Genetic divergence of tanaidaceans (Crustacea: Peracarida) with low dispersal ability

In this study, the phylogeographic patterns of nuclear, ribosomal and mtDNA gene fragments of five tanaidacean species (Zeuxo, Tanaidae) from the Atlantic, Pacific and Mediterranean Sea were investigated. We aimed to interpret results in the framework of current hypotheses on the distribution of sma...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Larsen, Kim, Tuya, Fernando, Froufe, Elsa
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2014
Subjects:
28S
H3
COI
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1496
https://doi.org/10.3989/scimar.03878.19A
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1496
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic genetic divergence
morphological differences
28S
H3
COI
Crustacea
Tanaidacea
Zeuxo
diferencias genéticas
diferencias morfológicas
crustáceos
tanaidáceos
spellingShingle genetic divergence
morphological differences
28S
H3
COI
Crustacea
Tanaidacea
Zeuxo
diferencias genéticas
diferencias morfológicas
crustáceos
tanaidáceos
Larsen, Kim
Tuya, Fernando
Froufe, Elsa
Genetic divergence of tanaidaceans (Crustacea: Peracarida) with low dispersal ability
topic_facet genetic divergence
morphological differences
28S
H3
COI
Crustacea
Tanaidacea
Zeuxo
diferencias genéticas
diferencias morfológicas
crustáceos
tanaidáceos
description In this study, the phylogeographic patterns of nuclear, ribosomal and mtDNA gene fragments of five tanaidacean species (Zeuxo, Tanaidae) from the Atlantic, Pacific and Mediterranean Sea were investigated. We aimed to interpret results in the framework of current hypotheses on the distribution of small invertebrates with very limited dispersal ability. Evidence for a surprisingly high genetic divergence was found for intertidal tanaidaceans from the North Atlantic. This is a result of poor dispersal potential, as tanaidaceans have direct development, no pelagic stage, and very limited swimming capacity. However, lower genetic divergence was found between an intertidal tanaid species from the North Atlantic and two from the North Pacific, which suggests a scenario of recent colonization following the last glacial maximum. The species Zeuxo normani was found to be a species complex consisting, at least, of Z. normani (California), Z. cf. normani (Japan), Z. cf. normani (Australia), Z. sp. A (Korea), and Z. holdichi (Spain and France). Our results showed that traditional species identification underestimates tanaidacean diversity and that what have been previously perceived as reliable diagnostic morphological characters, are, however, variable and unreliable. En este estudio, investigamos los patrones filogeográficos de fragmentos de ADN nuclear, ribosómico y mitocondrial de 5 especies de tanaidáceos (Zeuxo, Tanaidae) del Atlántico, Pacífico y Mediterráneo. Nos propusimos interpretar los resultados en el marco de hipótesis sobre la distribución de pequeños invertebrados con limitada capacidad de dispersión. Encontramos evidencia de una sorprendentemente alta diferenciación genética para tanaidáceos del medio intermareal del Atlántico Norte. Esto es resultado de una limitada capacidad de dispersión, ya que los tanaidáceos poseen desarrollo directo, carecen de estadíos pelágicos, y una limitada capacidad natatoria. Sin embargo, encontramos una baja diferenciación genética para una especie de tanaidáceo del Atlántico Norte y dos del Pacífico Norte, lo que sugiere un escenario de reciente colonización tras la última glaciación. La especie Zeuxo normani constituye un complejo de especies que, al menos, agrupa a Z. normani (Califonia), Z. cf. normani (Japón), Z. cf. normani (Australia), Z. sp. A (Corea) y Z. holdichi (España y Francia). Nuestros resultados mostraron que la forma tradicional de identificar tanaidáceos subestima su diversidad y que lo que previamente se consideraron como caracteres morfológicos claramente diferenciadores son, sin embargo, variables y poco fiables.
