Movements of three large coastal predatory fishes in the northeast Atlantic: a preliminary telemetry study
Labrus bergylta, Dicentrarchus labrax and Conger conger are common predators of northeast Atlantic coastal ecosystems and are studied here for the first time with ultrasonic telemetry in their natural environment. We demonstrate the viability of using this technology with these species and used move...
Published in: | Journal of Geophysical Research |
---|---|
Main Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Consejo Superior de Investigaciones Científicas
2011
|
Subjects: | |
Online Access: | https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1298 https://doi.org/10.3989/scimar.2011.75n4759 |
id |
ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1298 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Scientia Marina (E-Journal) |
op_collection_id |
ftjscientiamarin |
language |
English |
topic |
coastal predatory fish habitat use site fidelity home range diel activity tagging telemetry VR2 VR100 peces depredadores costeros uso del hábitat fidelidad al hábitat área vital actividad diaria marcaje telemetría |
spellingShingle |
coastal predatory fish habitat use site fidelity home range diel activity tagging telemetry VR2 VR100 peces depredadores costeros uso del hábitat fidelidad al hábitat área vital actividad diaria marcaje telemetría Pita, Pablo Freire, Juan Movements of three large coastal predatory fishes in the northeast Atlantic: a preliminary telemetry study |
topic_facet |
coastal predatory fish habitat use site fidelity home range diel activity tagging telemetry VR2 VR100 peces depredadores costeros uso del hábitat fidelidad al hábitat área vital actividad diaria marcaje telemetría |
description |
Labrus bergylta, Dicentrarchus labrax and Conger conger are common predators of northeast Atlantic coastal ecosystems and are studied here for the first time with ultrasonic telemetry in their natural environment. We demonstrate the viability of using this technology with these species and used movement information to obtain preliminary short-term results on site fidelity, diel activity patterns and home range sizes. Two complementary telemetry methods were used: manual and automatic tracking along a stretch of coast characterized by its high wave exposure (A Coruña, NW Spain). C. conger stayed in the area for the longest periods of time (17 days), occasionally leaving their refuges at dusk or during the night to search for food. Their home range was very small (604 m2). L. bergylta were not detected by the automatic receivers but the size of their home range (between 2874 and 5184 m2), shows that they are highly sedentary with very limited movements. D. labrax left the area for the longest periods (9 days) and were detected during both night and day. Their home range was the largest (up to 26396 m2), evidencing complex spatial behaviour on a large scale. Labrus bergylta, Dicentrarchus labrax y Conger conger son depredadores habituales de los ecosistemas costeros del Noreste Atlántico que en este trabajo se estudian por vez primera mediante telemetría ultrasónica en el medio natural. Se demostró la viabilidad del uso de esta tecnología con estas especies y la información sobre sus movimientos se usó para obtener resultados preliminares a corto plazo acerca de la fidelidad al hábitat, la temporalidad diaria de la actividad y el tamaño del área vital. Se emplearon complementariamente dos métodos de telemetría: seguimiento manual y automático en un tramo de costa caracterizado por su elevado grado de exposición al oleaje (A Coruña, NW Spain). Los C. conger permanecieron en el