Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea

Total lipid and fatty acid concentrations were studied in a late spring-early summer flagellate-dominated bloom in the Weddell Sea. These indicators were considered a good tool for assessing the quality of organic matter settling from surface to deep-water layers (epibenthic water layers). The resul...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Rossi, Sergio, Isla, Enrique, Martínez-García, Alfredo, Moraleda, Núria, Gili, Josep María, Rosell-Melé, Antoni, Arntz, Wolf E., Gerdes, Dieter
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2013
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1470
https://doi.org/10.3989/scimar.03835.30A
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1470
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic Antarctica
seston
lipids
fatty acids
benthic-pelagic coupling
available food
Antártida
lípidos
ácidos grasos
acoplamiento bento-pelágico
alimento disponible
spellingShingle Antarctica
seston
lipids
fatty acids
benthic-pelagic coupling
available food
Antártida
lípidos
ácidos grasos
acoplamiento bento-pelágico
alimento disponible
Rossi, Sergio
Isla, Enrique
Martínez-García, Alfredo
Moraleda, Núria
Gili, Josep María
Rosell-Melé, Antoni
Arntz, Wolf E.
Gerdes, Dieter
Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea
topic_facet Antarctica
seston
lipids
fatty acids
benthic-pelagic coupling
available food
Antártida
lípidos
ácidos grasos
acoplamiento bento-pelágico
alimento disponible
description Total lipid and fatty acid concentrations were studied in a late spring-early summer flagellate-dominated bloom in the Weddell Sea. These indicators were considered a good tool for assessing the quality of organic matter settling from surface to deep-water layers (epibenthic water layers). The results showed different patterns between the early (11-15 December 2003) and the late sampling period (18-27 December 2003) at all studied depths (5 m, 50 m and near-bottom water layers). Low phytoplankton biomass (mainly flagellates) in the first half of the study corresponded to low total lipid and fatty acid concentrations. In the second sampling period a spring bloom (mainly flagellates and diatoms) was detected, increasing the total lipid and fatty acid concentrations in the water column. The amount of settling organic matter from surface waters to the near-bottom water layers was high, especially in the late sampling period. Trophic markers showed evidence of a sink of available organic matter rich in quality and quantity, especially in terms of polyunsaturated fatty acids, for benthic organisms from surface layers to bottom layers in only a few days. The importance of studying short-time cycles in order to detect organic matter availability for benthic biota in view of the pulse-like dynamics of primary production in Antarctic waters is discussed. Se estudió en el mar de Weddell la concentración de lípidos totales y ácidos grasos en una floración algal de flagelados durante un periodo comprendido entre finales de primavera y principios de verano. Estos dos indicadores (lípidos y ácidos grasos), se consideraron adecuados para describir la calidad de la materia orgánica depositada desde la superficie al fondo (aguas cercanas al bentos marino). Los resultados mostraron un patrón diferenciado entre el principio (11 al 15 de Diciembre) y el final (18 al 27 de Diciembre) del periodo de muestreo en todas las profundidades analizadas (5 metros, 50 metros y fondo). A la baja biomasa detectada (principalmente flagelados) en la primera parte del estudio correspondió a una concentración baja de lípidos y ácidos grasos. En el segundo periodo, se detectó una floración primaveral (compuesta principalmente por flagelados y diatomeas) que hizo incrementar la concentración de ácidos grasos y lípidos totales en la columna de agua. La caída de materia orgánica disponible para los organismos del fondo fue alta, sobre todo en la última fase del estudio y en coincidencia con la floración algal. Los marcadores, en especial los ácidos grasos poliinsaturados, mostraron un hundimiento relevante de materia disponible para los organismos del fondo en pocos días. En este artículo se discute la importancia de considerar los ciclos intensos de muestreo para detectar la caída en forma de pulsos del alimento disponible provenientes de la producción primaria de superficie para la comunidad bentónica y pelágica en aguas Antárticas.
format Article in Journal/Newspaper
author Rossi, Sergio
Isla, Enrique
Martínez-García, Alfredo
Moraleda, Núria
Gili, Josep María
Rosell-Melé, Antoni
Arntz, Wolf E.
Gerdes, Dieter
author_facet Rossi, Sergio
Isla, Enrique
Martínez-García, Alfredo
Moraleda, Núria
Gili, Josep María
Rosell-Melé, Antoni
Arntz, Wolf E.
