An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology

The sagittae otolith morphology of marine fishes has been used in many ecomorphological studies to explain certain ecological adaptations of species to habitat. Our study compares the sagittal otolith shapes of ten species of snappers (Family Lutjanidae) inhabiting the Persian Gulf. We used a morpho...

Full description

Bibliographic Details
Published in:Ecology
Main Authors: Sadighzadeh, Zahra, Otero-Ferrer, Jose Luís, Lombarte, Antoni, Fatemi, Mohammad R., Tuset, Víctor Manuel
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2014
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1537
https://doi.org/10.3989/scimar.03982.16C
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1537
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic otolith
morphology
biodiversity
functional ecology
snappers
Lutjanidae
otolito
morfología
biodiversidad
ecología funcional
pargos
spellingShingle otolith
morphology
biodiversity
functional ecology
snappers
Lutjanidae
otolito
morfología
biodiversidad
ecología funcional
pargos
Sadighzadeh, Zahra
Otero-Ferrer, Jose Luís
Lombarte, Antoni
Fatemi, Mohammad R.
Tuset, Víctor Manuel
An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology
topic_facet otolith
morphology
biodiversity
functional ecology
snappers
Lutjanidae
otolito
morfología
biodiversidad
ecología funcional
pargos
description The sagittae otolith morphology of marine fishes has been used in many ecomorphological studies to explain certain ecological adaptations of species to habitat. Our study compares the sagittal otolith shapes of ten species of snappers (Family Lutjanidae) inhabiting the Persian Gulf. We used a morphometric analysis of the otolith measurements (length, height, perimeter, area and weight) and of the ratio between the area of the sulcus acusticus and the area of the otolith (S:O). The otolith contour was also analysed using wavelets as a mathematical descriptor. Morphological variations in the otoliths were associated with the morphology and external colouration of snappers as well as ecological traits. An analysis of the interspecific S:O ratio suggested that the highest ratios occurred in snappers inhabiting shallower waters. A categorical multivariate analysis, including morphological, ecological and otolith size factors, showed that the species adapted to dim light conditions had a greater otolith perimeter. An analysis of variance of the otolith contour revealed zones with a higher interspecific variability, although only the antero-dorsal zone showed differing patterns. Although the otolith patterns appear to have a phylogenetic component, they might also be related to diel activity rhythms or to the light conditions in the habitat. The results of the study showed that variation in otolith morphology can be used to explain the coexistence of sympatric species. La morfología del otolito sagitta de peces marinos se ha empleado en estudios de ecomorfología al objeto de explicar las adaptaciones ecológicas de las especies al hábitat. Nuestro estudio compara la forma del otolito de diez especies de pargos (familia Lutjanidae) del Golfo Pérsico. El análisis morfológico se realizó a partir de medidas del otolito (longitud, anchura, perímetro, área y peso) y la proporción entre el área del sulcus acusticus y del otolito (S:O). También se analizaron los contornos de los otolitos mediante descriptores matemáticos denominados wavelets. Las variaciones morfológicas en los otolitos se asociaron a la morfología y la coloración externa de los pargos, así como a diversos caracteres ecológicos. Las especies con valores más elevados en la proporción S:O habitan en aguas someras. El análisis multivariante categórico de factores, ecológicos y morfológicos del otolito (forma y tamaño), puso de manifiesto que las especies adaptadas a condiciones tenues de luz presentan el perímetro del otolito más grande. El análisis de varianza del contorno del otolito reveló la presencia de zonas con gran variabilidad inter-específica, si bien solo la parte antero-dorsal permitió distinguir patrones claros de variación. Aunque dichos patrones parecen tener un componente filogenético, también estarían relacionados con el ritmo de actividad diaria o las condiciones de luminosidad en las que viven las especies. Los resultados del este estudio demuestran que la variación morfológica del otolito puede ser usada para explicar la coexistencia de especies simpátricas.
format Article in Journal/Newspaper
author Sadighzadeh, Zahra
Otero-Ferrer, Jose Luís
Lombarte, Antoni
Fatemi, Mohammad R.
Tuset, Víctor Manuel
author_facet Sadighzadeh, Zahra
Otero-Ferrer, Jose Luís
Lombarte, Antoni
Fatemi, Mohammad R.