format Article in Journal/Newspaper
author Larsen, Kim
Tuya, Fernando
Froufe, Elsa
author_facet Larsen, Kim
Tuya, Fernando
Froufe, Elsa
author_sort Larsen, Kim
title Genetic divergence of tanaidaceans (Crustacea: Peracarida) with low dispersal ability
title_short Genetic divergence of tanaidaceans (Crustacea: Peracarida) with low dispersal ability
title_full Genetic divergence of tanaidaceans (Crustacea: Peracarida) with low dispersal ability
title_fullStr Genetic divergence of tanaidaceans (Crustacea: Peracarida) with low dispersal ability
title_full_unstemmed Genetic divergence of tanaidaceans (Crustacea: Peracarida) with low dispersal ability
title_sort genetic divergence of tanaidaceans (crustacea: peracarida) with low dispersal ability
publisher Consejo Superior de Investigaciones Científicas
publishDate 2014
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1496
https://doi.org/10.3989/scimar.03878.19A
geographic Alta
Baja
Pacific
geographic_facet Alta
Baja
Pacific
genre Arctic
North Atlantic
genre_facet Arctic
North Atlantic
op_source Scientia Marina; Vol. 78 No. 1 (2014); 81-90
Scientia Marina; Vol. 78 Núm. 1 (2014); 81-90
1886-8134
0214-8358
10.3989/scimar.2014.78n1
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1496/1676
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1496/1631
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1496/1677
Addison J.A., Hart. M.W. 2005. Colonization, dispersal and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59(3): 532-543. PMid:15856696
Audzijonytė A., Damgaard J., Varvio S.-L., Vainio J.K., Väinölä R. 2005. Phylogeny of Mysis (Crustacea, Mysida): history of continental invasions inferred from molecular and morphological data. Cladistics 21(6): 575-596. http://dx.doi.org/10.1111/j.1096-0031.2005.00081.x
Bamber R.N. 1990. A new species of Zeuxo (Crustacea: Tanaidacea) from the French Atlantic Coast. J. Nat. His. 24: 1587-1596. http://dx.doi.org/10.1080/00222939000770911
Bamber R.N. 2010. In the footsteps of Henrik Nikolaj Krøyer: the rediscovery and redescription of Leptochelia savignyi (Krøyer, 1842) sensu stricto (Crustacea: Tanaidacea: Leptocheliidae). Proc. Biol. Soc. Wash. 123: 289-311. http://dx.doi.org/10.2988/10-14.1
Bamber R.N. 2012a. Littoral Tanaidacea (Crustacea: Peracarida) from Macaronesia: allopatry and provenance in recent habitats. J. Mar. Biol. Ass. UK 92(5): 1095-1116. http://dx.doi.org/10.1017/S0025315412000252
Bamber R.N. 2012b. A re-assessment of Hexapleomera Dudich, 1931 Crustacea: Tanaidacea: Tanaidae), with designation of three new species. Zootaxa 3583: 51-70.
Bamber R.N., Błazewicz-Paszkowycz M. 2013. Another inordinate fondness: diversity of the tanaidacean fauna of Australia, with description of three new taxa. J. Nat. His. 47: 1767-1789. http://dx.doi.org/10.1080/00222933.2012.742164
Bird G.J. 2008. Untying the Gordian Knot: on Tanais novaezealandiae Thomson (Crustacea, Tanaidacea, Tanaidae) from New Zealand, with descriptions of two new Zeuxoides species. Zootaxa 1877: 1-36.
Bird G.J., Larsen K. 2009. Tanaidacean Phylogeny: The second step. The basal Paratanaoidean families. Arthr. Syst. Phyl. 67: 137-158.