Gerdes, Dieter
author_sort Rossi, Sergio
title Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea
title_short Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea
title_full Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea
title_fullStr Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea
title_full_unstemmed Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea
title_sort transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the weddell sea
publisher Consejo Superior de Investigaciones Científicas
publishDate 2013
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1470
https://doi.org/10.3989/scimar.03835.30A
long_lat ENVELOPE(-36.000,-36.000,-54.601,-54.601)
geographic Alta
Antarctic
Baja
mar de Weddell
Weddell
Weddell Sea
geographic_facet Alta
Antarctic
Baja
mar de Weddell
Weddell
Weddell Sea
genre Antarc*
Antarctic
Antarctica
Antártida
Mar de Weddell
Weddell Sea
genre_facet Antarc*
Antarctic
Antarctica
Antártida
Mar de Weddell
Weddell Sea
op_source Scientia Marina; Vol. 77 No. 3 (2013); 397-407
Scientia Marina; Vol. 77 Núm. 3 (2013); 397-407
1886-8134
0214-8358
10.3989/scimar.2013.77n3
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1470/1594
Arrigo K.R., Worthen D., Schnell A., Lizotte M.P. 1998. Primary production in Southern Ocean waters. J. Geophys. Res. 103: 15587-15600. http://dx.doi.org/10.1029/98JC00930
Asper V.L., Smith W.O. 2003. Abundance, distribution and sinking rates of aggregates in the Ross Sea, Antarctica. Deep-Sea Res. Part I 50: 131-150. http://dx.doi.org/10.1016/S0967-0637(02)00146-2
Barnes H., Blackstock J. 1973. Estimation of lipids in marine animal tissues: detailed investigation of the sulphophosphovanillin method for "total" lipids. J. Exp. Mar. Biol. Ecol. 12: 103-118. http://dx.doi.org/10.1016/0022-0981(73)90040-3
Bathmann U., Fischer G., Mu.ller P.J., Gerdes D. 1991. Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol. 11: 185-195. http://dx.doi.org/10.1007/BF00240207
Caron D.A., Dennett M.R., Lonsdale D.J., Moran D.M., Shalapyonok L. 2000. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep-Sea Res. Part II 47: 3249- 3272. http://dx.doi.org/10.1016/S0967-0645(00)00067-9
Chavez F.P., Buck K.R., Bidigare R.R., Karl D.M., Hebel D., Latasa M., Campbell L., Newton J. 1995. On the chlorophyll a retention properties of Glass-Fiber GF/F filters. Limn. Oceanogr. 40: 428- 433. http://dx.doi.org/10.4319/lo.1995.40.2.0428
Cripps G.C., Clarke A. 1998. Seasonal variation in the biochemical composition of particulate material collected by sediment traps at Signy Island, Antarctica. Polar Biol. 20: 414-423. http://dx.doi.org/10.1007/s003000050323
Dalsgaard J., St John M., Kattner G., Müller-Navarra D., Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46: 225- 340. http://dx.doi.org/10.1016/S0065-2881(03)46005-7
Fahl K., Kattner G. 1993. Lipid content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Polar Biol. 13: 405- 409. http://dx.doi.org/10.1007/BF01681982
Fileman T.W., Pond D.W., Barlow R.G., Mantoura R.F.C. 1998. Vertical profiles of pigments, fatty acids and amino acids: evidence for undegraded diatomaceous material sedimenting to the deep ocean in the Bellinghausen Sea, Antarctica. Deep-Sea Res. Part I 45: 333-346. http://dx.doi.org/10.1016/S0967-0637(97)00824-8
Folch J., Lees M., Sloane-Stanley G.H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497-509. PMid:13428781
Fraser A.J., Sargent J.R., Gamble J.C., Seaton D.D. 1989. Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Mar. Chem. 27: 1-18. http://dx.doi.org/10.1016/0304-4203(89)90024-8
Gerdes D., Isla E., Knust R., Mintenbeck K., Rossi S. 2008. Response of benthic communities to disturbance: the artificial disturbance experiment BENDEX on the eastern Weddell Sea Shelf, Antarctica. Polar Biol. 31: 1469-1480. http://dx.doi.org/10.1007/s00300-008-0488-y
Gili J.M., Coma R., Orejas C., López-González P.J., Zabala M. 2001. Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biol. 24: 473-485. http://dx.doi.org/10.1007/s003000100257
Gili J.M., Arntz W.E., Palanques A., Orejas C., Clarke A., Dayton P.K., Isla E., Teixidó N., Rossi S., López-González P.J. 2006a. A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep-Sea Res. Part II 53 : 1029-1052. http://dx.doi.org/10.1016/j.dsr2.2005.10.021
Gili J.M., Rossi S., Pagès F., Orejas C., Teixidó N., López-González P.J., Arntz W.E. 2006b. A new link between the pelagic and benthic systems in the Antarctic shelfs. Mar. Ecol. Prog. Ser. 322: 43-49. http://dx.doi.org/10.3354/meps322043
Gili J.M., Orejas C., Isla E., Rossi S., Arntz W.E. 2009. Seasonality on the high Antarctic benthic shelf communities? In: J. Turner, P. Convey, G. di Prisco, P. Mayewski, D. Hodgson, E. Fahrbach, B. Bindschadler, eds. Antarctic Climate Change and the Environment. ACCE Report, Cambridge University Press, Cambridge, pp. 276-278.
