detrítico, en una zona marina afectada por aguas residuales de la ciudad de Barcelona. Inv. Pesq., 44: 265-274.
Alcaraz M. 1985. Vertical distribution of zooplankton biomass during summer stratification in the Western Mediterranean. In: Gibbs P.E. (ed.), Proceedings of the 19th EMBS. Cambridge Univ. Press, Cambridge, pp. 135-143.
Alcaraz M. 1988. Summer zooplankton metabolism and its relation to primary production in the Western Mediterranean. In: Minas H.J., Nival P. (eds), Océanograaphie pélagique méditeerranéenne. Oceanol. Acta Nº SP 9, pp. 185-191.
Alcaraz M., Estrada M., Flos J., et al. 1985. Particulate carbon and nitrogen and plankton biomass in oligotrophic and upwelling systems. In: Bas C., Margalef R., Rubies P. (eds), Simposio Internacional sobre las áreas de afloramiento más importantes del Oeste Africano, CSIC, Barcelona: 435-448.
Alcaraz M., Saiz E., Estrada M. 1994. Excretion of ammonia by zooplankton and its potential contribution to nitrogen requirements for primary production in the Catalan Sea (NW Mediterranean). Mar. Biol. 119: 69-76. http://dx.doi.org/10.1007/BF00350108
Alcaraz M., Saiz E., Calbet A., et al. 2003. Estimating zooplankton biomass through image analysis. Mar. Biol. 143: 307-315. http://dx.doi.org/10.1007/s00227-003-1094-8
Alcaraz M., Calbet A., Estrada M., et al. 2007. Physical control of zooplankton communities in the Catalan Sea. Prog. Oceanogr. 74: 294-312. http://dx.doi.org/10.1016/j.pocean.2007.04.003
Alcaraz M., Almeda R., Calbet A., et al. 2010. The role of arctic zooplankton in biogeochemical cycles: respiration and excretion of ammonia and phosphate during summer. Polar Biol. 33: 1719-1731. http://dx.doi.org/10.1007/s00300-010-0789-9
Boucher J. 1984. Localization of zooplankton populations in the Ligurian marine front: role of ontogenic migration. Deep Sea Res. 31: 469-484. http://dx.doi.org/10.1016/0198-0149(84)90097-9
Boucher J., Ibanez F., Prieur L. 1987. Daily and seasonal variations in the spatial distribution of zooplankton populations in relation to the physical structure in the Ligurian sea front. J. Mar Res. 45: 133-173. http://dx.doi.org/10.1357/002224087788400891
Calbet A., Alcaraz M., Saiz E., et al. 1996. Planktonic herbivorous food webs in the Catalan Sea (NW Mediterranean): temporal variability and comparison of indices of phyto-zooplankton coupling based in state variables and rate processes. J Plankton Res. 18: 2329-2347. http://dx.doi.org/10.1093/plankt/18.12.2329
Calbet A., Garrido S., Saiz E., et al. 2001. Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. J. Plankton Res. 23: 319-331. http://dx.doi.org/10.1093/plankt/23.3.319
Calbet A., Saiz E., Alcaraz M. 2002. Copepod eggproduction in the NW Mediterranean: effects of winter environmental conditions. Mar. Ecol. Prog. Ser. 273: 173.184.
Donaghay P.L., Rines H.M., Sieburt J.McN. et al. 1992. Simultaneous sampling of fine scale biological, chemical and physical structure in stratifed waters. Arch. Hydrobiol. Beih. 36: 97-108.
Enright J.T. 1977. Copepods in a hurry: sustained high-speed upward migration. Limnol. Oceanogr. 22: 118-125. http://dx.doi.org/10.4319/lo.1977.22.1.0118
Estrada M. 1985. Deep phytoplankton and chlorophyll maxima in the Western Mediterranean. In: Moraitou-Apostoulou M., Kiortsis V. (eds), Mediterranean marine ecosystems. Plenum Press, New York, pp. 247-277. http://dx.doi.org/10.1007/978-1-4899-2248-9_12
Estrada, M. 1996. Primary production in the northwestern Mediterranean. Sci. Mar. 60: 55-64.
Estrada M., Margalef R. 1988. Supply of nutrients to the Mediterranean photic zone along a persistent front. In: Minas H.J., Nival P. (eds), Océanographie pélagique méditerranéenne, Oceanol. Acta Nº SP 9: 133-142.
