Population connectivity among geographic variants within the Lutjanidae (Pisces) of the Mexican Pacific coast through fish scale shape recognition

Fish scale shape was used to identify geographic variants among Lutjanidae (Lutjanus argentiventris, L. guttatus and L. peru). Specimens were collected from three different geographic areas, north to south of the tropical Pacific coast of Mexico: Puerto Vallarta (PV), Manzanillo (MA) and Caleta de C...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Ibáñez, Ana L., Espino-Barr, Elaine, Gallardo-Cabello, Manuel
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2012
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1409
https://doi.org/10.3989/scimar.03675.09C
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1409
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic scale shape
population discrimination
fish traceability
Lutjanidae
Mexican Pacific
geometric morphometrics
forma de escamas
discriminación de poblaciones
trazabilidad de peces
Pacífico mexicano
morfometría geométrica
spellingShingle scale shape
population discrimination
fish traceability
Lutjanidae
Mexican Pacific
geometric morphometrics
forma de escamas
discriminación de poblaciones
trazabilidad de peces
Pacífico mexicano
morfometría geométrica
Ibáñez, Ana L.
Espino-Barr, Elaine
Gallardo-Cabello, Manuel
Population connectivity among geographic variants within the Lutjanidae (Pisces) of the Mexican Pacific coast through fish scale shape recognition
topic_facet scale shape
population discrimination
fish traceability
Lutjanidae
Mexican Pacific
geometric morphometrics
forma de escamas
discriminación de poblaciones
trazabilidad de peces
Pacífico mexicano
morfometría geométrica
description Fish scale shape was used to identify geographic variants among Lutjanidae (Lutjanus argentiventris, L. guttatus and L. peru). Specimens were collected from three different geographic areas, north to south of the tropical Pacific coast of Mexico: Puerto Vallarta (PV), Manzanillo (MA) and Caleta de Campos (CC). Configuration of landmark coordinates of fish scales were scaled, translated and rotated using generalized procrustes analysis, followed by principal components analysis of resulting shape coordinates. Principal component scores were submitted to cross-validated discriminant analysis to determine the efficacy of scale landmarks for discrimination by geographic variants. This was done with shape and form (shape plus size). PV and MA were recognized as one population different from the CC sampling area. Using only shape (without size), identification rates predicted geographic variant membership much better than chance (91.3%, 70.6% and 85.4% for L. argentiventris, L. guttatus and L. peru, respectively), and taking size into account, classification is somewhat improved (90.6%, 80.1% and 87.5% for L. argentiventris, L. guttatus and L. peru, respectively). Consistency of the two populations for the three species shows non-fortuitous events. Population discrimination confirmed previous genetic studies that show a zoogeographic barrier between the North Equatorial Current and the California Current. The method is non-destructive, fast and less expensive than genetic analysis, thus allowing screening of many individuals for traceability of fish. La forma de las escamas se usó para identificar variantes geográficas de tres especies de Lutjanidos (Lutjanus argentiventris, L. guttatus and L. peru). Los especímenes se colectaron en tres diferentes áreas geográficas en la zona costera del Pacífico mexicano, de norte a sur: Puerto Vallarta (PV), Manzanillo (MA) and Caleta de Campos (CC). La configuración de coordenadas referenciadas de las escamas fueron escaladas, trasladadas y rotadas usando el análisis generalizado Procrustes, las coordenadas resultantes fueron sometidas a análisis de componentes principales mientras que los scores de los componentes se sometieron a validación cruzada con el análisis discriminante con el objeto de determinar la eficacia de las coordenadas referenciadas en la discriminación de las variantes geográficas. Esto se realizó considerando la forma y la talla. Los resultados mostraron que PV y MA se reconocieron como una sola población diferente de los ejemplares del área de CC. Usando solamente la forma de la escama (sin considerar la talla) las tasas de identificación entre las variantes geográficas fueron mejores que al azar (91.3, 70.6 y 85.4% para L. argentiventris, L. guttatus y L. peru, respectivamente) y agregando la talla la clasificación mejora un tanto (90.6, 80.1 y 87.5% para L. argentiventris, L. guttatus y L. peru, respectivamente). La consistencia en los resultados de dos poblaciones para las tres especies de lutjánidos muestra que este resultado no es fortuito. La discriminación de estas dos poblaciones confirma previos estudios genéticos que muestran una barrera geográfica entre la corriente Nor-ecuatorial y la corriente de California. El método no es destructivo es rápido y mucho más económico que un análisis genético además de permitir la revisión de una muestra amplia de individuos para la trazabilidad de peces.
format Article in Journal/Newspaper
author Ibáñez, Ana L.