Gómez-Brandón A., Lores M., Domínguez J. 2008. Comparison of extraction and derivatization methods for fatty acid analysis in solid environmental matrixes. Anal. Bioanal. Chem. 392: 505-514. http://dx.doi.org/10.1007/s00216-008-2274-7 PMid:18651136
Goutx M., Saliot A. 1980. Relationship between dissolved and particulate fatty acids and hydrocarbons, chlorophyll a and zooplankton biomass in Villefranche Bay, Mediterranean Sea. Mar. Chem. 8: 299-318. http://dx.doi.org/10.1016/0304-4203(80)90019-5
Grémare A., Medernach L., De Bovée F., Amoroux J.M., Vétion G., Albert P. 2002. Relationships between sedimentary organics and benthic meiofauna on the continental shelf and the upper slope of the Gulf of Lions (NW Mediterranean). Mar. Ecol. Prog. Ser. 234: 85-94. http://dx.doi.org/10.3354/meps234085
Grossman S., Lochte K., Scharek R. 1996. Algal and bacterial processes in platelet ice during late austral summer. Pol. Biol. 16: 623-633. http://dx.doi.org/10.1007/BF02329060
Gutt J. 2000. Some "driving forces" structuring communities of the sublittoral Antarctic macrobenthos. Ant. Sci. 12: 297-313. http://dx.doi.org/10.1017/S0954102000000365
Gutt J., Starmans A. 1998. Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Pol. Biol. 20: 229-247. http://dx.doi.org/10.1007/s003000050300
Gutt J., Starmans A., Dieckmann G. 1998. Phytodetritus deposited on the Antarctic shelf and upper slope: its relevance for the benthic system. J. Mar. Syst. 17: 435-444. http://dx.doi.org/10.1016/S0924-7963(98)00054-2
Hayakawa K., Handa N., Wong C.S. 1996. Changes in the composition of fatty acids in sinking matter during a diatom bloom in a controlled experimental ecosystem. J. Exp. Mar. Biol. Ecol. 208: 29-43. http://dx.doi.org/10.1016/0022-0981(95)00158-1
Hopkins C.C.E., Sargent J.R., Nilssen E.M. 1993. Total lipid content, and lipid and fatty acid composition of the deep-water prawn Pandalus borealis from Balsfjord, northern Norway: growth and feeding relationships. Mar. Ecol. Prog. Ser. 96: 217-228. http://dx.doi.org/10.3354/meps096217
Howell K.L., Pond D.W., Billett D.S., Tyler M. 2003. Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fattyacid biomarker approach. Mar. Ecol. Prog. Ser. 255: 193-206. http://dx.doi.org/10.3354/meps255193
Hudson I.R., Pond D.W., Billet D.S., Tyler P.A., Lampitt R.S., Wolff G.A. 2004. Temporal variations in fatty acid composition of deep-sea holoturians: evidence of bentho-pelagic coupling. Mar. Ecol. Prog. Ser. 281: 109-120. http://dx.doi.org/10.3354/meps281109
Isla E., Rossi S., Palanques A., Gili J.M., Gerdes D., Arntz W. 2006a. Organic matter in marine sediment from the eastern Weddell Sea (Antarctica): high nutritive value in a high benthic-biomass environment. J. Mar. Sys. 60: 255-267. http://dx.doi.org/10.1016/j.jmarsys.2006.01.006
Isla E., Gerdes D., Palanques A., Gili J.M., Arntz W. 2006b. Particle fluxes and tides near the continental ice edge on the eastern Weddell Sea shelf. Deep-Sea Res. Part II 53: 866-874. http://dx.doi.org/10.1016/j.dsr2.2006.02.010
Isla E., Gerdes D., Palanques A., Gili J.M., Arntz W.E., König-Langlo G. 2009. Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: A stormy impulse for the biological pump. Mar. Geol. 259: 59-72. http://dx.doi.org/10.1016/j.margeo.2008.12.011
Isla E., Homs P., Sa-é E., Escribano R., Claramunt G., Teixidó N. 2010. Biochemical composition of seston in two upwelling sites within the Humboldt Current System (21°S to 23°S): Summer conditions. J. Mar. Sys. 82: 61-71. http://dx.doi.org/10.1016/j.jmarsys.2010.03.004
Isla E., Gerdes D., Rossi S., Fiorillo I., Sa-e E., Gili J.M., Arntz W.E. 2011. Biochemical characteristics of surface sediments on the eastern Weddell Sea continental shelf, Antarctica: is there any evidence of seasonal patterns? Pol. Biol. 34:1125-1133 http://dx.doi.org/10.1007/s00300-011-0973-6