Fasham M.J.R. 1978. The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Ann. Rev. 16: 43-79.
Fasham M.J.R., Angel M.V., Roe S.J. 1974. An investigation of the spatial pattern of zooplankton using the Longhurst-Hardy plankton recorder. J. Exp. Mar. Biol. Ecol. 16: 93-112. http://dx.doi.org/10.1016/0022-0981(74)90013-6
Fernández de Puelles M.L., Valencia J., Jansá J., et al. 2004. Hydrographical characteristics and zooplankton distribution in the Mallorca channel (Western Mediterranean): spring 2001. ICES J. Mar. Sci. 61: 654-666. http://dx.doi.org/10.1016/j.icesjms.2004.03.031
Font J., Salat J., TintoréJ. 1988. Permanent features of the circulation in the Catalan sea. In: Minas H.J., Nival P. (eds), Pelagic Mediterranean oceanography. Oceanol. Acta, 9: 51-57.
Haury L.R. 1973. Sampling biass of a Longhurst-Hardy Plankton Recorder. Limnol. Oceanogr. 18: 500-506. http://dx.doi.org/10.4319/lo.1973.18.3.0500
Haury L.R. 1976a. Small-scale pattern of a California current zooplankton assemblage. Mar. Biol. 37: 137-155. http://dx.doi.org/10.1007/BF00389124
Haury L.R. 1976b. A comparison of zooplankton patterns in the California current and North Pacific Central Gyre. Mar. Biol. 37: 159-167. http://dx.doi.org/10.1007/BF00389125
Haury L.R., Mc Gowan J.A., Wiebe P.H. 1978. Patterns and processes in the time-space scales of plankton distributions. In: Steele J.H. (ed.), Spatial pattern on plankton communities. Plenum Press, NY, pp. 277-327. http://dx.doi.org/10.1007/978-1-4899-2195-6_12
Krause M., Radach G. 1989. On the relations of vertical distribution, diurnal migration and nutritional state of herbivorous zooplankton in the northern North Sea during FLEX 1976. Int. Revue ges. Hydrobiol. 74: 371-417.
Longhurst A.R., Reith A.D., Bower R.E., et al. 1966. A new system for the collection of multiple serial plankton samples. Deep Sea Res. 13: 213-222. http://dx.doi.org/10.1016/0011-7471(66)91101-6
Mazzocchi M.G., Siokou I., Tirelli V., et al. 2014. Regional and seasonal characteristics of epipelagic mesozooplankton in the Mediterranean Sea based on an artificial neural network analysis. J. Mar. Syst. 135: 64-80. http://dx.doi.org/10.1016/j.jmarsys.2013.04.009
Pinot J.M., Jansá J. 2001. Time variability of acoustic backscatter from zooplankton in the Ibiza channel (western Mediterranean). Deep Sea Res. 48: 1651-1670. http://dx.doi.org/10.1016/S0967-0637(00)00095-9
Sabatés A., Olivar P. 1996. Variation of larval fish distributions associated with variability in the location of a shelf-slope front. Mar. Ecol. Prog. Ser. 135: 11-20. http://dx.doi.org/10.3354/meps135011
Saiz E., Alcaraz M. 1990. Pigment gut contents of copepods and deep phytoplankton maximum in the Western Mediterranean. J Plankton Res. 12: 665-672. http://dx.doi.org/10.1093/plankt/12.3.665
Saiz E., Rodriguez V., Alcaraz M. 1992. Spatial distribution and feeding rates of Centropages typicus in relation to frontal structures in the Catalan Sea (Western Mediterranean). Mar. Biol. 112: 49-56. http://dx.doi.org/10.1007/BF00349727
Saiz E., Calbet A., Trepat I., et al. 1997. Food availability as a potential source of bias on the egg production method for copepods. J. Plankton Res. 19: 1-14. http://dx.doi.org/10.1093/plankt/19.1.1
Salat J. 1996. Review of hydrographic environmental factors that may influence anchovy habitats in northwestern Mediterraneaan. Sci. Mar. 60: 21-32.
Smith P.E., Ohman M.D., Eber L.E. 1989. Analysis of the patterns of distribution of zooplankton aggregations from an accoustic doppler current profiler. CalCOFI Rep. 30: 88-103.