Espino-Barr, Elaine
Gallardo-Cabello, Manuel
author_facet Ibáñez, Ana L.
Espino-Barr, Elaine
Gallardo-Cabello, Manuel
author_sort Ibáñez, Ana L.
title Population connectivity among geographic variants within the Lutjanidae (Pisces) of the Mexican Pacific coast through fish scale shape recognition
title_short Population connectivity among geographic variants within the Lutjanidae (Pisces) of the Mexican Pacific coast through fish scale shape recognition
title_full Population connectivity among geographic variants within the Lutjanidae (Pisces) of the Mexican Pacific coast through fish scale shape recognition
title_fullStr Population connectivity among geographic variants within the Lutjanidae (Pisces) of the Mexican Pacific coast through fish scale shape recognition
title_full_unstemmed Population connectivity among geographic variants within the Lutjanidae (Pisces) of the Mexican Pacific coast through fish scale shape recognition
title_sort population connectivity among geographic variants within the lutjanidae (pisces) of the mexican pacific coast through fish scale shape recognition
publisher Consejo Superior de Investigaciones Científicas
publishDate 2012
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1409
https://doi.org/10.3989/scimar.03675.09C
long_lat ENVELOPE(-63.733,-63.733,-64.983,-64.983)
ENVELOPE(9.806,9.806,63.198,63.198)
geographic Azar
Pacific
Sola
geographic_facet Azar
Pacific
Sola
genre Arctic
genre_facet Arctic
op_source Scientia Marina; Vol. 76 No. 4 (2012); 667-675
Scientia Marina; Vol. 76 Núm. 4 (2012); 667-675
1886-8134
0214-8358
10.3989/scimar.2012.76n4
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1409/1518
Allen G.R. 1985. FAO Species catalogue. Snappers of the World. An annotated and illustrated catalogue of lutjanid species known to date. FAO Fisheries Synopsis 6(125): 1-208.
Begg G.A., Waldman, J.R. 1999. An holistic approach to fish stock identification. Fish. Res. 43: 35-44. http://dx.doi.org/10.1016/S0165-7836(99)00065-X
Bookstein F.L. 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE T. Pattern. Anal. 11: 567-585.
Cowen R.K., Gawarkiewic G., Pineda J., Thorrold S.R., Werner F.E. 2007. Population connectivity in marine systems An overview. Oceanogr. 20: 14-21. http://dx.doi.org/10.5670/oceanog.2007.26
Domínguez-López M., Uribe-Alcocer M., Díaz-Jaimes P. 2010. Phylogeography and historical demography of the Pacific sierra mackerel (Scomberomorus sierra) in the Eastern Pacific. BMC Genetics 11: 1-12.
Dryden I.L., Mardia K.V. 1993. Multivariate shape analysis. Sankya Ser. A 55: 460-480.
Dryden I.L., Mardia K.V. 1998. Statistical shape analysis. John Wiley and Sons, London. 347 pp.
Espino-Barr E., Puente-Gómez M., Cabral-Solís E.G., Garcia-Boa A. 2010. Tallas de reproducción de 15 especies de la pesca ribereña en Jalisco. V Foro Científico de Pesca Ribereña, Boca del Río, Veracruz, 7 a 9 de septiembre, 77 pp.
Espino-Barr E., Cabral-Solís E.G., Garcia-Boa A., Puente-Gómez M., Miranda-Carrillo M. 2011. La captura de pargos y huachinango en el Pacífico centro, México. Memorias del III Reunión de la Sociedad Mexicana de Pesquerías, Mazatlán, Sinaloa, México, 145 pp.
Farias I., Vieira A.R., Gordo L., Figueiredo I. 2009. Otolith shape analysis as a tool for stock discrimination of the black scabbardfish, Aphanopus carbo Lowe, 1839 (Pisces: Trichiuridae), in Portuguese waters. Sci. Mar. 73: 47-53. http://dx.doi.org/10.3989/scimar.2009.73s2047
Fernández A., Gallegos A., Zavala J. 1992. Carta Oceanográfica física 2, aspectos regionales. Atlas Nacional de México. México, D. F. Instituto de Geografía. National University of México. Vol. II.