Kornilova O., Rosell-Melé A. 2003. Application of microwaveassisted extraction to the analysis of biomarker climate proxies in marine sediments. Org. Geochem. 34: 1517-1523. http://dx.doi.org/10.1016/S0146-6380(03)00155-4
Kuwata A., Hama T., Takahashi M., 1993. Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar. Ecol. Prog. Ser. 102: 245-255. http://dx.doi.org/10.3354/meps102245
Lampitt R.S. 1985. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res. Part I 32: 885-897. http://dx.doi.org/10.1016/0198-0149(85)90034-2
Lee C., Fuhrman J.A. 1987. Relationship between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environm. Microb. 53: 1298-1568. PMid:16347362 PMCid:PMC203858
Meyer B., Auerswald L., Siegel V., Sparic S., Pape C., Fach B.A., Teschke M., Lopata A., Fuentes V. 2010. Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar. Ecol. Prog. Ser. 398: 1-18. http://dx.doi.org/10.3354/meps08371
Michels J., Schnack-Schiel S.B., Pasternak A., Mizdalski E., Isla E., Gerdes D. 2012. Abundance, population structure and vertical distribution of dominant calanoid copepods on the eastern Weddell Sea shelf during a spring phytoplankton bloom. Pol. Biol. 35: 369-386 http://dx.doi.org/10.1007/s00300-011-1083-1
Mincks S.L., Smith C.R., DeMaster D.J. 2005. Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment "food bank". Mar. Ecol. Prog. Ser. 300: 3-19. http://dx.doi.org/10.3354/meps300003
Mincks S.L., Smith C.R., Jeffreys R.M., Sumida P.Y.G. 2008. Trophic structure on the West Antarctic Peninsula shelf: Detritivory and benthic inertia revealed by delta C-13 and delta N-15 analysis. Deep Sea Res. Part II 55: 2502-2514. http://dx.doi.org/10.1016/j.dsr2.2008.06.009
Orejas C., Gili J.M., López-González P.J., Arntz W.E. 2001. Feeding strategies and diet composition of four Antarctic cnidarian species. Pol. Biol. 24: 620-627. http://dx.doi.org/10.1007/s003000100272
Orejas C., Gili J.M., Arntz W.E. 2003. The role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar. Ecol. Prog. Ser. 250: 105-116. http://dx.doi.org/10.3354/meps250105
Parrish C.C. 1988. Dissolved and particulate marine lipid classes: a review. Mar. Chem. 23: 17-40. http://dx.doi.org/10.1016/0304-4203(88)90020-5
Parrish C.C., Thompson R.J., Deibel D. 2005. Lipid classes and fatty acids in plankton and settling matter during the spring bloom in a cold ocean coastal environment. Mar. Ecol. Prog. Ser. 286: 57-68. http://dx.doi.org/10.3354/meps286057
Pasternak A., Hagen W., Kattner G., Michels J., Graeve M., Schnack-Schiel S.B. 2009. Lipid dynamics and feeding of dominant Antarctic calanoid copepods in the eastern Weddell Sea in December. Pol. Biol. 32:1597-1606. http://dx.doi.org/10.1007/s00300-009-0658-6
Prahl F.G., Eglinton G., Corner E.D.S., O'Hara S.C.M., Forsberg T.E.V. 1984. Changes in plant lipids during passage through the gut of Calanus. J. Mar. Biol. Ass. UK 64: 317-334. http://dx.doi.org/10.1017/S0025315400030022
Qiang H., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621-639. http://dx.doi.org/10.1111/j.1365-313X.2008.03492.x PMid:18476868
Reuss N., Poulsen L.K. 2002. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Mar. Biol. 141: 423-434. http://dx.doi.org/10.1007/s00227-002-0841-6
op_rights Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.03835.30A
https://doi.org/10.3989/scimar.2013.77n3
https://doi.org/10.1029/98JC00930
https://doi.org/10.1016/S0967-0637(02)00146-2
https://doi.org/10.1016/0022-0981(73)90040-3
https://doi.org/10.1007/BF00240207
h
container_title Scientia Marina
container_volume 63
container_issue S1
container_start_page 51
op_container_end_page 57
_version_ 1766159335602257920