área durante los períodos más largos (17 días), abandonando periódicamente sus refugios al atardecer o durante las noches para buscar alimento. El tamaño de su área vital fue muy pequeño (604 m2). Los L. bergylta no fueron detectados en los receptores automáticos, pero el tamaño de su área vital (entre 2874 y 5184 m2), evidencia un elevado grado de sedentarismo y movimientos muy limitados. Por el contrario, los D. labrax abandonaron el área durante los intervalos más prolongados (9 días), detectándose igualmente durante el día o la noche. Su área vital fue la de mayor tamaño (hasta 26396 m2), evidenciándose un comportamiento espacial complejo y a gran escala. |
format |
Article in Journal/Newspaper |
author |
Pita, Pablo Freire, Juan |
author_facet |
Pita, Pablo Freire, Juan |
author_sort |
Pita, Pablo |
title |
Movements of three large coastal predatory fishes in the northeast Atlantic: a preliminary telemetry study |
title_short |
Movements of three large coastal predatory fishes in the northeast Atlantic: a preliminary telemetry study |
title_full |
Movements of three large coastal predatory fishes in the northeast Atlantic: a preliminary telemetry study |
title_fullStr |
Movements of three large coastal predatory fishes in the northeast Atlantic: a preliminary telemetry study |
title_full_unstemmed |
Movements of three large coastal predatory fishes in the northeast Atlantic: a preliminary telemetry study |
title_sort |
movements of three large coastal predatory fishes in the northeast atlantic: a preliminary telemetry study |
publisher |
Consejo Superior de Investigaciones Científicas |
publishDate |
2011 |
url |
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1298 https://doi.org/10.3989/scimar.2011.75n4759 |
long_lat |
ENVELOPE(-60.783,-60.783,-62.450,-62.450) ENVELOPE(-63.267,-63.267,-64.683,-64.683) ENVELOPE(-60.783,-60.783,-62.450,-62.450) |
geographic |
Corto Elevado Fidelidad |
geographic_facet |
Corto Elevado Fidelidad |
genre |
Northeast Atlantic |
genre_facet |
Northeast Atlantic |
op_source |
Scientia Marina; Vol. 75 No. 4 (2011); 759-770 Scientia Marina; Vol. 75 Núm. 4 (2011); 759-770 1886-8134 0214-8358 10.3989/scimar.2011.75n4 |
op_relation |
https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1298/1379 Akaike, H. – 1973. Information theory and an extension of the maximum likelihood principle. In: B.N. Petrov and F. Csaki, (eds.), Second International Symposium of Information Theory, pp. 267-281. Akademiai Kiado, Budapest. Anras, M.L.B., J.P. Lagardére and J.Y. Lafaye. – 1997. Diel activity rhythm of seabass tracked in a natural environment: group effects on swimming patterns and amplitudes. Can. J. Fish. Aquat. Sci., 54: 162-168. http://dx.doi.org/10.1139/f96-253 Bauchot, M.L. and L. Saldanha. – 1986. Congridae. In: P.J.P. Whitehead, M.L. Bauchot, J.C. Hureau, J. Nielsen and E. Tortonese (eds.), Fishes of the Northeastern Atlantic and the Mediterranean, pp. 567-574. UNESCO, Paris. Cau, A. and P. Manconi. – 1983. Sex-ratio and spatial displacement in Conger conger (L.). Rapp. P.-V. Reun. CIESM, 28: 93-96. Darwall, W.R.T., M.J. Costello, R. Donnelly and S. Lysaght. – 1992. Implications of life-history strategies for a new wrasse fishery. J. Fish Biol., 41: 111-123. http://dx.doi.org/10.1111/j.1095-8649.1992.tb03873.x Dipper, F.A., C.R. Bridges and A. Menz. – 1977. Age, growth and feeding in the ballan wrasse Labrus bergylta Ascanius 1767. J. Fish Biol., 11: 105-120. http://dx.doi.org/10.1111/j.1095-8649.1977.tb04103.x Fabrizio, M.C. and J.P. Pessutti. – 2007. Long-term effects and recovery from surgical implantation of dummy transmitters in two marine fishes. J. Exp. Mar. Biol. Ecol., 