Tuset, Víctor Manuel
author_sort Sadighzadeh, Zahra
title An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology
title_short An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology
title_full An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology
title_fullStr An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology
title_full_unstemmed An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology
title_sort approach to unraveling the coexistence of snappers (lutjanidae) using otolith morphology
publisher Consejo Superior de Investigaciones Científicas
publishDate 2014
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1537
https://doi.org/10.3989/scimar.03982.16C
genre Arctic
genre_facet Arctic
op_source Scientia Marina; Vol. 78 No. 3 (2014); 353-362
Scientia Marina; Vol. 78 Núm. 3 (2014); 353-362
1886-8134
0214-8358
10.3989/scimar.2014.78n3
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1537/1794
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1537/1746
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1537/1795
Aguirre H., Lombarte A. 1999. Ecomorphological comparisons of sagittae in Mullus barbatus and M. surmuletus. J. Fish. Biol. 55: 105-114.
Aguzzi J., Sbragaglia V., Santamaría G., et al. 2013. Daily activity rhythms in temperate coastal fishes: insights from cabled observatory video monitoring. Mar. Ecol. Prog. Ser. 486: 223-236. http://dx.doi.org/10.3354/meps10399
Aiken K.A. 1993. Jamaica in Marine Fishery Resources of the Lesser Antilles, Puerto Rico & Hispaniola. FAO Fish. Tech. Pap. 326: 1160 -1180.
Allen G.R. 1985. FAO Species Catalogue. Snappers of the world. An annotated and illustrated catalogue of lutjanid species known to date. FAO Fish. Syn. 125: 1-208.
Assadi H., Dehghani P.R. 1997. Atlas of the Persian Gulf and the Sea of Oman Fishes. Iranian Fisheries Research and Training Organization, 226 pp.
Assis C.A. 2003. The lagenar otoliths of teleosts: their morphology and its application in species identification, phylogeny and systematics. J. Fish Biol. 62: 1268-1295. http://dx.doi.org/10.1046/j.1095-8649.2003.00106.x
Assis C.A. 2005. The utricular otoliths, lapilli, of teleosts: their morphology and relevance for species identification and systematics studies. Sci. Mar. 69: 259-273.
Appeldoorn R.S., Meyers S. 1993. Puerto Rico and Hispaniola. FAO Fish. Tech. Pap. 326: 99-159.
Atema J., Fay R.R., Popper A.N., et al. 1988. Sensory Biology of Aquatic Animals. Springer Verlag, 936 pp. http://dx.doi.org/10.1007/978-1-4612-3714-3
Azzurro E., Aguzzi J., Maynou F., et al. 2013. Diel rhythms in shallow Mediterranean rocky-reef fishes: a chronobiological approach with the help of trained volunteers. J. Mar. Biol. Assoc. U.K. 93: 461-470. http://dx.doi.org/10.1017/S0025315412001166
Baisre J.A. 2000. Chronicle of Cuban marine fisheries (1935-1995). Trend analysis and fisheries potential. FAO Fish. Tech. Pap. 394: 1-26.
Blacker R.W. 1969. Chemical composition of the zones in cod (Gadus morhua L.) otoliths. J. Cons. Int. Explor. Mer 33: 107-108. http://dx.doi.org/10.1093/icesjms/33.1.107
Carlström D. 1963. A crystalographic study of vertebrate otoliths. Biol. Bull. 125: 441-463. http://dx.doi.org/10.2307/1539358
Cerme-o P., Morales-Nin B., Uriarte A. 2006. Juvenile European anchovy otolith microstructure. Sci. Mar. 70: 553-557.
Cervigón F. 1993. Los peces marinos de Venezuela. Volume 2. Fundación Científica Los Roques, Caracas, Venezuela, 954 pp.