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1470 2023-05-15T13:41:51+02:00 Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea Transferencia de lípidos del seston durante una floración algal de flagelados desde la superficie hasta el bentos en el mar de Weddell Rossi, Sergio Isla, Enrique Martínez-García, Alfredo Moraleda, Núria Gili, Josep María Rosell-Melé, Antoni Arntz, Wolf E. Gerdes, Dieter 2013-09-30 application/pdf https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1470 https://doi.org/10.3989/scimar.03835.30A eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1470/1594 Arrigo K.R., Worthen D., Schnell A., Lizotte M.P. 1998. Primary production in Southern Ocean waters. J. Geophys. Res. 103: 15587-15600. http://dx.doi.org/10.1029/98JC00930 Asper V.L., Smith W.O. 2003. Abundance, distribution and sinking rates of aggregates in the Ross Sea, Antarctica. Deep-Sea Res. Part I 50: 131-150. http://dx.doi.org/10.1016/S0967-0637(02)00146-2 Barnes H., Blackstock J. 1973. Estimation of lipids in marine animal tissues: detailed investigation of the sulphophosphovanillin method for "total" lipids. J. Exp. Mar. Biol. Ecol. 12: 103-118. http://dx.doi.org/10.1016/0022-0981(73)90040-3 Bathmann U., Fischer G., Mu.ller P.J., Gerdes D. 1991. Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol. 11: 185-195. http://dx.doi.org/10.1007/BF00240207 Caron D.A., Dennett M.R., Lonsdale D.J., Moran D.M., Shalapyonok L. 2000. Microzooplankton herbivory in the Ross Sea, Antarctica. Deep-Sea Res. Part II 47: 3249- 3272. http://dx.doi.org/10.1016/S0967-0645(00)00067-9 Chavez F.P., Buck K.R., Bidigare R.R., Karl D.M., Hebel D., Latasa M., Campbell L., Newton J. 1995. On the chlorophyll a retention properties of Glass-Fiber GF/F filters. Limn. Oceanogr. 40: 428- 433. http://dx.doi.org/10.4319/lo.1995.40.2.0428 Cripps G.C., Clarke A. 1998. Seasonal variation in the biochemical composition of particulate material collected by sediment traps at Signy Island, Antarctica. Polar Biol. 20: 414-423. http://dx.doi.org/10.1007/s003000050323 Dalsgaard J., St John M., Kattner G., Müller-Navarra D., Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46: 225- 340. http://dx.doi.org/10.1016/S0065-2881(03)46005-7 Fahl K., Kattner G. 1993. Lipid content and fatty acid composition of algal communities in sea-ice and water from the Weddell Sea (Antarctica). Polar Biol. 13: 405- 409. http://dx.doi.org/10.1007/BF01681982 Fileman T.W., Pond D.W., Barlow R.G., Mantoura R.F.C. 1998. Vertical profiles of pigments, fatty acids and amino acids: evidence for undegraded diatomaceous material sedimenting to the deep ocean in the Bellinghausen Sea, Antarctica. Deep-Sea Res. Part I 45: 333-346. http://dx.doi.org/10.1016/S0967-0637(97)00824-8 Folch J., Lees M., Sloane-Stanley G.H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497-509. PMid:13428781 Fraser A.J., Sargent J.R., Gamble J.C., Seaton D.D. 1989. Formation and transfer of fatty acids in an enclosed marine food chain comprising phytoplankton, zooplankton and herring (Clupea harengus L.) larvae. Mar. Chem. 27: 1-18. http://dx.doi.org/10.1016/0304-4203(89)90024-8 Gerdes D., Isla E., Knust R., Mintenbeck K., Rossi S. 2008. Response of benthic communities to disturbance: the artificial disturbance experiment BENDEX on the eastern Weddell Sea Shelf, Antarctica. Polar Biol. 31: 1469-1480. http://dx.doi.org/10.1007/s00300-008-0488-y Gili J.M., Coma R., Orejas C., López-González P.J., Zabala M. 2001. Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biol. 24: 473-485. http://dx.doi.org/10.1007/s003000100257 Gili J.M., Arntz W.E., Palanques A., Orejas C., Clarke A., Dayton P.K., Isla E., Teixidó N., Rossi S., López-González P.J. 2006a. A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep-Sea Res. Part II 53 : 1029-1052. http://dx.doi.org/10.1016/j.dsr2.2005.10.021 Gili J.M., Rossi S., Pagès F., Orejas C., Teixidó N., López-González P.J., Arntz W.E. 2006b. A new link between the pelagic and benthic systems in the Antarctic shelfs. Mar. Ecol. Prog. Ser. 322: 43-49. http://dx.doi.org/10.3354/meps322043 Gili J.M., Orejas C., Isla E., Rossi S., Arntz W.E. 2009. Seasonality on the high Antarctic benthic shelf communities? In: J. Turner, P. Convey, G. di Prisco, P. Mayewski, D. Hodgson, E. Fahrbach, B. Bindschadler, eds. Antarctic Climate Change and the Environment. ACCE Report, Cambridge University Press, Cambridge, pp. 276-278. Gómez-Brandón A., Lores M., Domínguez J. 2008. Comparison of extraction and derivatization methods for fatty acid analysis in solid environmental matrixes. Anal. Bioanal. Chem. 392: 505-514. http://dx.doi.org/10.1007/s00216-008-2274-7 PMid:18651136 Goutx M., Saliot A. 1980. Relationship between dissolved and particulate fatty acids and hydrocarbons, chlorophyll a and zooplankton biomass in Villefranche Bay, Mediterranean Sea. Mar. Chem. 8: 299-318. http://dx.doi.org/10.1016/0304-4203(80)90019-5 Grémare A., Medernach L., De Bovée F., Amoroux J.M., Vétion G., Albert P. 2002. Relationships between sedimentary organics and benthic meiofauna on the continental shelf and the upper slope of the Gulf of Lions (NW Mediterranean). Mar. Ecol. Prog. Ser. 234: 85-94. http://dx.doi.org/10.3354/meps234085 Grossman S., Lochte K., Scharek R. 1996. Algal and bacterial processes in platelet ice during late austral summer. Pol. Biol. 16: 623-633. http://dx.doi.org/10.1007/BF02329060 Gutt J. 2000. Some "driving forces" structuring communities of the sublittoral Antarctic macrobenthos. Ant. Sci. 12: 297-313. http://dx.doi.org/10.1017/S0954102000000365 Gutt J., Starmans A. 1998. Structure and biodiversity of megabenthos in the Weddell and Lazarev Seas (Antarctica): ecological role of physical parameters and biological interactions. Pol. Biol. 20: 229-247. http://dx.doi.org/10.1007/s003000050300 Gutt J., Starmans A., Dieckmann G. 1998. Phytodetritus deposited on the Antarctic shelf and upper slope: its relevance for the benthic system. J. Mar. Syst. 17: 435-444. http://dx.doi.org/10.1016/S0924-7963(98)00054-2 Hayakawa K., Handa N., Wong C.S. 1996. Changes in the composition of fatty acids in sinking matter during a diatom bloom in a controlled experimental ecosystem. J. Exp. Mar. Biol. Ecol. 208: 29-43. http://dx.doi.org/10.1016/0022-0981(95)00158-1 Hopkins C.C.E., Sargent J.R., Nilssen E.M. 1993. Total lipid content, and lipid and fatty acid composition of the deep-water prawn Pandalus borealis from Balsfjord, northern Norway: growth and feeding relationships. Mar. Ecol. Prog. Ser. 96: 217-228. http://dx.doi.org/10.3354/meps096217 Howell K.L., Pond D.W., Billett D.S., Tyler M. 2003. Feeding ecology of deep-sea seastars (Echinodermata: Asteroidea): a fattyacid biomarker approach. Mar. Ecol. Prog. Ser. 255: 193-206. http://dx.doi.org/10.3354/meps255193 Hudson I.R., Pond D.W., Billet D.S., Tyler P.A., Lampitt R.S., Wolff G.A. 2004. Temporal variations in fatty acid composition of deep-sea holoturians: evidence of bentho-pelagic coupling. Mar. Ecol. Prog. Ser. 281: 109-120. http://dx.doi.org/10.3354/meps281109 Isla E., Rossi S., Palanques A., Gili J.M., Gerdes D., Arntz W. 2006a. Organic matter in marine sediment from the eastern Weddell Sea (Antarctica): high nutritive value in a high benthic-biomass environment. J. Mar. Sys. 60: 255-267. http://dx.doi.org/10.1016/j.jmarsys.2006.01.006 Isla E., Gerdes D., Palanques A., Gili J.M., Arntz W. 2006b. Particle fluxes and tides near the continental ice edge on the eastern Weddell Sea shelf. Deep-Sea Res. Part II 53: 866-874. http://dx.doi.org/10.1016/j.dsr2.2006.02.010 Isla E., Gerdes D., Palanques A., Gili J.M., Arntz W.E., König-Langlo G. 2009. Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: A stormy impulse for the biological pump. Mar. Geol. 259: 59-72. http://dx.doi.org/10.1016/j.margeo.2008.12.011 Isla E., Homs P., Sa-é E., Escribano R., Claramunt G., Teixidó N. 2010. Biochemical composition of seston in two upwelling sites within the Humboldt Current System (21°S to 23°S): Summer conditions. J. Mar. Sys. 82: 61-71. http://dx.doi.org/10.1016/j.jmarsys.2010.03.004 Isla E., Gerdes D., Rossi S., Fiorillo I., Sa-e E., Gili J.M., Arntz W.E. 2011. Biochemical characteristics of surface sediments on the eastern Weddell Sea continental shelf, Antarctica: is there any evidence of seasonal patterns? Pol. Biol. 34:1125-1133 http://dx.doi.org/10.1007/s00300-011-0973-6 Kornilova O., Rosell-Melé A. 2003. Application of microwaveassisted extraction to the analysis of biomarker climate proxies in marine sediments. Org. Geochem. 34: 1517-1523. http://dx.doi.org/10.1016/S0146-6380(03)00155-4 Kuwata A., Hama T., Takahashi M., 1993. Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar. Ecol. Prog. Ser. 102: 245-255. http://dx.doi.org/10.3354/meps102245 Lampitt R.S. 1985. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res. Part I 32: 885-897. http://dx.doi.org/10.1016/0198-0149(85)90034-2 Lee C., Fuhrman J.A. 1987. Relationship between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environm. Microb. 53: 1298-1568. PMid:16347362 PMCid:PMC203858 Meyer B., Auerswald L., Siegel V., Sparic S., Pape C., Fach B.A., Teschke M., Lopata A., Fuentes V. 2010. Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar. Ecol. Prog. Ser. 398: 1-18. http://dx.doi.org/10.3354/meps08371 Michels J., Schnack-Schiel S.B., Pasternak A., Mizdalski E., Isla E., Gerdes D. 2012. Abundance, population structure and vertical distribution of dominant calanoid copepods on the eastern Weddell Sea shelf during a spring phytoplankton bloom. Pol. Biol. 35: 369-386 http://dx.doi.org/10.1007/s00300-011-1083-1 Mincks S.L., Smith C.R., DeMaster D.J. 2005. Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment "food bank". Mar. Ecol. Prog. Ser. 300: 3-19. http://dx.doi.org/10.3354/meps300003 Mincks S.L., Smith C.R., Jeffreys R.M., Sumida P.Y.G. 2008. Trophic structure on the West Antarctic Peninsula shelf: Detritivory and benthic inertia revealed by delta C-13 and delta N-15 analysis. Deep Sea Res. Part II 55: 2502-2514. http://dx.doi.org/10.1016/j.dsr2.2008.06.009 Orejas C., Gili J.M., López-González P.J., Arntz W.E. 2001. Feeding strategies and diet composition of four Antarctic cnidarian species. Pol. Biol. 24: 620-627. http://dx.doi.org/10.1007/s003000100272 Orejas C., Gili J.M., Arntz W.E. 2003. The role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar. Ecol. Prog. Ser. 250: 105-116. http://dx.doi.org/10.3354/meps250105 Parrish C.C. 1988. Dissolved and particulate marine lipid classes: a review. Mar. Chem. 23: 17-40. http://dx.doi.org/10.1016/0304-4203(88)90020-5 Parrish C.C., Thompson R.J., Deibel D. 2005. Lipid classes and fatty acids in plankton and settling matter during the spring bloom in a cold ocean coastal environment. Mar. Ecol. Prog. Ser. 286: 57-68. http://dx.doi.org/10.3354/meps286057 Pasternak A., Hagen W., Kattner G., Michels J., Graeve M., Schnack-Schiel S.B. 2009. Lipid dynamics and feeding of dominant Antarctic calanoid copepods in the eastern Weddell Sea in December. Pol. Biol. 32:1597-1606. http://dx.doi.org/10.1007/s00300-009-0658-6 Prahl F.G., Eglinton G., Corner E.D.S., O'Hara S.C.M., Forsberg T.E.V. 1984. Changes in plant lipids during passage through the gut of Calanus. J. Mar. Biol. Ass. UK 64: 317-334. http://dx.doi.org/10.1017/S0025315400030022 Qiang H., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54:621-639. http://dx.doi.org/10.1111/j.1365-313X.2008.03492.x PMid:18476868 Reuss N., Poulsen L.K. 2002. Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Greenland. Mar. Biol. 141: 423-434. http://dx.doi.org/10.1007/s00227-002-0841-6 Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 77 No. 3 (2013); 397-407 Scientia Marina; Vol. 77 Núm. 3 (2013); 397-407 1886-8134 0214-8358 10.3989/scimar.2013.77n3 Antarctica seston lipids fatty acids benthic-pelagic coupling available food Antártida lípidos ácidos grasos acoplamiento bento-pelágico alimento disponible info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2013 ftjscientiamarin https://doi.org/10.3989/scimar.03835.30A https://doi.org/10.3989/scimar.2013.77n3 https://doi.org/10.1029/98JC00930 https://doi.org/10.1016/S0967-0637(02)00146-2 https://doi.org/10.1016/0022-0981(73)90040-3 https://doi.org/10.1007/BF00240207 h 2022-03-20T16:31:22Z Total lipid and fatty acid concentrations were studied in a late spring-early summer flagellate-dominated bloom in the Weddell Sea. These indicators were considered a good tool for assessing the quality of organic matter settling from surface to deep-water layers (epibenthic water layers). The results showed different patterns between the early (11-15 December 2003) and the late sampling period (18-27 December 2003) at all studied depths (5 m, 50 m and near-bottom water layers). Low phytoplankton biomass (mainly flagellates) in the first half of the study corresponded to low total lipid and fatty acid concentrations. In the second sampling period a spring bloom (mainly flagellates and diatoms) was detected, increasing the total lipid and fatty acid concentrations in the water column. The amount of settling organic matter from surface waters to the near-bottom water layers was high, especially in the late sampling period. Trophic markers showed evidence of a sink of available organic matter rich in quality and quantity, especially in terms of polyunsaturated fatty acids, for benthic organisms from surface layers to bottom layers in only a few days. The importance of studying short-time cycles in order to detect organic matter availability for benthic biota in view of the pulse-like dynamics of primary production in Antarctic waters is discussed. Se estudió en el mar de Weddell la concentración de lípidos totales y ácidos grasos en una floración algal de flagelados durante un periodo comprendido entre finales de primavera y principios de verano. Estos dos indicadores (lípidos y ácidos grasos), se consideraron adecuados para describir la calidad de la materia orgánica depositada desde la superficie al fondo (aguas cercanas al bentos marino). Los resultados mostraron un patrón diferenciado entre el principio (11 al 15 de Diciembre) y el final (18 al 27 de Diciembre) del periodo de muestreo en todas las profundidades analizadas (5 metros, 50 metros y fondo). A la baja biomasa detectada (principalmente flagelados) en la primera parte del estudio correspondió a una concentración baja de lípidos y ácidos grasos. En el segundo periodo, se detectó una floración primaveral (compuesta principalmente por flagelados y diatomeas) que hizo incrementar la concentración de ácidos grasos y lípidos totales en la columna de agua. La caída de materia orgánica disponible para los organismos del fondo fue alta, sobre todo en la última fase del estudio y en coincidencia con la floración algal. Los marcadores, en especial los ácidos grasos poliinsaturados, mostraron un hundimiento relevante de materia disponible para los organismos del fondo en pocos días. En este artículo se discute la importancia de considerar los ciclos intensos de muestreo para detectar la caída en forma de pulsos del alimento disponible provenientes de la producción primaria de superficie para la comunidad bentónica y pelágica en aguas Antárticas. Article in Journal/Newspaper Antarc* Antarctic Antarctica Antártida Mar de Weddell Weddell Sea Scientia Marina (E-Journal) Alta Antarctic Baja mar de Weddell ENVELOPE(-36.000,-36.000,-54.601,-54.601) Weddell Weddell Sea Scientia Marina 63 S1 51 57