351: 243-254. http://dx.doi.org/10.1016/j.jembe.2007.06.031 Fiedler, K. – 1991. Fische. In: D. Starck (ed.), Lehrbuch der speziellen Zoologie, Band II: Wirbeltiere, Teil 2: pp. 1-498. Gustav Fischer Verlag, Jena. Frimodt, C. – 1995. Illustrated multilingual guide to the world’s commercial warmwater fish. Fishing News Books, Oxford. Fritsch, M., Y. Morizur, E. Lambert, F. Bonhomme and B. Guinand. – 2007. Assessment of sea bass (Dicentrarchus labrax, L.) stock delimitation in the Bay of Biscay and the English Channel based on mark-recapture and genetic data. Fish. Res., 83: 123-132. http://dx.doi.org/10.1016/j.fishres.2006.09.002 García-Castrillo, G. – 2000. Peces de la bahía de Santander y su entorno. Fundación Marcelino Botín, Santander. George, G.J. – 2007. Acoustic tagging of black drum on Louisiana oyster reefs: movements, site fidelity, and habitat use. MsC thesis, Louisiana Stat. Univ. Golet, W.J., D.A. Scopel, A.B. Cooper and W.H. Watson. – 2006. Daily patterns of locomotion expressed by American lobsters (Homarus americanus) in their natural habitat. J. Crustacean Biol., 22: 610-620. http://dx.doi.org/10.1651/S-2729.1 Harrell, F.E. – 2001. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer Verlag, New York. Hastie, T. and R.J. Tibshirani. – 1990. Generalized Additive Models. Chapman and Hall, London. Hedger, R.D., T.F. Næsje, P.D. Cowley, E.B. Thorstad, C. Attwood, F. Økland, C.G. Wilke and S. Kerwath. – 2010. Residency and migratory behaviour by adult Pomatomus saltatrix in a South African coastal embayment. Estuar. Coast. Shelf Sci., 89: 12-20. http://dx.doi.org/10.1016/j.ecss.2010.04.013 Hooge, P.N. and B. Eichenlaub. – 1997. Animal movement extension to arcview. Alaska Biological Science Centre, U.S. Geological Survey, Anchorage. Hooge, P.N., B. Eichenlaub, and E.K. Solomon. – 1997. Using GIS to analyze animal movements in the marine environment. Alaska Biological Science Centre, U.S. Geological Survey, Anchorage. IGFA. – 2001 Database of IGFA angling records until 2001. IGFA, Fort Lauderdale, USA. URL http://www.igfa.org . Jorgensen, S.J., D.M. Kaplan, A.P. Klimley, S.G. Morgan, M.R. O’Farrell and L.W. Botsford. – 2006. Limited movement in blue rockfish Sebastes mystinus: internal structure of home range. Mar. Ecol. Prog. Ser., 327: 157-170. http://dx.doi.org/10.3354/meps327157 Jepsen, N., A. Koed, E.B. Thorstad and E. Baras. – 2002. Surgical implantation of telemetry transmitters in fish: how much have we learned? Hydrobiologia, 483: 239-248. http://dx.doi.org/10.1023/A:1021356302311 Kearney, R.E. – 1989. Tagging—solution or problem. In: D.A. Handcock (ed.), Australian Society for Fish Biology tagging workshop, pp. 208. Proceedings no. 5, Aust. Govt. Publ. Serv., Canberra. Lagardère, J.P., J.J. Ducamp, L. Favre, J.M. Dupin and M. Sperandio.– 1990. A method for the quantitative evaluation of fish movements in salt ponds by acoustic telemetry. J. Exp. Mar. Biol. Ecol., 141: 221-236. http://dx.doi.org/10.1016/0022-0981(90)90226-3 Lloris, D. – 2002. A world overview of species of interest to fisheries. Chapter: Dicentrarchus labrax. FIGIS Species Fact Sheets. Species Identification and Data Programme-SIDP. FAO-FIGIS, 3. Løkkeborg, S., A. Ferno and T. Jørgensen. – 2002. Effect of position-fixing interval on estimated swimming speed and movement pattern of fish tracked with a stationary positioning system. Hydrobiologia, 483: 259-264. http://dx.doi.org/10.1023/A:1021312503220 Lowe, C.G., D.T. Topping, D.P. Cartamil and Y.P. Papastamatiou. – 2003. Movement patterns, home range, and habitat utilization of adult kelp bass Paralabrax clathratus in a temperate no-take marine