Stavn R.H. 1971. The horizontal-vertical distribution hypothesis: Langmuir circulations and Daphnia distributions. Limnol. Oceanogr. 16: 453-446. http://dx.doi.org/10.4319/lo.1971.16.2.0453
Steele J.H., Henderson E.W. 1992. A simple model for plankton patchiness. J. Plankton Res. 14: 1397-1403. http://dx.doi.org/10.1093/plankt/14.10.1397
Stommel H. 1963. Varieties of oceanographic experience. Science 139: 572-576. http://dx.doi.org/10.1126/science.139.3555.572 PMid:17788284
Turner J.T. 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43: 255-266.
Vance T.C., Doel R.E. 2010. Graphical methods and cold war scientific practice: the Stommel diagram's intriguing journey from the physical to the biological sciences. Hist. Stud. Nat. Sci. 40: 1-47. http://dx.doi.org/10.1525/hsns.2010.40.1.1 PMid:20514742
Winsor C.P., Clarke G.L. 1940. A statistical study of variation in the catch of plankton nets. J. Mar. Res. 3: 1-34.
Yentsch C.S., Menzel D.W. 1963. A method for the determination of phytoplankton chlorophyll and pheophytin by fluorescence. Deep Sea Res. 10: 221-231.
op_rights Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.04353.15A
https://doi.org/10.3989/scimar.2016.80s1
https://doi.org/10.1111/j.1574-6941.1997.tb00420.x
https://doi.org/10.1093/plankt/19.11.1599
https://doi.org/10.1007/BF00350108
https://doi.org/10.1007/s00227-003-
container_title Scientia Marina
container_volume 80
container_issue S1
container_start_page 79
op_container_end_page 87
_version_ 1766302651186675712
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1659 2023-05-15T14:28:29+02:00 Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features Variabilidad de la biomasa del zooplankton y de su tamaño individual en un transecto costa-alta mar en el ar Catalán: relaciones con la clorofila a y las estructuras hidrográficas Alcaraz, Miquel Calbet, Albert Isari, Stamatina Irigoien, Xabier Trepat, Isabel Saiz, Enric 2016-09-30 text/html application/pdf text/xml https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1659 https://doi.org/10.3989/scimar.04353.15A eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1659/2138 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1659/2139 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1659/2140 Abelló P., Oro D. 1998. Offshore distribution and assemblages of breeding seabirds in the Catalano-Balearic Sea (northwestern Mediterranean). Colonial Waterbirds 21: 422-426. Acinas S.G., Rodríguez-Valera F., Pedrós-Alió C. 1997. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol. Ecol. 24: 27-40. http://dx.doi.org/10.1111/j.1574-6941.1997.tb00420.x Agawin N.S.R., Agustí S. 1997. Abundance, frequency of dividing cells and growth rates of Synechococcus sp. (cyanobacteria) in the stratified Northwestern Mediterranean Sea. J. Plankton Res. 19: 1599-1615. http://dx.doi.org/10.1093/plankt/19.11.1599 Alcaraz M. 1977. Muestreo cuantitativo de zooplancton: análisis comparativo de la eficacia de mangas y botellas en un sistema estuárico. Inv. Pesq., 41: 258-294. Alcaraz M. 1980. Evolución y distribución vertical de la biomasa de zooplancton expresada en carbono y nitrógeno orgánicos, relación C/N y carbono detrítico, en una zona marina afectada por aguas residuales de la ciudad de Barcelona. Inv. Pesq., 44: 265-274. Alcaraz M. 1985. Vertical distribution of zooplankton biomass during summer stratification in the Western Mediterranean. In: Gibbs P.E. (ed.), Proceedings of the 19th EMBS. Cambridge Univ. Press, Cambridge, pp. 135-143. Alcaraz M. 1988. Summer zooplankton metabolism and its relation to primary production in the Western Mediterranean. In: Minas H.J., Nival P. (eds), Océanograaphie pélagique méditeerranéenne. Oceanol. Acta Nº SP 9, pp. 185-191. Alcaraz M., Estrada M., Flos J., et al. 1985. Particulate carbon and nitrogen and plankton biomass in oligotrophic and upwelling systems. In: Bas C., Margalef R., Rubies P. (eds), Simposio