Blazewicz-Paszkowycz M., Bamber R., Anderson G. 2012. Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans – How far have we come? PloS One 7(4): 1-11. http://dx.doi.org/10.1371/journal.pone.0033068 PMid:22496741 PMCid:PMC3319556
Cacabelos E., Lourido A., Troncoso J.S. 2010. Composition and distribution of subtidal and intertidal crustacean assemblages in soft-bottoms of the Ria de Vigo (NW Spain). Sci. Mar. 74(3): 455-464. http://dx.doi.org/10.3989/scimar.2010.74n3455
Colgan D.J., MacLauchlan A., Wilson G.D.F., Livingston S.P., Edgecombe G.D., Macaranas J., Cassis G., Gray M.R. 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust. J. Zool. 46: 419-437. http://dx.doi.org/10.1071/ZO98048
Coyer J.A., Diekmann O.E., Serrão E.A., Procaccini G., Milchakova N., Pearson G.A., Stam W.T., Olsen J.L. 2004. Population genetics of dwarf eelgrass Zostera noltii throughout its biogeographic range. Mar. Ecol. Prog. Ser. 281: 51-62. http://dx.doi.org/10.3354/meps281051
Delille D., Guidi L.D., Soyer J. 1985. Nutrition of Allotanais hirsutus (Crustacea, Tanaidacea) at Kerguelen Islands. In: Siegfried W.R., Condy P.R., Laws R.M. (eds) Antarctic nutrient cycles and food webs. Berlin, Springer-Verlag, pp. 378-380. http://dx.doi.org/10.1007/978-3-642-82275-9_53
Drumm D.T. 2010. Phylogenetic relationships of Tanaidacea (Eumalacostraca: Peracarida) inferred from three molecular loci. J. Crust. Biol. 30: 692-698. http://dx.doi.org/10.1651/10-3299.1
Edgar G.J. 2008. Shallow water Tanaidae (Crustacea: Tanaidacea) of Australia. Zootaxa 1836: 1-92.
Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotec. 3: 294-299. PMid:7881515
Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. http://dx.doi.org/10.1080/10635150390235520 PMid:14530136
Greve L. 1974. Anatanais normani (Richardson) found near Bermuda and notes on other Anatanais species. Sarsia 55: 115-120.
Hall T.A. 1999. Bioedit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Aci. Symp. 41: 95-98.
Hardy S.M., Carr, C.M., Hardman, M., Steinke, D., Corstorphine, E. Mah, C. 2011. Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools. Mar. Biodiv. 41: 195-210. http://dx.doi.org/10.1007/s12526-010-0056-x
Harrison M.K., Crespi B.J. 1999. Phylogenetics of Cancer Crabs (Crustacea: Decapoda: Brachyura). Mol. Phylo. Evol. 12(2): 186-199. http://dx.doi.org/10.1006/mpev.1998.0608 PMid:10381321
Hewitt G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247-276. http://dx.doi.org/10.1111/j.1095-8312.1996.tb01434.x
Hewitt G.M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 183-195. http://dx.doi.org/10.1098/rstb.2003.1388 PMid:15101575 PMCid:PMC1693318
Katoh K., Kuma K., Toh H., Miyata T. 2005. MAFFT version 806 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33(2): 511-518. http://dx.doi.org/10.1093/nar/gki198 PMid:15661851 PMCid:PMC548345
Kettle A.J., Morales-Mu-iz A., Roselló-Izquierdo E., Heinrich D., Vøllestad L.A. 2010. Refugia of marine fish in the Northeast Atlantic during the Last Glacial Maximum: concordant assessment from archaeozoology and palaeotemperature reconstructions. Clim. Past Dis. 6: 1351-1389. http://dx.doi.org/10.5194/cpd-6-1351-2010
Knowlton N. 1993. Sibling species in the sea. Ann. Rev. Eco. Syst. 24: 189-216. http://dx.doi.org/10.1146/annurev.es.24.110193.001201
Kudinova-Pasternak R.K. 1989. A supplement to the fauna of Tanaidacea (Crustacea) of Kurile Islands and the description of Zeuxo beringi sp. n. (Commander Islands). Zool. Zhur. 68: 128-130.