reserve. Mar. Ecol. Prog. Ser., 256: 205-216. http://dx.doi.org/10.3354/meps256205 Maigret, J. and B. Ly. – 1986. Les poissons de mer de Mauritanie. Centre National de Recherches Océanographiques et des Pêches, Nouadhibou. Martínez, M., A. Monteagudo, A. Sandoval and P. Zas. – 2006. Islas de San Pedro. Terranova S.L., A Coruña. Mc Cleave, J.D. and M.J. Miller. – 1994. Spawning of Conger oceanicus and Conger triporiceps (Congridae) in the Sargasso Sea and subsequent distribution of leptocephali. Environ. Biol. Fish., 39: 339-355. http://dx.doi.org/10.1007/BF00004803 Ministerio de Fomento. – 1998-2010. Puertos del Estado. Accessed 1 Jan of 2011, URL http://www.puertos.es . Murphy, H.M. and G.P. Jenkins. – 2010. Observational methods used in marine spatial monitoring of fishes and associated habitats: a review. Mar. Freshwater Res., 61: 236-252. http://dx.doi.org/10.1071/MF09068 Muus, B.J., J.G. Nielsen, P. Dahlstrøm and B.O. Nyström. – 1999. Sea fish. Scandinavian Fishing Year Book. Wiley-Blackwell, Hedehusene. Myers, R.A. and B. Worm. – 2003. Rapid worldwide depletion of predatory fish communities. Nature, 423: 280-283. http://dx.doi.org/10.1038/nature01610 PMid:12748640 Myers, R.A., J.K. Baum, T.D. Shepherd, S.P. Powers and C.H. Peterson.– 2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science, 315: 1846-1850. http://dx.doi.org/10.1126/science.1138657 PMid:17395829 Mytilineou, C., C. Politou, C. Papaconstantinou, S. Kavadas, G. D’onghia and L. Sion. – 2005. Deep-water fish fauna in the Eastern Ionian Sea. Belg. J. Zool., 135: 229-233. Oca, J., I. Masalo and L. Reig. – 2005. Acoustic doppler velocimetry allows determining daily swimming activity of sea bass (Dicentrarchus labrax L.). In: World Aquaculture Society (eds.), World Aquaculture, pp. 460-461. Bali. Økland, F., C.J. Hay, T.F. Næsje, E.B. Thorstad and N. Nickandor. – 2001. Movements and habitat utilisation of radio tagged carp (Cyprinus carpio) in a reservoir in the Fish River, Namibia. NINA·NIKU Project Report, 13: 1-28. O’Sullivan, S., C. Moriarty, R.D. FitzGerald, J. Davenport and M.F. Mulcahy. – 2003. Age, growth and reproductive status of the European conger eel, Conger conger (L.) in Irish coastal waters. Fish. Res., 64: 55-69. Pickett, G.D., D.F. Kelley and M.G. Pawson. – 2004. The patterns of recruitment of sea bass, Dicentrarchus labrax L. from nursery areas in England and Wales and implications for fisheries management. Fish. Res., 68: 329-342. http://dx.doi.org/10.1016/j.fishres.2003.11.013 Pita, P., J. Freire and A. García-Allut. – 2008. How to assign a catch value to fishing grounds when fisheries statistics are not spatially explicit. Sci. Mar., 72: 693-699. Quignard, J.P. and A. Pras. – 1986. Labridae. In: P.J.P. Whitehead, M.L. Bauchot, J.C. Hureau, J. Nielsen and E. Tortonese (eds.), Fishes of the North-eastern Atlantic and the Mediterranean, pp. 919-942. UNESCO, Paris. R Development Core Team. – 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:/www.R-project.org. Rodríguez, X.L. and Vázquez, X. – 1994. Peixes do mar de Galicia. Peixes óseos: xeneralidades, clasificación e orde perciformes. Edicións Xerais de Galicia, Vigo. Sackett, D.K., W.A. Kenneth and T.M. Grothues. – 2007. Dynamics of summer flounder, Paralichthys dentatus, seasonal migrations based on ultrasonic telemetry. Estuar. Coast. Shelf Sci., 74: 119-130. http://dx.doi.org/10.1016/j.ecss.2007.03.027 Seaman, D.E. and R.A. Powell. – 1996. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology, 77: 2075-2085. http://dx.doi.org/10.2307/2265701 Seaman, D.E., J.J. Millspaugh, B.J. Kernohan, G.C. Brundige, K.J. Raedeke and R.A. Gitzen. – 1999. Effects of sample size on kernel home range estimates. J. Wildlife Manage., 63: 739-747. http://dx.doi.org/10.2307/3802664 Shepherd, J.G. – 1988. Fish stock assessments and their data requirements. In: J.A. Gulland (ed.), Fish population dynamics: the implications for management, pp. 35-62. John Wiley and Sons, New York. Smith, D.G. – 1990. Congridae. In: J.C. Quero, J.C. Hureau, C. Karrer, A. Post and L. Saldanha (eds.), Check-list of the fishes of the eastern tropical Atlantic (CLOFETA), pp. 156-167. JNICT and UNESCO, Lisbon and Paris. Swihart, R.K. and N.A. Slade. – 1985. Testing for independence of observations in animal movements. Ecology, 66: 1176-1184. http://dx.doi.org/10.2307/1939170 |
op_rights |
Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.3989/scimar.2011.75n4759 https://doi.org/10.3989/scimar.2011.75n4 https://doi.org/10.1139/f96-253 https://doi.org/10.1111/j.1095-8649.1992.tb03873.x https://doi.org/10.1111/j.1095-8649.1977.tb04103.x https://doi.org/10.1016/j. |
container_title |
Journal of Geophysical Research |
container_volume |
99 |
container_issue |
C2 |
container_start_page |
3407 |
_version_ |
1766143040798326784 |
spelling |
ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1298 2023-05-15T17:41:28+02:00 Movements of three large coastal predatory fishes in the northeast Atlantic: a preliminary telemetry study Movimientos de tres grandes peces depredadores costeros del Noreste Atlántico: un estudio preliminar mediante telemetría Pita, Pablo Freire, Juan 2011-12-30 application/pdf https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1298 https://doi.org/10.3989/scimar.2011.75n4759 eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1298/1379 Akaike, H. – 1973. Information theory and an extension of the maximum likelihood principle. In: B.N. Petrov and F. Csaki, (eds.), Second International Symposium of Information Theory, pp. 267-281. Akademiai Kiado, Budapest. Anras, M.L.B., J.P. Lagardére and J.Y. Lafaye. – 1997. Diel activity rhythm of seabass tracked in a natural environment: group effects on swimming patterns and amplitudes. Can. J. Fish. Aquat. Sci., 54: 162-168. http://dx.doi.org/10.1139/f96-253 Bauchot, M.L. and L. Saldanha. – 1986. Congridae. In: P.J.P. Whitehead, M.L. Bauchot, J.C. Hureau, J. Nielsen and E. Tortonese (eds.), Fishes of the Northeastern Atlantic and the Mediterranean, pp. 567-574. UNESCO, Paris. Cau, A. and P. Manconi. – 1983. Sex-ratio and spatial displacement in Conger conger (L.). Rapp. P.-V. Reun. CIESM, 28: 93-96. Darwall, W.R.T., M.J. Costello, R. Donnelly and S. Lysaght. – 1992. Implications of life-history strategies for a new wrasse fishery. J. Fish Biol., 41: 111-123. http://dx.doi.org/10.1111/j.1095-8649.1992.tb03873.x Dipper, F.A., C.R. Bridges and A. Menz. – 1977. Age, growth and feeding in the ballan wrasse Labrus bergylta Ascanius 1767. J. Fish Biol., 11: 105-120. http://dx.doi.org/10.1111/j.1095-8649.1977.tb04103.x Fabrizio, M.C. and J.P. Pessutti. – 2007. Long-term effects and recovery from surgical implantation of dummy transmitters in two marine fishes. J. Exp. Mar. Biol. Ecol., 351: 243-254. http://dx.doi.org/10.1016/j.jembe.2007.06.031 Fiedler, K. – 1991. Fische. In: D. Starck (ed.), Lehrbuch der speziellen Zoologie, Band II: Wirbeltiere, Teil 2: pp. 1-498. Gustav Fischer Verlag, Jena. Frimodt, C. – 1995. Illustrated multilingual guide to the world’s commercial warmwater fish. Fishing News Books, Oxford. Fritsch, M., Y. Morizur, E. Lambert, F. Bonhomme and B. Guinand. – 2007. Assessment of sea bass (Dicentrarchus labrax, L.) stock delimitation in the Bay of Biscay and the English Channel based on mark-recapture and genetic data. Fish. Res., 83: 