Internacional sobre las áreas de afloramiento más importantes del Oeste Africano, CSIC, Barcelona: 435-448. Alcaraz M., Saiz E., Estrada M. 1994. Excretion of ammonia by zooplankton and its potential contribution to nitrogen requirements for primary production in the Catalan Sea (NW Mediterranean). Mar. Biol. 119: 69-76. http://dx.doi.org/10.1007/BF00350108 Alcaraz M., Saiz E., Calbet A., et al. 2003. Estimating zooplankton biomass through image analysis. Mar. Biol. 143: 307-315. http://dx.doi.org/10.1007/s00227-003-1094-8 Alcaraz M., Calbet A., Estrada M., et al. 2007. Physical control of zooplankton communities in the Catalan Sea. Prog. Oceanogr. 74: 294-312. http://dx.doi.org/10.1016/j.pocean.2007.04.003 Alcaraz M., Almeda R., Calbet A., et al. 2010. The role of arctic zooplankton in biogeochemical cycles: respiration and excretion of ammonia and phosphate during summer. Polar Biol. 33: 1719-1731. http://dx.doi.org/10.1007/s00300-010-0789-9 Boucher J. 1984. Localization of zooplankton populations in the Ligurian marine front: role of ontogenic migration. Deep Sea Res. 31: 469-484. http://dx.doi.org/10.1016/0198-0149(84)90097-9 Boucher J., Ibanez F., Prieur L. 1987. Daily and seasonal variations in the spatial distribution of zooplankton populations in relation to the physical structure in the Ligurian sea front. J. Mar Res. 45: 133-173. http://dx.doi.org/10.1357/002224087788400891 Calbet A., Alcaraz M., Saiz E., et al. 1996. Planktonic herbivorous food webs in the Catalan Sea (NW Mediterranean): temporal variability and comparison of indices of phyto-zooplankton coupling based in state variables and rate processes. J Plankton Res. 18: 2329-2347. http://dx.doi.org/10.1093/plankt/18.12.2329 Calbet A., Garrido S., Saiz E., et al. 2001. Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. J. Plankton Res. 23: 319-331. http://dx.doi.org/10.1093/plankt/23.3.319 Calbet A., Saiz E., Alcaraz M. 2002. Copepod eggproduction in the NW Mediterranean: effects of winter environmental conditions. Mar. Ecol. Prog. Ser. 273: 173.184. Donaghay P.L., Rines H.M., Sieburt J.McN. et al. 1992. Simultaneous sampling of fine scale biological, chemical and physical structure in stratifed waters. Arch. Hydrobiol. Beih. 36: 97-108. Enright J.T. 1977. Copepods in a hurry: sustained high-speed upward migration. Limnol. Oceanogr. 22: 118-125. http://dx.doi.org/10.4319/lo.1977.22.1.0118 Estrada M. 1985. Deep phytoplankton and chlorophyll maxima in the Western Mediterranean. In: Moraitou-Apostoulou M., Kiortsis V. (eds), Mediterranean marine ecosystems. Plenum Press, New York, pp. 247-277. http://dx.doi.org/10.1007/978-1-4899-2248-9_12 Estrada, M. 1996. Primary production in the northwestern Mediterranean. Sci. Mar. 60: 55-64. Estrada M., Margalef R. 1988. Supply of nutrients to the Mediterranean photic zone along a persistent front. In: Minas H.J., Nival P. (eds), Océanographie pélagique méditerranéenne, Oceanol. Acta Nº SP 9: 133-142. Fasham M.J.R. 1978. The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Ann. Rev. 16: 43-79. Fasham M.J.R., Angel M.V., Roe S.J. 1974. An investigation of the spatial pattern of zooplankton using the Longhurst-Hardy plankton recorder. J. Exp. Mar. Biol. Ecol. 16: 93-112. http://dx.doi.org/10.1016/0022-0981(74)90013-6 Fernández de Puelles M.L., Valencia J., Jansá J., et al. 2004. Hydrographical characteristics and zooplankton distribution in the Mallorca channel (Western Mediterranean): spring 2001. ICES J. Mar. Sci. 61: 654-666. http://dx.doi.org/10.1016/j.icesjms.2004.03.031 Font J., Salat J., TintoréJ. 1988. Permanent features of the circulation in the Catalan sea. In: Minas H.J., Nival P. (eds), Pelagic Mediterranean oceanography. Oceanol. Acta, 9: 51-57. Haury L.R. 1973. Sampling biass of a Longhurst-Hardy Plankton Recorder. Limnol. Oceanogr. 