Claro R., Lindeman K.C., Parenti L.R. 2001. Ecology of the marine fishes of Cuba. Smithsonian Institution Press, Washington, 253 pp. PMCid:PMC1621142
Cocheret de la Moriniére E., Pollux B.Y.A., Nagelkerken I., et al. 2003. Diet shifts Caribbean grunts (Haemulidae) and snappers (Lutjanidae) and the relation with nursery-to-coral reef migrations. Estuar. Coast. Shelf Sci. 57: 1079-1089. http://dx.doi.org/10.1016/S0272-7714(03)00011-8
Collar D.C., Wainwright P.C. 2009. Ecomorphology of centrarchid fishes. In: Cook S.J., Philipp D.P. (eds), Centrarchid fishes: diversity, biology and conservation. Blackwell Scientific Press, pp. 70-89. http://dx.doi.org/10.1002/9781444316032.ch3
Colmenero A.I., Aguzzi J., Lombarte A., et al. 2010. Sensory constraints in temporal segregation in two species of anglerfish, Lophius budegassa and L. piscatorius. Mar. Ecol. Prog. Ser. 416: 255-265. http://dx.doi.org/10.3354/meps08766
Cruz A., Lombarte A. 2004. Otolith size and its relationship with colour patterns and sound production. J. Fish Biol. 65: 1512-1525. http://dx.doi.org/10.1111/j.0022-1112.2004.00558.x
Cuesta-Albertos J.A., Febrero-Bande M. 2010. A simple multiway ANOVA for functional data. Test 19: 537-557. http://dx.doi.org/10.1007/s11749-010-0185-3
Degens E.T., Deuser W.G., Haedrich R.L. 1969. Molecular structure and composition of fish otoliths. Mar. Biol. 2: 105-113. http://dx.doi.org/10.1007/BF00347005
Deng X., Wagner H.J., Popper A.N. 2011. The inner ear and its coupling to the swim bladder in the deep-sea fish Antimora rostrata (Teleostei: Moridae). Deep Sea Res. Part I Oceanogr. Res. Pap. 58: 27-37. http://dx.doi.org/10.1016/j.dsr.2010.11.001 PMid:21532967 PMCid:PMC3082141
Deng X., Wagner H.J. Popper A.N. 2013. Interspecific variations of inner ear structure in the deep-sea fish family Melamphaidae. Anat. Rec. 296: 1064-1082. http://dx.doi.org/10.1002/ar.22703 PMid:23625740
Druzhinin A.D. 1970. The range and biology of snappers (Family Lutjanidae). J. Ichthyol. 10: 717-736.
Febrero-Bande M., Oviedo de la Fuente M. 2011. fda.usc: Functional Data Analysis and Utilities for Statistical Computing (fda.usc). R package version 0.9.5.
Fox R.J., Bellwood D.R. 2011. Unconstrained by the clock? Plasticity if diel activity rhythm in a tropical reef fish, Siganus lineatus. Funct. Ecol. 25: 1096-1105. http://dx.doi.org/10.1111/j.1365-2435.2011.01874.x
Froese R., Pauly D. 2011. FishBase. World Wide Web electronic publication.
Gauldie R.W. 1988. Function, form and time-keeping properties of fish otoliths. Comp. Biochem. Physiol. Part A 91: 395-402. http://dx.doi.org/10.1016/0300-9629(88)90436-7
Gauldie R.W., Crampton J.S. 2002. An ecomorphological explication of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. J. Fish Biol. 60: 1221-1240. http://dx.doi.org/10.1111/j.1095-8649.2002.tb01715.x
Holt S.A. 2002. Intra- and inter-day variability in sound production by red drum (Sciaenidae) at a spawning site. Bioacoustics 12: 227-229. http://dx.doi.org/10.1080/09524622.2002.9753704
Jonsson B., Jonsson N. 2001. Polymorphism and speciation in Arctic charr. J. Fish Biol. 58: 605-638. http://dx.doi.org/10.1111/j.1095-8649.2001.tb00518.x
Kuiter R.H., Tonozuka T. 2001. Pictorial guide to Indonesian reef fishes. Part 1 eels-snappers, Muraenidae-Lutjanidae. Zoonetics, Australia, 302 pp.