Franco-Gordo C., Godínez-Domínguez E., Suarez-Morales E. 2002. Larval fish assemblages in waters off the central Pacific coast of Mexico. J. Plank. Res. 24: 775-784. http://dx.doi.org/10.1093/plankt/24.8.775
Gallardo-Cabello M., Sarabia-Méndez M., Espino-Barr E., Anislado-Tolentino V. 2010. Biological aspects of Lutjanus peru in Bufadero Bay, Michoacán, México: growth, reproduction and condition factors. Rev. Biol. Mar. Oceanogr. 45: 205-215. http://dx.doi.org/10.4067/S0718-19572010000200002
Garduño-Paz M.V., Demetriou M., Adams C.E. 2010. Variation in scale shape among alternative sympatric phenotypes of Arctic charr Salvelinus alpinus from two lakes in Scotland. J. Fish Biol. 76: 1491-1497. http://dx.doi.org/10.1111/j.1095-8649.2010.02584.x PMid:20537027
Hong-Yi G., Kai W., Wen-Qiao T., Jia-Ming W., Wen-Yin C. 2010. Sibling species discrimination for Chinese genus of Coilia fishes based on sagittal otolith morphology. Acta Zootaxon. Sinica 35: 127-134.
Ibáñez A.L., Lleonart J. 1996. Relative growth and comparative morphometrics of Mugil cephalus L. and M. curema V. in the Gulf of Mexico. Sci. Mar. 60: 361-368.
Ibáñez A.L., Cowx I.G., O'Higgins P. 2007. Geometric morphometric analysis of fish scales for identifying genera, species and local populations within the Mugilidae. Can. J. Fish. Aquat. Sci. 64: 1091-1100. http://dx.doi.org/10.1139/f07-075
Ibáñez A.L., Cowx I.G., O'Higgins P. 2009. Variation in elasmoid fish scale patterns is informative with regard to taxon and swimming mode. Zool. J. Linn. Soc. 155: 834-844. http://dx.doi.org/10.1111/j.1096-3642.2008.00465.x
Ibáñez A.L., O'Higgins P. 2011. Identifying fish scales: the influence of allometry on scale shape and classification. Fish. Res. 109: 54-60. http://dx.doi.org/10.1016/j.fishres.2011.01.016
Ibáñez A. L., Pacheco-Almanzar E., Cowx I.G. 2012. Does compensatory growth modify fish scale shape? Environ. Biol. Fish. 94: 477-482. http://dx.doi.org/10.1007/s10641-011-9962-4
Jarvis R.S., Klodowski H.F., Sheldon S.P. 1978. New method of quantifying scale shape and an application to stock identification in Walleye (Stizostedion vitreum vitreum). T. Am. Fish. Soc. 107: 528-534. http://dx.doi.org/10.1577/1548-8659(1978)107<528:NMOQSS>2.0.CO;2
Kent J.T. 1994. The complex Bingham distribution and shape analysis. J.R. Statist. Soc. B 56: 285-299.
Lombarte A., Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fish. 37: 297-306. http://dx.doi.org/10.1007/BF00004637
Marcus L.F., Corti M., Loy A., Naylor G.J.P., Slice D.E. (eds). 1996. Advances in Morphometrics. Nato ASI Series. Vol. 284, Plenum Press, New York, 587 pp.
Mitteroecker P., Gunz P. 2009. Advances in Geometric Morphometrics. Evol. Biol. 36: 235-247 http://dx.doi.org/10.1007/s11692-009-9055-x
O'Higgins P., Chadfield P., Jones N. 2001. Facial growth and the ontogeny of morphological variation within and between the primates Cebus apella and Cercocebus torquatus. J. Zool. 254: 337-357. http://dx.doi.org/10.1017/S095283690100084X
O'Higgins, P., Jones, N. 2007. Morphologika2 v2.5. Hull York Medical School. Available from http://sites.google.com/site/hymsfme downloadmorphologica (accessed 10 March 2010).
