Analysis of a 44-year hindcast for the Mediterranean Sea: comparison with altimetry and in situ observations

We study the interannual and seasonal variability in the Mediterranean Sea over the period 1958-2004 by comparing a numerical simulation (the 1/4º ORCA-R025 G70 model run, ‘ORCA’ hereafter) with altimetry and the MEDAR temperature and salinity database. The model is forced by the ERA40 atmospheric f...

Full description

Bibliographic Details
Published in:Scientia Marina
Main Authors: Vidal-Vijande, Enrique, Pascual, Ananda, Barnier, Bernard, Molines, Jean-Marc, Tintoré, Joaquín
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2011
Subjects:
Online Access:https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1229
https://doi.org/10.3989/scimar.2011.75n1071
id ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1229
record_format openpolar
institution Open Polar
collection Scientia Marina (E-Journal)
op_collection_id ftjscientiamarin
language English
topic sea level
altimetry
temperature
salinity
modelling
Mediterranean Sea
nivel del mar
altimetría
temperatura
salinidad
modelos numéricos
mar Mediterráneo
spellingShingle sea level
altimetry
temperature
salinity
modelling
Mediterranean Sea
nivel del mar
altimetría
temperatura
salinidad
modelos numéricos
mar Mediterráneo
Vidal-Vijande, Enrique
Pascual, Ananda
Barnier, Bernard
Molines, Jean-Marc
Tintoré, Joaquín
Analysis of a 44-year hindcast for the Mediterranean Sea: comparison with altimetry and in situ observations
topic_facet sea level
altimetry
temperature
salinity
modelling
Mediterranean Sea
nivel del mar
altimetría
temperatura
salinidad
modelos numéricos
mar Mediterráneo
description We study the interannual and seasonal variability in the Mediterranean Sea over the period 1958-2004 by comparing a numerical simulation (the 1/4º ORCA-R025 G70 model run, ‘ORCA’ hereafter) with altimetry and the MEDAR temperature and salinity database. The model is forced by the ERA40 atmospheric forcing and has a salinity restoring term applied at surface. Comparing temperature between ORCA and MEDAR shows good interannual variability agreement (correlations of ~0.8 in the western Mediterranean and ~0.5 in the eastern Mediterranean) at surface layers (0-150 m), but slightly higher mean values in the model (0.08-0.16°C). The salinity analysis shows that the surface salinity restoring term has obliterated most of the interannual variability. Mean surface salinities are slightly lower in the model (~0.3), replicated in deeper layers to a lesser degree, and could mean that the restoring term applies insufficient evaporation to compensate for a weak atmospheric forcing (ERA40) water loss flux. The sea level analysis comparing sea surface height (SSH) and steric height from ORCA and sea level anomalies from altimetry (1993-2004) shows good correlations (~0.8) in the interannual variability and annual cycle. However, the model’s SSH overestimates (~15 mm/yr) observed positive altimetric trends (~3-4 mm/yr). In an attempt to identify the source of this overestimation, a water budget calculation was performed between the horizontal and vertical water fluxes in the Mediterranean Sea. Horizontal transport through the main straits shows appropriate values when compared to observations. Thus, the cause of the exaggerated SSH trend is probably a water flux imbalance. By improving surface salinity restoring and atmospheric forcing, the ORCA simulations can provide very promising tools for studies of interannual variability in the Mediterranean Sea. Estudiamos la variabilidad estacional e interanual en el mar Mediterráneo durante el periodo 1958-2004, comparando una simulación numérica (la simulación de 1/4º ORCA-R025 G70, ‘ORCA’ de ahora en adelante) con datos de altimetría, y temperatura y salinidad (MEDAR). El modelo utiliza el forzamiento atmosférico ERA40 y tiene aplicado un término de relajación a la salinidad en superficie. La comparación de temperatura entre ORCA y MEDAR muestra un buen acuerdo de la variabilidad interanual (correlación ~0.8 en el Mediterráneo Occidental (WMED), ~0.5 en el Mediterráneo Oriental (EMED)) en las capas superficiales (0-150 m), pero con valores medios ligeramente superiores en el modelo (0.08-0.16ºC). El análisis de salinidad muestra que la mayor parte de la variabilidad en superficie ha sido destruida por el término de relajación. Las salinidades medias en superficie son ligeramente inferiores en el modelo (~0.3), lo cual se repite en capas más profundas pero en menor grado. Esto podría significar que el término de relajación no aplica suficiente evaporación para compensar un débil flujo de pérdida de agua en el forzamiento atmosférico (ERA 40). El análisis de altura de nivel del mar (SSH) y altura estérica (SH) del modelo ORCA y anomalía del nivel del mar proveniente de la altimetría (1993-2004) muestra buenas correlaciones (~0.8) en la