Lombarte A. 1992 Changes in otolith area:sensory area ratio with body size and depth. Environ. Biol. Fish. 33: 405-410. http://dx.doi.org/10.1007/BF00010955
Lombarte A., Cruz A. 2007. Otolith size trends in marine fish communities from different depth strata. J. Fish Biol. 71: 53-76. http://dx.doi.org/10.1111/j.1095-8649.2007.01465.x
Lombarte A., Fortu-o J.M. 1992. Differences in morphological features of the sacculus of the inner ear of two hakes (Merluccius capensis and M. paradoxus, Gadiformes) inhabits from different depth of sea. J. Morphol. 214: 97-107. http://dx.doi.org/10.1002/jmor.1052140107
Lombarte A., Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fish. 37: 297-306. http://dx.doi.org/10.1007/BF00004637
Lombarte A., Palmer M., Matallanas J., et al. 2010. Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environ. Biol. Fish. 89: 607-618. http://dx.doi.org/10.1007/s10641-010-9673-2
Luczkovich J.J., Norton S.R., Gilmore R.G. 1995. The influence of oral anatomy on prey selection during the ontogeny of two percoid fishes, Lagodon rhomboides and Centropomus undecimalis. Environ. Biol. Fish. 44: 79-95. http://dx.doi.org/10.1007/BF00005908
Luczkovich J.J., Sprague M.W., Johnson S.E., et al. 1999. Delimiting spawning areas of weakfish Cynoscion regalis (Family Sciaenidae) in Pamlico Sound, North Carolina using passive hydroacoustic surveys. Bioacoustics 10: 143–160. http://dx.doi.org/10.1080/09524622.1999.9753427
Lychakov D.V., Rebane Y.T. 2000. Otolith regularities. Hear. Res. 143: 83-102. http://dx.doi.org/10.1016/S0378-5955(00)00026-5
Mallat S. 1991. Zero-crossings of a wavelet transform. IEEE Trans. Inform. Theory 37: 1019-1033. http://dx.doi.org/10.1109/18.86995
Martinez-Andrade F. 2003. A comparison of life histories and ecological aspects among snappers (Pisces: Lutjanidae). PhD thesis, Lousiana State University, 194 pp.
Meakin C., Qin J. 2011. Growth, behaviour and colour changes of juvenile King George whiting (Silaginodes punctata) mediated by light intensities. New Zealand J. Mar. Freshw. Res. 46: 111-123. http://dx.doi.org/10.1080/00288330.2011.608687
Meulman J.J., Heiser W.J. 2005. Categories 14.0. CD Rom. SPSS Inc., Chicago.
Miller T.L., Cribb T.H. 2007. Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes: Lutjanidae) based on mitochondrial DNA sequences with comments on the taxonomic position of the Caesioninae. Mol. Phyl. Evol. 44: 450-460. http://dx.doi.org/10.1016/j.ympev.2006.10.029 PMid:17188002
Mittelbach G.G. 1984. Predation and resource partitioning in two sunfishes (Centrarchidae). Ecology 65: 499-513. http://dx.doi.org/10.2307/1941412
op_rights Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.03982.16C
https://doi.org/10.3989/scimar.2014.78n3
https://doi.org/10.3354/meps10399
https://doi.org/10.1046/j.1095-8649.2003.00106.x
https://doi.org/10.1007/978-1-4612-3714-3
https://doi.org/10.1017/S0025315412001
container_title Ecology
container_volume 100
container_issue 8
_version_ 1766302634277339136
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1537 2023-05-15T14:28:28+02:00 An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith morphology Una aproximación a la comprensión de la coexistencia de pargos (Lutjanidae) a partir de la morfología del otolito Sadighzadeh, Zahra Otero-Ferrer, Jose Luís Lombarte, Antoni Fatemi, Mohammad R. Tuset, Víctor Manuel 2014-09-30 text/html application/pdf text/xml https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1537 https://doi.org/10.3989/scimar.03982.16C eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1537/1794 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1537/1746 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1537/1795 Aguirre H., Lombarte A. 1999. Ecomorphological comparisons of sagittae in Mullus barbatus and M. surmuletus. J. Fish. Biol. 55: 105-114. Aguzzi J., Sbragaglia V., Santamaría G., et al. 2013. Daily activity rhythms in temperate coastal fishes: insights from cabled