Larsen K. 2001. Morphological and molecular investigation of polymorphism and cryptic species in tanaid crustaceans: implications for tanaid systematics and biodiversity estimates. Zool. J. Linn. Soc. 131: 353-379. http://dx.doi.org/10.1111/j.1096-3642.2001.tb02241.x
Larsen K. 2005. Deep-sea Tanaidacea (Peracarida) from the Gulf of Mexico. Crust. Mono. 5, Brill, Leiden, 381 pp.
Larsen K., Froufe E. 2010. Identification of polymorphic species within groups of morphologically conservative taxa: combining morphological and molecular techniques. In: Nimis P.L., Vignes-Lebbe R. (eds) Tools for Identifying Biodiversity: progress and problems. Trieste, University of Trieste, pp. 301-305.
Larsen K., Froufe E. 2013. A new polymorphic species of Leptochelia (Crustacea: Tanaidacea) from Guinea Bissau, West Africa, with comments of genetic variation within Leptochelia. Afric. Invert. 54 (1): 105-125. http://dx.doi.org/10.5733/afin.054.0105
Larsen K., Wilson G.D.F. 1998. Tanaidomorphan systematics—is it obsolete? J. Crust. Biol. 18: 346-362. http://dx.doi.org/10.2307/1549329
Larsen K., Wilson G.D.F. 2002. Tanaidacean phylogeny. The first step: the superfamily Paratanaidoidea. J. Zool. Sys. Evol. Res. 40: 205-222. http://dx.doi.org/10.1046/j.1439-0469.2002.00193.x
Larsen K., Nagaoka R., Froufe E. 2012. Tanaidacea (Crustacea) from Macaronesia III. The shallow-water Tanaidomorpha from the Cape Verde archipelago. Zootaxa 3498: 24-44.
Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. http://dx.doi.org/10.1093/bioinformatics/btp187 PMid:19346325
Luttikhuizen P.C., Campos J., van Bleijswijk J., Peijnenburg K.T.C.A., van der Veer H.W. 2008. Phylogeography of the common shrimp, Crangon crangon (L.) across its distribution range. Mol. Phyl. Evol. 46: 1015-1030. http://dx.doi.org/10.1016/j.ympev.2007.11.011 PMid:18207428
Maggs C.A., Castilho R., Foltz D., Henzler C., Jolly M.T., Kelly J., Olson J., Perez K.E., Stam W., Vainola R., Viard F., Wares, J. 2008. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89: 108-122. http://dx.doi.org/10.1890/08-0257.1
Meehan B.W., Carlton J.T., Wenne R. 1989. Genetic affinities of the bivalve Macoma balthica from the Pacific coast of North America: evidence of recent introduction and historical distribution. Mar. Biol. 102: 235-241. http://dx.doi.org/10.1007/BF00428285
Palumbi S.R., Kessing B.D. 1991. Population biology of the trans-Arctic exchange: MtDNA sequence similarity between Pacific and Atlantic sea urchins. Evol. 45: 1790-1805. http://dx.doi.org/10.2307/2409832
Palumbi S.R., Wilson A.C. 1990. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evol. 44: 403-415. http://dx.doi.org/10.2307/2409417
Pelc R.A., Warner R.R., Gaines S.D. 2009. Geographical patterns of genetic structure in marine species with contrasting life histories. J. Biogeogr. 36: 1881-1890. http://dx.doi.org/10.1111/j.1365-2699.2009.02138.x
Petit R.J., Aguinagalde I., de Beaulieu J.-L., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M., Mohanty A., Muller-Starck G., Demesure-Musch B., Palmé A., Martín J. P., Rendell S., Vendramin G.G. 2003. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300: 1563-1565. http://dx.doi.org/10.1126/science.1083264 PMid:12791991
Pires A.M.S. 1980. Ecological studies on intertidal and infralittoral Brazilian Tanaidacea (Crustacea) (Peracarida). Stud. Neotrop. Fau. Envir. 15: 141-153. http://dx.doi.org/10.1080/01650528009360571
Posada D. 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256. http://dx.doi.org/10.1093/molbev/msn083 PMid:18397919
Rawson P.D., Hilbish T.J. 1995. Evolutionary relationships among the male and female lineages in the Mytilus edulis species complex. Mar. Biol. 12: 893-901.