Palumbi S.R. 2003. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13: 146-158. http://dx.doi.org/10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2
Richards R.A., Esteves C. 1997. Use of scale morphology for discriminating wild stocks of Atlantic striped bass. T. Am. Fish. Soc. 126: 919-925. http://dx.doi.org/10.1577/1548-8659(1997)126<0919:UOSMFD>2.3.CO;2
Rohlf, F.J. 2006. Tps Series. Department of Ecology and Evolution, State University, N.Y., Stony Brook. Available from http://life.bio.sunysb.edu/morph (accessed 8 July 2010).
SAGARPA. 2010. Anuario estadístico de pesca 2009. Mazatlán, Sinaloa. Comisión Nacional de Acuacultura y Pesca, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, http://www.conapesca.sagarpa.gob.mx/wb/cona/anuario_2009_capitulo_i_preliminar
Sale P.F., Van Lavieren H., Ablan Lagman M.C., Atema J., Butler M., Fauvelot C., Hogan J.D., Jones G.P., Lindeman K.C., Paris C.B., Steneck R., Stewart H.L. 2010. Preserving Reef Connectivity: A Handbook for Marine Protected Area Managers. Melbourne, Australia. Connectivity Working Group, Coral Reef Targeted Research and Capacity Building for Management Program, UNU-INWEH.
Sarabia-Méndez M., Gallardo-Cabello M., Espino-Barr E., Anislado-Tolentino V. 2010. Characteristics of population dynamics of Lutjanus guttatus (Pisces: Lutjanidae) in Bufadero Bay, Michoacán, México. Hidrobiológica 20: 149-158.
Shoji J., Tsutomu M., Tanaka M. 2005. Larval growth and mortality of Japanese Spanish mackerel (Scomberomorus niphonius) in the central Seto Inland Sea, Japan. J. Mar. Biol. Ass. U.K. 85: 1255-1261. http://dx.doi.org/10.1017/S0025315405012403
Sparre P., Venema S.C. 1995. Introducción a la evaluación de recursos pesqueros Tropicales. Parte 1. Manual. Valparaíso, Chile. FAO Documento Técnico de Pesca.
Swain D.P., Foote C.J. 1999. Stocks and chameleons: the use of phenotypic variation in stock identification. Fish. Res. 43: 113-128. http://dx.doi.org/10.1016/S0165-7836(99)00069-7
Waldman J.R. 1999. The importance of comparative studies in stock analysis. Fish. Res. 43: 237-246. http://dx.doi.org/10.1016/S0165-7836(99)00075-2
Watkinson D.A., Gillis D.M. 2005. Stock identification of Lake Winnipeg walleye based on Fourier and wavelet description of scale outline signals. Fish. Res. 72: 193-203. http://dx.doi.org/10.1016/j.fishres.2004.11.002
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1409
doi:10.3989/scimar.03675.09C
op_rights Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.03675.09C
https://doi.org/10.3989/scimar.2012.76n4
https://doi.org/10.1016/S0165-7836(99)00065-X
https://doi.org/10.5670/oceanog.2007.26
https://doi.org/10.3989/scimar.2009.73s2047
https://doi.org/10.1093/plankt/24
container_title Scientia Marina
container_volume 0
container_issue 0
_version_ 1766302617056575488
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1409 2023-05-15T14:28:27+02:00 Population connectivity among geographic variants within the Lutjanidae (Pisces) of the Mexican Pacific coast through fish scale shape recognition Conectividad poblacional entre variantes geográficas de Lutjanidae (Pisces) en las costas del Pacífico mexicano a través del reconocimiento de la forma de las escamas Ibáñez, Ana L. Espino-Barr, Elaine Gallardo-Cabello, Manuel 2012-12-30 application/pdf https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1409 https://doi.org/10.3989/scimar.03675.09C eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1409/1518 Allen G.R. 1985. FAO Species catalogue. Snappers of the World. An annotated and illustrated catalogue of lutjanid species known to date. FAO Fisheries Synopsis 6(125): 1-208. Begg G.A., Waldman, J.R. 1999. An holistic approach to fish stock identification. Fish. Res. 43: 35-44. http://dx.doi.org/10.1016/S0165-7836(99)00065-X Bookstein F.L. 1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE T. Pattern. Anal. 11: 567-585. Cowen R.K., Gawarkiewic G., Pineda J., Thorrold S.R., Werner F.E. 2007. Population connectivity in marine systems An overview. Oceanogr. 