123-132. http://dx.doi.org/10.1016/j.fishres.2006.09.002 García-Castrillo, G. – 2000. Peces de la bahía de Santander y su entorno. Fundación Marcelino Botín, Santander. George, G.J. – 2007. Acoustic tagging of black drum on Louisiana oyster reefs: movements, site fidelity, and habitat use. MsC thesis, Louisiana Stat. Univ. Golet, W.J., D.A. Scopel, A.B. Cooper and W.H. Watson. – 2006. Daily patterns of locomotion expressed by American lobsters (Homarus americanus) in their natural habitat. J. Crustacean Biol., 22: 610-620. http://dx.doi.org/10.1651/S-2729.1 Harrell, F.E. – 2001. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer Verlag, New York. Hastie, T. and R.J. Tibshirani. – 1990. Generalized Additive Models. Chapman and Hall, London. Hedger, R.D., T.F. Næsje, P.D. Cowley, E.B. Thorstad, C. Attwood, F. Økland, C.G. Wilke and S. Kerwath. – 2010. Residency and migratory behaviour by adult Pomatomus saltatrix in a South African coastal embayment. Estuar. Coast. Shelf Sci., 89: 12-20. http://dx.doi.org/10.1016/j.ecss.2010.04.013 Hooge, P.N. and B. Eichenlaub. – 1997. Animal movement extension to arcview. Alaska Biological Science Centre, U.S. Geological Survey, Anchorage. Hooge, P.N., B. Eichenlaub, and E.K. Solomon. – 1997. Using GIS to analyze animal movements in the marine environment. Alaska Biological Science Centre, U.S. Geological Survey, Anchorage. IGFA. – 2001 Database of IGFA angling records until 2001. IGFA, Fort Lauderdale, USA. URL http://www.igfa.org . Jorgensen, S.J., D.M. Kaplan, A.P. Klimley, S.G. Morgan, M.R. O’Farrell and L.W. Botsford. – 2006. Limited movement in blue rockfish Sebastes mystinus: internal structure of home range. Mar. Ecol. Prog. Ser., 327: 157-170. http://dx.doi.org/10.3354/meps327157 Jepsen, N., A. Koed, E.B. Thorstad and E. Baras. – 2002. Surgical implantation of telemetry transmitters in fish: how much have we learned? Hydrobiologia, 483: 239-248. http://dx.doi.org/10.1023/A:1021356302311 Kearney, R.E. – 1989. Tagging—solution or problem. In: D.A. Handcock (ed.), Australian Society for Fish Biology tagging workshop, pp. 208. Proceedings no. 5, Aust. Govt. Publ. Serv., Canberra. Lagardère, J.P., J.J. Ducamp, L. Favre, J.M. Dupin and M. Sperandio.– 1990. A method for the quantitative evaluation of fish movements in salt ponds by acoustic telemetry. J. Exp. Mar. Biol. Ecol., 141: 221-236. http://dx.doi.org/10.1016/0022-0981(90)90226-3 Lloris, D. – 2002. A world overview of species of interest to fisheries. Chapter: Dicentrarchus labrax. FIGIS Species Fact Sheets. Species Identification and Data Programme-SIDP. FAO-FIGIS, 3. Løkkeborg, S., A. Ferno and T. Jørgensen. – 2002. Effect of position-fixing interval on estimated swimming speed and movement pattern of fish tracked with a stationary positioning system. Hydrobiologia, 483: 259-264. http://dx.doi.org/10.1023/A:1021312503220 Lowe, C.G., D.T. Topping, D.P. Cartamil and Y.P. Papastamatiou. – 2003. Movement patterns, home range, and habitat utilization of adult kelp bass Paralabrax clathratus in a temperate no-take marine reserve. Mar. Ecol. Prog. Ser., 256: 205-216. http://dx.doi.org/10.3354/meps256205 Maigret, J. and B. Ly. – 1986. Les poissons de mer de Mauritanie. Centre National de Recherches Océanographiques et des Pêches, Nouadhibou. Martínez, M., A. Monteagudo, A. Sandoval and P. Zas. – 2006. Islas de San Pedro. Terranova S.L., A Coruña. Mc Cleave, J.D. and M.J. Miller. – 1994. Spawning of Conger oceanicus and Conger triporiceps (Congridae) in the Sargasso Sea and subsequent distribution of leptocephali. Environ. Biol. Fish., 39: 339-355. http://dx.doi.org/10.1007/BF00004803 Ministerio de Fomento. – 