Richardson H. 1905. A monograph of the isopods of North America. Bull. US. Nat. Mus. 54: 1-727.
op_rights Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.03878.19A
https://doi.org/10.3989/scimar.2014.78n1
https://doi.org/10.1111/j.1096-0031.2005.00081.x
https://doi.org/10.1080/00222939000770911
https://doi.org/10.2988/10-14.1
https://doi.org/10.1017/S002531541200025
container_title Scientia Marina
container_volume 78
container_issue 1
container_start_page 81
op_container_end_page 90
_version_ 1766302553434226688
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1496 2023-05-15T14:28:23+02:00 Genetic divergence of tanaidaceans (Crustacea: Peracarida) with low dispersal ability Divergencia genética de tanaidáceos (Crustacea: Peracarida) con baja capacidad de dispersión Larsen, Kim Tuya, Fernando Froufe, Elsa 2014-03-30 text/html application/pdf text/xml https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1496 https://doi.org/10.3989/scimar.03878.19A eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1496/1676 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1496/1631 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1496/1677 Addison J.A., Hart. M.W. 2005. Colonization, dispersal and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59(3): 532-543. PMid:15856696 Audzijonytė A., Damgaard J., Varvio S.-L., Vainio J.K., Väinölä R. 2005. Phylogeny of Mysis (Crustacea, Mysida): history of continental invasions inferred from molecular and morphological data. Cladistics 21(6): 575-596. http://dx.doi.org/10.1111/j.1096-0031.2005.00081.x Bamber R.N. 1990. A new species of Zeuxo (Crustacea: Tanaidacea) from the French Atlantic Coast. J. Nat. His. 24: 1587-1596. http://dx.doi.org/10.1080/00222939000770911 Bamber R.N. 2010. In the footsteps of Henrik Nikolaj Krøyer: the rediscovery and redescription of Leptochelia savignyi (Krøyer, 1842) sensu stricto (Crustacea: Tanaidacea: Leptocheliidae). Proc. Biol. Soc. Wash. 123: 289-311. http://dx.doi.org/10.2988/10-14.1 Bamber R.N. 2012a. Littoral Tanaidacea (Crustacea: Peracarida) from Macaronesia: allopatry and provenance in recent habitats. J. Mar. Biol. Ass. UK 92(5): 1095-1116. http://dx.doi.org/10.1017/S0025315412000252 Bamber R.N. 2012b. A re-assessment of Hexapleomera Dudich, 1931 Crustacea: Tanaidacea: Tanaidae), with designation of three new species. Zootaxa 3583: 51-70. Bamber R.N., Błazewicz-Paszkowycz M. 2013. Another inordinate fondness: diversity of the tanaidacean fauna of Australia, with description of three new taxa. J. Nat. His. 47: 1767-1789. http://dx.doi.org/10.1080/00222933.2012.742164 Bird G.J. 2008. Untying the Gordian Knot: on Tanais novaezealandiae Thomson (Crustacea, Tanaidacea, Tanaidae) from New Zealand, with descriptions of two new Zeuxoides species. Zootaxa 1877: 1-36. Bird G.J., Larsen K. 2009. Tanaidacean Phylogeny: The second step. The basal Paratanaoidean families. Arthr. Syst. Phyl. 67: 137-158. Blazewicz-Paszkowycz M., Bamber R., Anderson G. 2012. Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans – How far have we come? PloS One 7(4): 1-11. http://dx.doi.org/10.1371/journal.pone.0033068 PMid:22496741 PMCid:PMC3319556 Cacabelos E., Lourido A., Troncoso J.S. 2010. Composition and distribution of subtidal and intertidal crustacean assemblages in soft-bottoms of the Ria de Vigo (NW Spain). Sci. Mar. 74(3): 455-464. http://dx.doi.org/10.3989/scimar.2010.74n3455 Colgan D.J., MacLauchlan A., Wilson G.D.F., Livingston S.P., Edgecombe G.D., Macaranas J., Cassis G., Gray M.R. 