20: 14-21. http://dx.doi.org/10.5670/oceanog.2007.26 Domínguez-López M., Uribe-Alcocer M., Díaz-Jaimes P. 2010. Phylogeography and historical demography of the Pacific sierra mackerel (Scomberomorus sierra) in the Eastern Pacific. BMC Genetics 11: 1-12. Dryden I.L., Mardia K.V. 1993. Multivariate shape analysis. Sankya Ser. A 55: 460-480. Dryden I.L., Mardia K.V. 1998. Statistical shape analysis. John Wiley and Sons, London. 347 pp. Espino-Barr E., Puente-Gómez M., Cabral-Solís E.G., Garcia-Boa A. 2010. Tallas de reproducción de 15 especies de la pesca ribereña en Jalisco. V Foro Científico de Pesca Ribereña, Boca del Río, Veracruz, 7 a 9 de septiembre, 77 pp. Espino-Barr E., Cabral-Solís E.G., Garcia-Boa A., Puente-Gómez M., Miranda-Carrillo M. 2011. La captura de pargos y huachinango en el Pacífico centro, México. Memorias del III Reunión de la Sociedad Mexicana de Pesquerías, Mazatlán, Sinaloa, México, 145 pp. Farias I., Vieira A.R., Gordo L., Figueiredo I. 2009. Otolith shape analysis as a tool for stock discrimination of the black scabbardfish, Aphanopus carbo Lowe, 1839 (Pisces: Trichiuridae), in Portuguese waters. Sci. Mar. 73: 47-53. http://dx.doi.org/10.3989/scimar.2009.73s2047 Fernández A., Gallegos A., Zavala J. 1992. Carta Oceanográfica física 2, aspectos regionales. Atlas Nacional de México. México, D. F. Instituto de Geografía. National University of México. Vol. II. Franco-Gordo C., Godínez-Domínguez E., Suarez-Morales E. 2002. Larval fish assemblages in waters off the central Pacific coast of Mexico. J. Plank. Res. 24: 775-784. http://dx.doi.org/10.1093/plankt/24.8.775 Gallardo-Cabello M., Sarabia-Méndez M., Espino-Barr E., Anislado-Tolentino V. 2010. Biological aspects of Lutjanus peru in Bufadero Bay, Michoacán, México: growth, reproduction and condition factors. Rev. Biol. Mar. Oceanogr. 45: 205-215. http://dx.doi.org/10.4067/S0718-19572010000200002 Garduño-Paz M.V., Demetriou M., Adams C.E. 2010. Variation in scale shape among alternative sympatric phenotypes of Arctic charr Salvelinus alpinus from two lakes in Scotland. J. Fish Biol. 76: 1491-1497. http://dx.doi.org/10.1111/j.1095-8649.2010.02584.x PMid:20537027 Hong-Yi G., Kai W., Wen-Qiao T., Jia-Ming W., Wen-Yin C. 2010. Sibling species discrimination for Chinese genus of Coilia fishes based on sagittal otolith morphology. Acta Zootaxon. Sinica 35: 127-134. Ibáñez A.L., Lleonart J. 1996. Relative growth and comparative morphometrics of Mugil cephalus L. and M. curema V. in the Gulf of Mexico. Sci. Mar. 60: 361-368. Ibáñez A.L., Cowx I.G., O'Higgins P. 2007. Geometric morphometric analysis of fish scales for identifying genera, species and local populations within the Mugilidae. Can. J. Fish. Aquat. Sci. 64: 1091-1100. http://dx.doi.org/10.1139/f07-075 Ibáñez A.L., Cowx I.G., O'Higgins P. 2009. Variation in elasmoid fish scale patterns is informative with regard to taxon and swimming mode. Zool. J. Linn. Soc. 155: 834-844. http://dx.doi.org/10.1111/j.1096-3642.2008.00465.x Ibáñez A.L., O'Higgins P. 2011. Identifying fish scales: the influence of allometry on scale shape and classification. Fish. Res. 109: 54-60. http://dx.doi.org/10.1016/j.fishres.2011.01.016 Ibáñez A. L., Pacheco-Almanzar E., Cowx I.G. 2012. Does compensatory growth modify fish scale shape? Environ. Biol. Fish. 94: 477-482. http://dx.doi.org/10.1007/s10641-011-9962-4 Jarvis R.S., Klodowski H.F., Sheldon S.P. 1978. New method of quantifying scale shape and an application to stock identification in Walleye (Stizostedion vitreum vitreum). T. Am. Fish. Soc. 107: 528-534. http://dx.doi.org/10.1577/1548-8659(1978)107<528:NMOQSS>2.0.CO;2 Kent J.T. 1994. The complex Bingham distribution and shape analysis. J.R. Statist. Soc. B 56: 285-299. Lombarte A., Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fish. 37: 297-306. http://dx.doi.org/10.1007/BF00004637 Marcus L.F., Corti M., Loy A., Naylor G.J.P., Slice D.E. (eds). 