1998-2010. Puertos del Estado. Accessed 1 Jan of 2011, URL http://www.puertos.es . Murphy, H.M. and G.P. Jenkins. – 2010. Observational methods used in marine spatial monitoring of fishes and associated habitats: a review. Mar. Freshwater Res., 61: 236-252. http://dx.doi.org/10.1071/MF09068 Muus, B.J., J.G. Nielsen, P. Dahlstrøm and B.O. Nyström. – 1999. Sea fish. Scandinavian Fishing Year Book. Wiley-Blackwell, Hedehusene. Myers, R.A. and B. Worm. – 2003. Rapid worldwide depletion of predatory fish communities. Nature, 423: 280-283. http://dx.doi.org/10.1038/nature01610 PMid:12748640 Myers, R.A., J.K. Baum, T.D. Shepherd, S.P. Powers and C.H. Peterson.– 2007. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science, 315: 1846-1850. http://dx.doi.org/10.1126/science.1138657 PMid:17395829 Mytilineou, C., C. Politou, C. Papaconstantinou, S. Kavadas, G. D’onghia and L. Sion. – 2005. Deep-water fish fauna in the Eastern Ionian Sea. Belg. J. Zool., 135: 229-233. Oca, J., I. Masalo and L. Reig. – 2005. Acoustic doppler velocimetry allows determining daily swimming activity of sea bass (Dicentrarchus labrax L.). In: World Aquaculture Society (eds.), World Aquaculture, pp. 460-461. Bali. Økland, F., C.J. Hay, T.F. Næsje, E.B. Thorstad and N. Nickandor. – 2001. Movements and habitat utilisation of radio tagged carp (Cyprinus carpio) in a reservoir in the Fish River, Namibia. NINA·NIKU Project Report, 13: 1-28. O’Sullivan, S., C. Moriarty, R.D. FitzGerald, J. Davenport and M.F. Mulcahy. – 2003. Age, growth and reproductive status of the European conger eel, Conger conger (L.) in Irish coastal waters. Fish. Res., 64: 55-69. Pickett, G.D., D.F. Kelley and M.G. Pawson. – 2004. The patterns of recruitment of sea bass, Dicentrarchus labrax L. from nursery areas in England and Wales and implications for fisheries management. Fish. Res., 68: 329-342. http://dx.doi.org/10.1016/j.fishres.2003.11.013 Pita, P., J. Freire and A. García-Allut. – 2008. How to assign a catch value to fishing grounds when fisheries statistics are not spatially explicit. Sci. Mar., 72: 693-699. Quignard, J.P. and A. Pras. – 1986. Labridae. In: P.J.P. Whitehead, M.L. Bauchot, J.C. Hureau, J. Nielsen and E. Tortonese (eds.), Fishes of the North-eastern Atlantic and the Mediterranean, pp. 919-942. UNESCO, Paris. R Development Core Team. – 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:/www.R-project.org. Rodríguez, X.L. and Vázquez, X. – 1994. Peixes do mar de Galicia. Peixes óseos: xeneralidades, clasificación e orde perciformes. Edicións Xerais de Galicia, Vigo. Sackett, D.K., W.A. Kenneth and T.M. Grothues. – 2007. Dynamics of summer flounder, Paralichthys dentatus, seasonal migrations based on ultrasonic telemetry. Estuar. Coast. Shelf Sci., 74: 119-130. http://dx.doi.org/10.1016/j.ecss.2007.03.027 Seaman, D.E. and R.A. Powell. – 1996. An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology, 77: 2075-2085. http://dx.doi.org/10.2307/2265701 Seaman, D.E., J.J. Millspaugh, B.J. Kernohan, G.C. Brundige, K.J. Raedeke and R.A. Gitzen. – 1999. Effects of sample size on kernel home range estimates. J. Wildlife Manage., 63: 739-747. http://dx.doi.org/10.2307/3802664 Shepherd, J.G. – 1988. Fish stock assessments and their data requirements. In: J.A. Gulland (ed.), Fish population dynamics: the implications for management, pp. 35-62. John Wiley and Sons, New York. Smith, D.G. – 1990. Congridae. In: J.C. Quero, J.C. Hureau, C. Karrer, A. Post and L. Saldanha (eds.), Check-list of the fishes of the eastern tropical Atlantic (CLOFETA), pp. 156-167. JNICT and UNESCO, Lisbon and Paris. Swihart, R.K. and N.A. Slade. – 1985. Testing for independence of