18: 500-506. http://dx.doi.org/10.4319/lo.1973.18.3.0500 Haury L.R. 1976a. Small-scale pattern of a California current zooplankton assemblage. Mar. Biol. 37: 137-155. http://dx.doi.org/10.1007/BF00389124 Haury L.R. 1976b. A comparison of zooplankton patterns in the California current and North Pacific Central Gyre. Mar. Biol. 37: 159-167. http://dx.doi.org/10.1007/BF00389125 Haury L.R., Mc Gowan J.A., Wiebe P.H. 1978. Patterns and processes in the time-space scales of plankton distributions. In: Steele J.H. (ed.), Spatial pattern on plankton communities. Plenum Press, NY, pp. 277-327. http://dx.doi.org/10.1007/978-1-4899-2195-6_12 Krause M., Radach G. 1989. On the relations of vertical distribution, diurnal migration and nutritional state of herbivorous zooplankton in the northern North Sea during FLEX 1976. Int. Revue ges. Hydrobiol. 74: 371-417. Longhurst A.R., Reith A.D., Bower R.E., et al. 1966. A new system for the collection of multiple serial plankton samples. Deep Sea Res. 13: 213-222. http://dx.doi.org/10.1016/0011-7471(66)91101-6 Mazzocchi M.G., Siokou I., Tirelli V., et al. 2014. Regional and seasonal characteristics of epipelagic mesozooplankton in the Mediterranean Sea based on an artificial neural network analysis. J. Mar. Syst. 135: 64-80. http://dx.doi.org/10.1016/j.jmarsys.2013.04.009 Pinot J.M., Jansá J. 2001. Time variability of acoustic backscatter from zooplankton in the Ibiza channel (western Mediterranean). Deep Sea Res. 48: 1651-1670. http://dx.doi.org/10.1016/S0967-0637(00)00095-9 Sabatés A., Olivar P. 1996. Variation of larval fish distributions associated with variability in the location of a shelf-slope front. Mar. Ecol. Prog. Ser. 135: 11-20. http://dx.doi.org/10.3354/meps135011 Saiz E., Alcaraz M. 1990. Pigment gut contents of copepods and deep phytoplankton maximum in the Western Mediterranean. J Plankton Res. 12: 665-672. http://dx.doi.org/10.1093/plankt/12.3.665 Saiz E., Rodriguez V., Alcaraz M. 1992. Spatial distribution and feeding rates of Centropages typicus in relation to frontal structures in the Catalan Sea (Western Mediterranean). Mar. Biol. 112: 49-56. http://dx.doi.org/10.1007/BF00349727 Saiz E., Calbet A., Trepat I., et al. 1997. Food availability as a potential source of bias on the egg production method for copepods. J. Plankton Res. 19: 1-14. http://dx.doi.org/10.1093/plankt/19.1.1 Salat J. 1996. Review of hydrographic environmental factors that may influence anchovy habitats in northwestern Mediterraneaan. Sci. Mar. 60: 21-32. Smith P.E., Ohman M.D., Eber L.E. 1989. Analysis of the patterns of distribution of zooplankton aggregations from an accoustic doppler current profiler. CalCOFI Rep. 30: 88-103. Stavn R.H. 1971. The horizontal-vertical distribution hypothesis: Langmuir circulations and Daphnia distributions. Limnol. Oceanogr. 16: 453-446. http://dx.doi.org/10.4319/lo.1971.16.2.0453 Steele J.H., Henderson E.W. 1992. A simple model for plankton patchiness. J. Plankton Res. 14: 1397-1403. http://dx.doi.org/10.1093/plankt/14.10.1397 Stommel H. 1963. Varieties of oceanographic experience. Science 139: 572-576. http://dx.doi.org/10.1126/science.139.3555.572 PMid:17788284 Turner J.T. 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43: 255-266. Vance T.C., Doel R.E. 2010. Graphical methods and cold war scientific practice: the Stommel diagram's intriguing journey from the physical to the biological sciences. Hist. Stud. Nat. Sci. 40: 1-47. http://dx.doi.org/10.1525/hsns.2010.40.1.1 PMid:20514742 Winsor C.P., Clarke G.L. 1940. A statistical study of variation in the catch of plankton nets. J. Mar. Res. 3: 1-34. Yentsch C.S., Menzel D.W. 1963. A method for the determination of phytoplankton chlorophyll and pheophytin by fluorescence. Deep Sea Res. 10: 221-231. Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 80 No. S1 (2016); 79-87 Scientia Marina; Vol. 80 Núm. S1 (2016); 79-87 1886-8134 0214-8358 10.3989/scimar.2016.80s1 zooplankton biomass NW Mediterranean spatial distribution short-term variability biomasa de zooplankton Mediterráneo noroccidental distribución espacial variabilidad de corto plazo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2016 ftjscientiamarin https://doi.org/10.3989/scimar.04353.15A https://doi.org/10.3989/scimar.2016.80s1 https://doi.org/10.1111/j.1574-6941.1997.tb00420.x https://doi.org/10.1093/plankt/19.11.1599 https://doi.org/10.1007/BF00350108 https://doi.org/10.1007/s00227-003- 2022-03-20T16:31:34Z The temporal and spatial changes of zooplankton and chlorophyll a concentration were studied during the warm stratification period (early June) at three stations whose traits corresponded to the coastal, frontal, and offshore-dome water conditions described for the Catalan Sea. We sampled the stations for 12 days at a frequency ranging from less than 10 to 102 h, with a spatial resolution ranging from 10 to 104 m. The objective was to determine the variability of mesozooplankton and phytoplankton (chlorophyll a) biomass, and average individual size (mass) across a coast-offshore transect in relation to the stratification conditions prevailing in the NW Mediterranean during summer. The vertical distribution of phytoplankton biomass displayed a clear deep maximum at 60 m depth except at the coastal station. This maximum exists during most of the year and is especially important during the density stratification period. It was accompanied during daylight hours by a coherent zooplankton maximum. At sunset mesozooplankton ascended and dispersed, with larger organisms from deeper layers joining the migrating community and increasing the average individual mass. The highest variability of mesozooplankton biomass, individual mass and chlorophyll a concentration occurred at the front station due to the coupling between the vertical migration of zooplankton and the particular characteristics of the front. According to the data shown, the highest variability was observed at the lowest scales. Durante el periodo de estratificación térmica (principios de junio) se estudiaron los cambios temporales y espaciales de concentración de zooplancton y clorofila a en tres estaciones cuyos rasgos corresponden a las condiciones de aguas costeras, frontal y domo central descritas para el Mar Catalán. Muestreamos las estaciones a lo largo de 12 días con una frecuencia que varió entre 10 h y 102 h, y con una resolución espacial entre 10 y 104 m. El objetivo fue determinar la variabilidad de la biomasa del fitoplancton (clorofila a) y del mesozooplancton, así como de su tamaño individual promedio a lo largo de un transecto costa-mar abierto en relación con las condiciones de estratificación térmica típicas del Mediterráneo del Noroccidental desde finales de primavera a finales de verano. La distribución vertical de la biomasa de fitoplancton mostró la existencia de un máximo profundo a 60 m de profundidad, excepto en la estación costera. Aunque cierta heterogeneidad vertical en la biomasa de fitoplancton suele observarse durante la mayor parte del año, es especialmente importante durante el período de estratificación de densidad. El máximo de fitoplancton estuvo acompañado durante las horas de luz por un máximo de zooplancton, que en la crepúsculo ascendía y se dispersaba, y al que se unían organismos de mayor tamaño procedentes de zonas más profundas, contribuyendo a aumentar la masa individual promedio. La mayor variabilidad de biomasa mesozooplanctónica, de la masa individual y de la concentración de clorofila a se observó en la estación frontal debido al acoplamiento entre la migración vertical del zooplancton y las características particulares del frente. Según los datos presentados la mayor variabilidad fue observada en las escalas espaciales y temporales más bajas. Article in Journal/Newspaper Arctic Scientia Marina (E-Journal) Alta Catalán ENVELOPE(-59.683,-59.683,-62.517,-62.517) Corto ENVELOPE(-60.783,-60.783,-62.450,-62.450) Scientia Marina 80 S1 79 87