observatory video monitoring. Mar. Ecol. Prog. Ser. 486: 223-236. http://dx.doi.org/10.3354/meps10399 Aiken K.A. 1993. Jamaica in Marine Fishery Resources of the Lesser Antilles, Puerto Rico & Hispaniola. FAO Fish. Tech. Pap. 326: 1160 -1180. Allen G.R. 1985. FAO Species Catalogue. Snappers of the world. An annotated and illustrated catalogue of lutjanid species known to date. FAO Fish. Syn. 125: 1-208. Assadi H., Dehghani P.R. 1997. Atlas of the Persian Gulf and the Sea of Oman Fishes. Iranian Fisheries Research and Training Organization, 226 pp. Assis C.A. 2003. The lagenar otoliths of teleosts: their morphology and its application in species identification, phylogeny and systematics. J. Fish Biol. 62: 1268-1295. http://dx.doi.org/10.1046/j.1095-8649.2003.00106.x Assis C.A. 2005. The utricular otoliths, lapilli, of teleosts: their morphology and relevance for species identification and systematics studies. Sci. Mar. 69: 259-273. Appeldoorn R.S., Meyers S. 1993. Puerto Rico and Hispaniola. FAO Fish. Tech. Pap. 326: 99-159. Atema J., Fay R.R., Popper A.N., et al. 1988. Sensory Biology of Aquatic Animals. Springer Verlag, 936 pp. http://dx.doi.org/10.1007/978-1-4612-3714-3 Azzurro E., Aguzzi J., Maynou F., et al. 2013. Diel rhythms in shallow Mediterranean rocky-reef fishes: a chronobiological approach with the help of trained volunteers. J. Mar. Biol. Assoc. U.K. 93: 461-470. http://dx.doi.org/10.1017/S0025315412001166 Baisre J.A. 2000. Chronicle of Cuban marine fisheries (1935-1995). Trend analysis and fisheries potential. FAO Fish. Tech. Pap. 394: 1-26. Blacker R.W. 1969. Chemical composition of the zones in cod (Gadus morhua L.) otoliths. J. Cons. Int. Explor. Mer 33: 107-108. http://dx.doi.org/10.1093/icesjms/33.1.107 Carlström D. 1963. A crystalographic study of vertebrate otoliths. Biol. Bull. 125: 441-463. http://dx.doi.org/10.2307/1539358 Cerme-o P., Morales-Nin B., Uriarte A. 2006. Juvenile European anchovy otolith microstructure. Sci. Mar. 70: 553-557. Cervigón F. 1993. Los peces marinos de Venezuela. Volume 2. Fundación Científica Los Roques, Caracas, Venezuela, 954 pp. Claro R., Lindeman K.C., Parenti L.R. 2001. Ecology of the marine fishes of Cuba. Smithsonian Institution Press, Washington, 253 pp. PMCid:PMC1621142 Cocheret de la Moriniére E., Pollux B.Y.A., Nagelkerken I., et al. 2003. Diet shifts Caribbean grunts (Haemulidae) and snappers (Lutjanidae) and the relation with nursery-to-coral reef migrations. Estuar. Coast. Shelf Sci. 57: 1079-1089. http://dx.doi.org/10.1016/S0272-7714(03)00011-8 Collar D.C., Wainwright P.C. 2009. Ecomorphology of centrarchid fishes. In: Cook S.J., Philipp D.P. (eds), Centrarchid fishes: diversity, biology and conservation. Blackwell Scientific Press, pp. 70-89. http://dx.doi.org/10.1002/9781444316032.ch3 Colmenero A.I., Aguzzi J., Lombarte A., et al. 2010. Sensory constraints in temporal segregation in two species of anglerfish, Lophius budegassa and L. piscatorius. Mar. Ecol. Prog. Ser. 416: 255-265. http://dx.doi.org/10.3354/meps08766 Cruz A., Lombarte A. 2004. Otolith size and its relationship with colour patterns and sound production. J. Fish Biol. 65: 1512-1525. http://dx.doi.org/10.1111/j.0022-1112.2004.00558.x Cuesta-Albertos J.A., Febrero-Bande M. 2010. A simple multiway ANOVA for functional data. Test 19: 537-557. http://dx.doi.org/10.1007/s11749-010-0185-3 Degens E.T., Deuser W.G., Haedrich R.L. 1969. Molecular structure and composition of fish otoliths. Mar. Biol. 2: 105-113. http://dx.doi.org/10.1007/BF00347005 Deng X., Wagner H.J., Popper A.N. 2011. The inner ear and its coupling to the swim bladder in the deep-sea fish Antimora rostrata (Teleostei: Moridae). Deep Sea Res. Part I Oceanogr. Res. Pap. 58: 27-37. http://dx.doi.org/10.1016/j.dsr.2010.11.001 PMid:21532967 PMCid:PMC3082141 Deng X., Wagner H.J. Popper A.N. 2013. Interspecific variations of inner ear structure in the deep-sea fish family Melamphaidae. Anat. Rec. 296: 1064-1082. http://dx.doi.org/10.1002/ar.22703 PMid:23625740 Druzhinin A.D. 1970. The range and biology of snappers (Family Lutjanidae). J. Ichthyol. 