1996. Advances in Morphometrics. Nato ASI Series. Vol. 284, Plenum Press, New York, 587 pp. Mitteroecker P., Gunz P. 2009. Advances in Geometric Morphometrics. Evol. Biol. 36: 235-247 http://dx.doi.org/10.1007/s11692-009-9055-x O'Higgins P., Chadfield P., Jones N. 2001. Facial growth and the ontogeny of morphological variation within and between the primates Cebus apella and Cercocebus torquatus. J. Zool. 254: 337-357. http://dx.doi.org/10.1017/S095283690100084X O'Higgins, P., Jones, N. 2007. Morphologika2 v2.5. Hull York Medical School. Available from http://sites.google.com/site/hymsfme downloadmorphologica (accessed 10 March 2010). Palumbi S.R. 2003. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13: 146-158. http://dx.doi.org/10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2 Richards R.A., Esteves C. 1997. Use of scale morphology for discriminating wild stocks of Atlantic striped bass. T. Am. Fish. Soc. 126: 919-925. http://dx.doi.org/10.1577/1548-8659(1997)126<0919:UOSMFD>2.3.CO;2 Rohlf, F.J. 2006. Tps Series. Department of Ecology and Evolution, State University, N.Y., Stony Brook. Available from http://life.bio.sunysb.edu/morph (accessed 8 July 2010). SAGARPA. 2010. Anuario estadístico de pesca 2009. Mazatlán, Sinaloa. Comisión Nacional de Acuacultura y Pesca, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, http://www.conapesca.sagarpa.gob.mx/wb/cona/anuario_2009_capitulo_i_preliminar Sale P.F., Van Lavieren H., Ablan Lagman M.C., Atema J., Butler M., Fauvelot C., Hogan J.D., Jones G.P., Lindeman K.C., Paris C.B., Steneck R., Stewart H.L. 2010. Preserving Reef Connectivity: A Handbook for Marine Protected Area Managers. Melbourne, Australia. Connectivity Working Group, Coral Reef Targeted Research and Capacity Building for Management Program, UNU-INWEH. Sarabia-Méndez M., Gallardo-Cabello M., Espino-Barr E., Anislado-Tolentino V. 2010. Characteristics of population dynamics of Lutjanus guttatus (Pisces: Lutjanidae) in Bufadero Bay, Michoacán, México. Hidrobiológica 20: 149-158. Shoji J., Tsutomu M., Tanaka M. 2005. Larval growth and mortality of Japanese Spanish mackerel (Scomberomorus niphonius) in the central Seto Inland Sea, Japan. J. Mar. Biol. Ass. U.K. 85: 1255-1261. http://dx.doi.org/10.1017/S0025315405012403 Sparre P., Venema S.C. 1995. Introducción a la evaluación de recursos pesqueros Tropicales. Parte 1. Manual. Valparaíso, Chile. FAO Documento Técnico de Pesca. Swain D.P., Foote C.J. 1999. Stocks and chameleons: the use of phenotypic variation in stock identification. Fish. Res. 43: 113-128. http://dx.doi.org/10.1016/S0165-7836(99)00069-7 Waldman J.R. 1999. The importance of comparative studies in stock analysis. Fish. Res. 43: 237-246. http://dx.doi.org/10.1016/S0165-7836(99)00075-2 Watkinson D.A., Gillis D.M. 2005. Stock identification of Lake Winnipeg walleye based on Fourier and wavelet description of scale outline signals. Fish. Res. 72: 193-203. http://dx.doi.org/10.1016/j.fishres.2004.11.002 https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1409 doi:10.3989/scimar.03675.09C Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 76 No. 4 (2012); 667-675 Scientia Marina; Vol. 76 Núm. 4 (2012); 667-675 1886-8134 0214-8358 10.3989/scimar.2012.76n4 scale shape population discrimination fish traceability Lutjanidae Mexican Pacific geometric morphometrics forma de escamas discriminación de poblaciones trazabilidad de peces Pacífico mexicano morfometría geométrica info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2012 ftjscientiamarin