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust. J. Zool. 46: 419-437. http://dx.doi.org/10.1071/ZO98048 Coyer J.A., Diekmann O.E., Serrão E.A., Procaccini G., Milchakova N., Pearson G.A., Stam W.T., Olsen J.L. 2004. Population genetics of dwarf eelgrass Zostera noltii throughout its biogeographic range. Mar. Ecol. Prog. Ser. 281: 51-62. http://dx.doi.org/10.3354/meps281051 Delille D., Guidi L.D., Soyer J. 1985. Nutrition of Allotanais hirsutus (Crustacea, Tanaidacea) at Kerguelen Islands. In: Siegfried W.R., Condy P.R., Laws R.M. (eds) Antarctic nutrient cycles and food webs. Berlin, Springer-Verlag, pp. 378-380. http://dx.doi.org/10.1007/978-3-642-82275-9_53 Drumm D.T. 2010. Phylogenetic relationships of Tanaidacea (Eumalacostraca: Peracarida) inferred from three molecular loci. J. Crust. Biol. 30: 692-698. http://dx.doi.org/10.1651/10-3299.1 Edgar G.J. 2008. Shallow water Tanaidae (Crustacea: Tanaidacea) of Australia. Zootaxa 1836: 1-92. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotec. 3: 294-299. PMid:7881515 Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704. http://dx.doi.org/10.1080/10635150390235520 PMid:14530136 Greve L. 1974. Anatanais normani (Richardson) found near Bermuda and notes on other Anatanais species. Sarsia 55: 115-120. Hall T.A. 1999. Bioedit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Aci. Symp. 41: 95-98. Hardy S.M., Carr, C.M., Hardman, M., Steinke, D., Corstorphine, E. Mah, C. 2011. Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools. Mar. Biodiv. 41: 195-210. http://dx.doi.org/10.1007/s12526-010-0056-x Harrison M.K., Crespi B.J. 1999. Phylogenetics of Cancer Crabs (Crustacea: Decapoda: Brachyura). Mol. Phylo. Evol. 12(2): 186-199. http://dx.doi.org/10.1006/mpev.1998.0608 PMid:10381321 Hewitt G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247-276. http://dx.doi.org/10.1111/j.1095-8312.1996.tb01434.x Hewitt G.M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 183-195. http://dx.doi.org/10.1098/rstb.2003.1388 PMid:15101575 PMCid:PMC1693318 Katoh K., Kuma K., Toh H., Miyata T. 2005. MAFFT version 806 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33(2): 511-518. http://dx.doi.org/10.1093/nar/gki198 PMid:15661851 PMCid:PMC548345 Kettle A.J., Morales-Mu-iz A., Roselló-Izquierdo E., Heinrich D., Vøllestad L.A. 2010. Refugia of marine fish in the Northeast Atlantic during the Last Glacial Maximum: concordant assessment from archaeozoology and palaeotemperature reconstructions. Clim. Past Dis. 6: 1351-1389. http://dx.doi.org/10.5194/cpd-6-1351-2010 Knowlton N. 1993. Sibling species in the sea. Ann. Rev. Eco. Syst. 24: 189-216. http://dx.doi.org/10.1146/annurev.es.24.110193.001201 Kudinova-Pasternak R.K. 1989. A supplement to the fauna of Tanaidacea (Crustacea) of Kurile Islands and the description of Zeuxo beringi sp. n. (Commander Islands). Zool. Zhur. 68: 128-130. Larsen K. 2001. Morphological and molecular investigation of polymorphism and cryptic species in tanaid crustaceans: implications for tanaid systematics and biodiversity estimates. Zool. J. Linn. Soc. 131: 353-379. http://dx.doi.org/10.1111/j.1096-3642.2001.tb02241.x Larsen K. 2005. Deep-sea Tanaidacea (Peracarida) from the Gulf of Mexico. Crust. Mono. 5, Brill, Leiden, 381 pp. Larsen K., Froufe E. 2010. Identification of polymorphic species within groups of morphologically conservative taxa: combining morphological and molecular techniques. In: Nimis P.L., Vignes-Lebbe R. (eds) Tools for Identifying Biodiversity: progress and problems. Trieste, University of Trieste, pp. 301-305. Larsen K., Froufe E. 2013. A new polymorphic species of Leptochelia (Crustacea: Tanaidacea) from Guinea Bissau, West Africa, with comments of genetic variation within Leptochelia. Afric. Invert. 