10: 717-736. Febrero-Bande M., Oviedo de la Fuente M. 2011. fda.usc: Functional Data Analysis and Utilities for Statistical Computing (fda.usc). R package version 0.9.5. Fox R.J., Bellwood D.R. 2011. Unconstrained by the clock? Plasticity if diel activity rhythm in a tropical reef fish, Siganus lineatus. Funct. Ecol. 25: 1096-1105. http://dx.doi.org/10.1111/j.1365-2435.2011.01874.x Froese R., Pauly D. 2011. FishBase. World Wide Web electronic publication. Gauldie R.W. 1988. Function, form and time-keeping properties of fish otoliths. Comp. Biochem. Physiol. Part A 91: 395-402. http://dx.doi.org/10.1016/0300-9629(88)90436-7 Gauldie R.W., Crampton J.S. 2002. An ecomorphological explication of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. J. Fish Biol. 60: 1221-1240. http://dx.doi.org/10.1111/j.1095-8649.2002.tb01715.x Holt S.A. 2002. Intra- and inter-day variability in sound production by red drum (Sciaenidae) at a spawning site. Bioacoustics 12: 227-229. http://dx.doi.org/10.1080/09524622.2002.9753704 Jonsson B., Jonsson N. 2001. Polymorphism and speciation in Arctic charr. J. Fish Biol. 58: 605-638. http://dx.doi.org/10.1111/j.1095-8649.2001.tb00518.x Kuiter R.H., Tonozuka T. 2001. Pictorial guide to Indonesian reef fishes. Part 1 eels-snappers, Muraenidae-Lutjanidae. Zoonetics, Australia, 302 pp. Lombarte A. 1992 Changes in otolith area:sensory area ratio with body size and depth. Environ. Biol. Fish. 33: 405-410. http://dx.doi.org/10.1007/BF00010955 Lombarte A., Cruz A. 2007. Otolith size trends in marine fish communities from different depth strata. J. Fish Biol. 71: 53-76. http://dx.doi.org/10.1111/j.1095-8649.2007.01465.x Lombarte A., Fortu-o J.M. 1992. Differences in morphological features of the sacculus of the inner ear of two hakes (Merluccius capensis and M. paradoxus, Gadiformes) inhabits from different depth of sea. J. Morphol. 214: 97-107. http://dx.doi.org/10.1002/jmor.1052140107 Lombarte A., Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fish. 37: 297-306. http://dx.doi.org/10.1007/BF00004637 Lombarte A., Palmer M., Matallanas J., et al. 2010. Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environ. Biol. Fish. 89: 607-618. http://dx.doi.org/10.1007/s10641-010-9673-2 Luczkovich J.J., Norton S.R., Gilmore R.G. 1995. The influence of oral anatomy on prey selection during the ontogeny of two percoid fishes, Lagodon rhomboides and Centropomus undecimalis. Environ. Biol. Fish. 44: 79-95. http://dx.doi.org/10.1007/BF00005908 Luczkovich J.J., Sprague M.W., Johnson S.E., et al. 1999. Delimiting spawning areas of weakfish Cynoscion regalis (Family Sciaenidae) in Pamlico Sound, North Carolina using passive hydroacoustic surveys. Bioacoustics 10: 143–160. http://dx.doi.org/10.1080/09524622.1999.9753427 Lychakov D.V., Rebane Y.T. 2000. Otolith regularities. Hear. Res. 143: 83-102. http://dx.doi.org/10.1016/S0378-5955(00)00026-5 Mallat S. 1991. Zero-crossings of a wavelet transform. IEEE Trans. Inform. Theory 37: 1019-1033. http://dx.doi.org/10.1109/18.86995 Martinez-Andrade F. 2003. A comparison of life histories and ecological aspects among snappers (Pisces: Lutjanidae). PhD thesis, Lousiana State University, 194 pp. Meakin C., Qin J. 2011. Growth, behaviour and colour changes of juvenile King George whiting (Silaginodes punctata) mediated by light intensities. New Zealand J. Mar. Freshw. Res. 46: 111-123. http://dx.doi.org/10.1080/00288330.2011.608687 Meulman J.J., Heiser W.J. 2005. Categories 14.0. CD Rom. SPSS Inc., Chicago. Miller T.L., Cribb T.H. 2007. Phylogenetic relationships of some common Indo-Pacific snappers (Perciformes: Lutjanidae) based on mitochondrial DNA sequences with comments on the taxonomic position of the Caesioninae. Mol. Phyl. Evol. 44: 450-460. http://dx.doi.org/10.1016/j.ympev.2006.10.029 PMid:17188002 