https://doi.org/10.3989/scimar.03675.09C https://doi.org/10.3989/scimar.2012.76n4 https://doi.org/10.1016/S0165-7836(99)00065-X https://doi.org/10.5670/oceanog.2007.26 https://doi.org/10.3989/scimar.2009.73s2047 https://doi.org/10.1093/plankt/24 2022-03-20T16:31:16Z Fish scale shape was used to identify geographic variants among Lutjanidae (Lutjanus argentiventris, L. guttatus and L. peru). Specimens were collected from three different geographic areas, north to south of the tropical Pacific coast of Mexico: Puerto Vallarta (PV), Manzanillo (MA) and Caleta de Campos (CC). Configuration of landmark coordinates of fish scales were scaled, translated and rotated using generalized procrustes analysis, followed by principal components analysis of resulting shape coordinates. Principal component scores were submitted to cross-validated discriminant analysis to determine the efficacy of scale landmarks for discrimination by geographic variants. This was done with shape and form (shape plus size). PV and MA were recognized as one population different from the CC sampling area. Using only shape (without size), identification rates predicted geographic variant membership much better than chance (91.3%, 70.6% and 85.4% for L. argentiventris, L. guttatus and L. peru, respectively), and taking size into account, classification is somewhat improved (90.6%, 80.1% and 87.5% for L. argentiventris, L. guttatus and L. peru, respectively). Consistency of the two populations for the three species shows non-fortuitous events. Population discrimination confirmed previous genetic studies that show a zoogeographic barrier between the North Equatorial Current and the California Current. The method is non-destructive, fast and less expensive than genetic analysis, thus allowing screening of many individuals for traceability of fish. La forma de las escamas se usó para identificar variantes geográficas de tres especies de Lutjanidos (Lutjanus argentiventris, L. guttatus and L. peru). Los especímenes se colectaron en tres diferentes áreas geográficas en la zona costera del Pacífico mexicano, de norte a sur: Puerto Vallarta (PV), Manzanillo (MA) and Caleta de Campos (CC). La configuración de coordenadas referenciadas de las escamas fueron escaladas, trasladadas y rotadas usando el análisis generalizado Procrustes, las coordenadas resultantes fueron sometidas a análisis de componentes principales mientras que los scores de los componentes se sometieron a validación cruzada con el análisis discriminante con el objeto de determinar la eficacia de las coordenadas referenciadas en la discriminación de las variantes geográficas. Esto se realizó considerando la forma y la talla. Los resultados mostraron que PV y MA se reconocieron como una sola población diferente de los ejemplares del área de CC. Usando solamente la forma de la escama (sin considerar la talla) las tasas de identificación entre las variantes geográficas fueron mejores que al azar (91.3, 70.6 y 85.4% para L. argentiventris, L. guttatus y L. peru, respectivamente) y agregando la talla la clasificación mejora un tanto (90.6, 80.1 y 87.5% para L. argentiventris, L. guttatus y L. peru, respectivamente). La consistencia en los resultados de dos poblaciones para las tres especies de lutjánidos muestra que este resultado no es fortuito. La discriminación de estas dos poblaciones confirma previos estudios genéticos que muestran una barrera geográfica entre la corriente Nor-ecuatorial y la corriente de California. El método no es destructivo es rápido y mucho más económico que un análisis genético además de permitir la revisión de una muestra amplia de individuos para la trazabilidad de peces. Article in Journal/Newspaper Arctic Scientia Marina (E-Journal) Azar ENVELOPE(-63.733,-63.733,-64.983,-64.983) Pacific Sola ENVELOPE(9.806,9.806,63.198,63.198) Scientia Marina 0 0