54 (1): 105-125. http://dx.doi.org/10.5733/afin.054.0105 Larsen K., Wilson G.D.F. 1998. Tanaidomorphan systematics—is it obsolete? J. Crust. Biol. 18: 346-362. http://dx.doi.org/10.2307/1549329 Larsen K., Wilson G.D.F. 2002. Tanaidacean phylogeny. The first step: the superfamily Paratanaidoidea. J. Zool. Sys. Evol. Res. 40: 205-222. http://dx.doi.org/10.1046/j.1439-0469.2002.00193.x Larsen K., Nagaoka R., Froufe E. 2012. Tanaidacea (Crustacea) from Macaronesia III. The shallow-water Tanaidomorpha from the Cape Verde archipelago. Zootaxa 3498: 24-44. Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. http://dx.doi.org/10.1093/bioinformatics/btp187 PMid:19346325 Luttikhuizen P.C., Campos J., van Bleijswijk J., Peijnenburg K.T.C.A., van der Veer H.W. 2008. Phylogeography of the common shrimp, Crangon crangon (L.) across its distribution range. Mol. Phyl. Evol. 46: 1015-1030. http://dx.doi.org/10.1016/j.ympev.2007.11.011 PMid:18207428 Maggs C.A., Castilho R., Foltz D., Henzler C., Jolly M.T., Kelly J., Olson J., Perez K.E., Stam W., Vainola R., Viard F., Wares, J. 2008. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89: 108-122. http://dx.doi.org/10.1890/08-0257.1 Meehan B.W., Carlton J.T., Wenne R. 1989. Genetic affinities of the bivalve Macoma balthica from the Pacific coast of North America: evidence of recent introduction and historical distribution. Mar. Biol. 102: 235-241. http://dx.doi.org/10.1007/BF00428285 Palumbi S.R., Kessing B.D. 1991. Population biology of the trans-Arctic exchange: MtDNA sequence similarity between Pacific and Atlantic sea urchins. Evol. 45: 1790-1805. http://dx.doi.org/10.2307/2409832 Palumbi S.R., Wilson A.C. 1990. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evol. 44: 403-415. http://dx.doi.org/10.2307/2409417 Pelc R.A., Warner R.R., Gaines S.D. 2009. Geographical patterns of genetic structure in marine species with contrasting life histories. J. Biogeogr. 36: 1881-1890. http://dx.doi.org/10.1111/j.1365-2699.2009.02138.x Petit R.J., Aguinagalde I., de Beaulieu J.-L., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M., Mohanty A., Muller-Starck G., Demesure-Musch B., Palmé A., Martín J. P., Rendell S., Vendramin G.G. 2003. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300: 1563-1565. http://dx.doi.org/10.1126/science.1083264 PMid:12791991 Pires A.M.S. 1980. Ecological studies on intertidal and infralittoral Brazilian Tanaidacea (Crustacea) (Peracarida). Stud. Neotrop. Fau. Envir. 15: 141-153. http://dx.doi.org/10.1080/01650528009360571 Posada D. 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256. http://dx.doi.org/10.1093/molbev/msn083 PMid:18397919 Rawson P.D., Hilbish T.J. 1995. Evolutionary relationships among the male and female lineages in the Mytilus edulis species complex. Mar. Biol. 12: 893-901. Richardson H. 1905. A monograph of the isopods of North America. Bull. US. Nat. Mus. 54: 1-727. Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 78 No. 1 (2014); 81-90 Scientia Marina; Vol. 78 Núm. 1 (2014); 81-90 1886-8134 0214-8358 10.3989/scimar.2014.78n1 genetic divergence morphological differences 28S H3 COI Crustacea Tanaidacea Zeuxo diferencias genéticas diferencias morfológicas crustáceos tanaidáceos info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2014 ftjscientiamarin https://doi.org/10.3989/scimar.03878.19A https://doi.org/10.3989/scimar.2014.78n1 https://doi.org/10.1111/j.1096-0031.2005.00081.x https://doi.org/10.1080/00222939000770911 https://doi.org/10.2988/10-14.1 https://doi.org/10.1017/S002531541200025 2022-03-20T16:31:22Z In this study, the phylogeographic patterns of nuclear, ribosomal and mtDNA gene fragments of five tanaidacean species (Zeuxo, Tanaidae) from the Atlantic, Pacific and Mediterranean Sea were investigated. We aimed to interpret results in the framework of current hypotheses on the distribution of small invertebrates with very limited dispersal ability. Evidence for a surprisingly high genetic divergence was found for intertidal tanaidaceans from the North Atlantic. This is a result of poor dispersal potential, as tanaidaceans have direct development, no pelagic stage, and very limited swimming capacity. However, lower genetic divergence was found between an intertidal tanaid species from the North Atlantic and two from the North Pacific, which suggests a scenario of recent colonization following the last glacial maximum. The species Zeuxo normani was found to be a species complex consisting, at least, of Z. normani (California), Z. cf. normani (Japan), Z. cf. normani (Australia), Z. sp. A (Korea), and Z. holdichi (Spain and France). Our results showed that traditional species identification underestimates tanaidacean diversity and that what have been previously perceived as reliable diagnostic morphological characters, are, however, variable and unreliable. En este estudio, investigamos los patrones filogeográficos de fragmentos de ADN nuclear, ribosómico y mitocondrial de 5 especies de tanaidáceos (Zeuxo, Tanaidae) del Atlántico, Pacífico y Mediterráneo. Nos propusimos interpretar los resultados en el marco de hipótesis sobre la distribución de pequeños invertebrados con limitada capacidad de dispersión. Encontramos evidencia de una sorprendentemente alta diferenciación genética para tanaidáceos del medio intermareal del Atlántico Norte. Esto es resultado de una limitada capacidad de dispersión, ya que los tanaidáceos poseen desarrollo directo, carecen de estadíos pelágicos, y una limitada capacidad natatoria. Sin embargo, encontramos una baja diferenciación genética para una especie de tanaidáceo del Atlántico Norte y dos del Pacífico Norte, lo que sugiere un escenario de reciente colonización tras la última glaciación. La especie Zeuxo normani constituye un complejo de especies que, al menos, agrupa a Z. normani (Califonia), Z. cf. normani (Japón), Z. cf. normani (Australia), Z. sp. A (Corea) y Z. holdichi (España y Francia). Nuestros resultados mostraron que la forma tradicional de identificar tanaidáceos subestima su diversidad y que lo que previamente se consideraron como caracteres morfológicos claramente diferenciadores son, sin embargo, variables y poco fiables. Article in Journal/Newspaper Arctic North Atlantic Scientia Marina (E-Journal) Alta Baja Pacific Scientia Marina 78 1 81 90