Mittelbach G.G. 1984. Predation and resource partitioning in two sunfishes (Centrarchidae). Ecology 65: 499-513. http://dx.doi.org/10.2307/1941412 Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 78 No. 3 (2014); 353-362 Scientia Marina; Vol. 78 Núm. 3 (2014); 353-362 1886-8134 0214-8358 10.3989/scimar.2014.78n3 otolith morphology biodiversity functional ecology snappers Lutjanidae otolito morfología biodiversidad ecología funcional pargos info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2014 ftjscientiamarin https://doi.org/10.3989/scimar.03982.16C https://doi.org/10.3989/scimar.2014.78n3 https://doi.org/10.3354/meps10399 https://doi.org/10.1046/j.1095-8649.2003.00106.x https://doi.org/10.1007/978-1-4612-3714-3 https://doi.org/10.1017/S0025315412001 2022-03-20T16:31:28Z The sagittae otolith morphology of marine fishes has been used in many ecomorphological studies to explain certain ecological adaptations of species to habitat. Our study compares the sagittal otolith shapes of ten species of snappers (Family Lutjanidae) inhabiting the Persian Gulf. We used a morphometric analysis of the otolith measurements (length, height, perimeter, area and weight) and of the ratio between the area of the sulcus acusticus and the area of the otolith (S:O). The otolith contour was also analysed using wavelets as a mathematical descriptor. Morphological variations in the otoliths were associated with the morphology and external colouration of snappers as well as ecological traits. An analysis of the interspecific S:O ratio suggested that the highest ratios occurred in snappers inhabiting shallower waters. A categorical multivariate analysis, including morphological, ecological and otolith size factors, showed that the species adapted to dim light conditions had a greater otolith perimeter. An analysis of variance of the otolith contour revealed zones with a higher interspecific variability, although only the antero-dorsal zone showed differing patterns. Although the otolith patterns appear to have a phylogenetic component, they might also be related to diel activity rhythms or to the light conditions in the habitat. The results of the study showed that variation in otolith morphology can be used to explain the coexistence of sympatric species. La morfología del otolito sagitta de peces marinos se ha empleado en estudios de ecomorfología al objeto de explicar las adaptaciones ecológicas de las especies al hábitat. Nuestro estudio compara la forma del otolito de diez especies de pargos (familia Lutjanidae) del Golfo Pérsico. El análisis morfológico se realizó a partir de medidas del otolito (longitud, anchura, perímetro, área y peso) y la proporción entre el área del sulcus acusticus y del otolito (S:O). También se analizaron los contornos de los otolitos mediante descriptores matemáticos denominados wavelets. Las variaciones morfológicas en los otolitos se asociaron a la morfología y la coloración externa de los pargos, así como a diversos caracteres ecológicos. Las especies con valores más elevados en la proporción S:O habitan en aguas someras. El análisis multivariante categórico de factores, ecológicos y morfológicos del otolito (forma y tamaño), puso de manifiesto que las especies adaptadas a condiciones tenues de luz presentan el perímetro del otolito más grande. El análisis de varianza del contorno del otolito reveló la presencia de zonas con gran variabilidad inter-específica, si bien solo la parte antero-dorsal permitió distinguir patrones claros de variación. Aunque dichos patrones parecen tener un componente filogenético, también estarían relacionados con el ritmo de actividad diaria o las condiciones de luminosidad en las que viven las especies. Los resultados del este estudio demuestran que la variación morfológica del otolito puede ser usada para explicar la coexistencia de especies simpátricas. Article in Journal/Newspaper Arctic Scientia Marina (E-Journal) Ecology 100 8