observations in animal movements. Ecology, 66: 1176-1184. http://dx.doi.org/10.2307/1939170 Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 75 No. 4 (2011); 759-770 Scientia Marina; Vol. 75 Núm. 4 (2011); 759-770 1886-8134 0214-8358 10.3989/scimar.2011.75n4 coastal predatory fish habitat use site fidelity home range diel activity tagging telemetry VR2 VR100 peces depredadores costeros uso del hábitat fidelidad al hábitat área vital actividad diaria marcaje telemetría info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2011 ftjscientiamarin https://doi.org/10.3989/scimar.2011.75n4759 https://doi.org/10.3989/scimar.2011.75n4 https://doi.org/10.1139/f96-253 https://doi.org/10.1111/j.1095-8649.1992.tb03873.x https://doi.org/10.1111/j.1095-8649.1977.tb04103.x https://doi.org/10.1016/j. 2022-03-20T16:31:10Z Labrus bergylta, Dicentrarchus labrax and Conger conger are common predators of northeast Atlantic coastal ecosystems and are studied here for the first time with ultrasonic telemetry in their natural environment. We demonstrate the viability of using this technology with these species and used movement information to obtain preliminary short-term results on site fidelity, diel activity patterns and home range sizes. Two complementary telemetry methods were used: manual and automatic tracking along a stretch of coast characterized by its high wave exposure (A Coruña, NW Spain). C. conger stayed in the area for the longest periods of time (17 days), occasionally leaving their refuges at dusk or during the night to search for food. Their home range was very small (604 m2). L. bergylta were not detected by the automatic receivers but the size of their home range (between 2874 and 5184 m2), shows that they are highly sedentary with very limited movements. D. labrax left the area for the longest periods (9 days) and were detected during both night and day. Their home range was the largest (up to 26396 m2), evidencing complex spatial behaviour on a large scale. Labrus bergylta, Dicentrarchus labrax y Conger conger son depredadores habituales de los ecosistemas costeros del Noreste Atlántico que en este trabajo se estudian por vez primera mediante telemetría ultrasónica en el medio natural. Se demostró la viabilidad del uso de esta tecnología con estas especies y la información sobre sus movimientos se usó para obtener resultados preliminares a corto plazo acerca de la fidelidad al hábitat, la temporalidad diaria de la actividad y el tamaño del área vital. Se emplearon complementariamente dos métodos de telemetría: seguimiento manual y automático en un tramo de costa caracterizado por su elevado grado de exposición al oleaje (A Coruña, NW Spain). Los C. conger permanecieron en el área durante los períodos más largos (17 días), abandonando periódicamente sus refugios al atardecer o durante las noches para buscar alimento. El tamaño de su área vital fue muy pequeño (604 m2). Los L. bergylta no fueron detectados en los receptores automáticos, pero el tamaño de su área vital (entre 2874 y 5184 m2), evidencia un elevado grado de sedentarismo y movimientos muy limitados. Por el contrario, los D. labrax abandonaron el área durante los intervalos más prolongados (9 días), detectándose igualmente durante el día o la noche. Su área vital fue la de mayor tamaño (hasta 26396 m2), evidenciándose un comportamiento espacial complejo y a gran escala. Article in Journal/Newspaper Northeast Atlantic Scientia Marina (E-Journal) Corto ENVELOPE(-60.783,-60.783,-62.450,-62.450) Elevado ENVELOPE(-63.267,-63.267,-64.683,-64.683) Fidelidad ENVELOPE(-60.783,-60.783,-62.450,-62.450) Journal of Geophysical Research 99 C2 3407 |