variabilidad interanual y ciclo estacional. Sin embargo la SSH del modelo sobreestima (~15 mm/año) la tendencia positiva observada por la altimetría (~3-4 mm/año). En un intento de identificar el origen de esta sobreestimación, se hizo un cálculo de balance de masas entre los flujos horizontales y verticales (E-P-R) que entran al mar Mediterráneo. Los flujos horizontales a través de los principales estrechos muestran valores adecuados cuando se comparan con observaciones. Por lo tanto, la exagerada tendencia en SSH del modelo es probablemente debido a un desequilibrio entre la E-P-R (evaporación, precipitación y aporte fluvial). Mejorando el término de relajación de salinidad y el forzamiento atmosférico, las simulaciones ORCA pueden proporcionar unas herramientas muy prometedoras para estudios de variabilidad interanual en el mar Mediterráneo.
format Article in Journal/Newspaper
author Vidal-Vijande, Enrique
Pascual, Ananda
Barnier, Bernard
Molines, Jean-Marc
Tintoré, Joaquín
author_facet Vidal-Vijande, Enrique
Pascual, Ananda
Barnier, Bernard
Molines, Jean-Marc
Tintoré, Joaquín
author_sort Vidal-Vijande, Enrique
title Analysis of a 44-year hindcast for the Mediterranean Sea: comparison with altimetry and in situ observations
title_short Analysis of a 44-year hindcast for the Mediterranean Sea: comparison with altimetry and in situ observations
title_full Analysis of a 44-year hindcast for the Mediterranean Sea: comparison with altimetry and in situ observations
title_fullStr Analysis of a 44-year hindcast for the Mediterranean Sea: comparison with altimetry and in situ observations
title_full_unstemmed Analysis of a 44-year hindcast for the Mediterranean Sea: comparison with altimetry and in situ observations
title_sort analysis of a 44-year hindcast for the mediterranean sea: comparison with altimetry and in situ observations
publisher Consejo Superior de Investigaciones Científicas
publishDate 2011
url https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1229
https://doi.org/10.3989/scimar.2011.75n1071
genre Orca
genre_facet Orca
op_source Scientia Marina; Vol. 75 No. 1 (2011); 71-86
Scientia Marina; Vol. 75 Núm. 1 (2011); 71-86
1886-8134
0214-8358
10.3989/scimar.2011.75n1
op_relation https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1229/1294
Alvarez, A., J. Tintoré, G. Holloway, M. Eby and J.M. Beckers. – 1994. Effect of topographic stress on circulation in the western mediterranean. J. Geophys. Res., 99(C8): 16,053-16,064.
Astraldi, M., S. Balopoulos, J. Candela, J. Font, M. Gacic, G.P. Gasparini, B. Manca, A. Theocharis and J. Tintoré. – 1999. The role of straits and channels in understanding the characteristics of mediterranean circulation. Prog. Oceanogr., 44(1-3): 65-108. doi:10.1016/S0079-6611(99)00021-X
Barnier, B., L. Brodeau, J. le Sommer, J.M. Molines, T. Penduff, S. Theetten, A.-M. Treguier, G. Madec, A. Biastoch, C. Böning, J. Dengg, S. Gulev, B.R. Badie, J. Chanut, G. Garric, S. Alderson, A. Coward, B. de Cuevas, A. New, K. Haines, G. Smith, S. Drijfhout, W. Hazeleger, C. Severijns and P. Myers. – 2007. Eddy-permitting ocean circulation hindcasts of past decades. In: P. Killworth, A. Pirani and H. Cattle (eds.), CLIVAR Exchanges, No. 42(Vol. 12 No.3).
Barnier, B., G. Madec, T. Penduff, J.-M. Molines, A.-M. Treguier, J.L. Sommer, A. Beckmann, A. Biastoch, C. Böning, J. Dengg, C. Derval, E. Durand, S. Gulev, E. Remy, C. Talandier, S. Theetten, M. Maltrud, J. McClean and B.D. Cuevas. – 2006. Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dynamics, 56: 543-567. doi:10.1007/s10236-006-0082-1
Beckers, J.M., M. Rixen, P. Brasseur, J.M. Brankart, A. Elmoussaoui, M. Crépon, Herbaut, F. Martel, F.V. den Berghe, L. Mortie, A. Lascaratos, P. Drakopoulos, G. Korres, K. Nittis, N. Pinardi, E. Masetti, S. Castellari, P. Carini, J. Tintoré, A. Alvarez, S. Monserrat, D. Parrilla, R. Vautard and S. Speich. – 2002. Model intercomparison in the Mediterranean: Medmex simulations of the seasonal cycle. J. Mar. Syst., 33-34: 215-251. doi:10.1016/S0924-7963(02)00060-X
Bethoux, J., B. Gentili and D. Tailliez. – 1998. Warming and freshwater budget change in the Mediterranean since the 1940s, their possible relation to the greenhouse effect. Geophys. Res. Lett., 25: 1023-1026. doi:10.1029/98GL00724
Bethoux, J.P. and B. Gentili. – 1996. The Mediterranean Sea, coastal and deep-sea signatures of climatic and environmental changes. J. Mar. Syst., 7(2-4): 383-394. doi:10.1016/0924-7963(95)00008-9
Bethoux, J.P. and B. Gentili. – 1999. Functioning of the Mediterranean Sea: past and present changes related to freshwater input and climate changes. J. Mar. Syst., 20(1-4): 33-47. doi:10.1016/S0924-7963(98)00069-4
Bouzinac, C., J. Font and J. Johannessen. – 2003. Annual cycles of sea level and sea surface temperature in the western Mediterranean Sea. J. Geophys. Res., 108(C8): 19,477-19,498.
Candela, J. – 2001. Mediterranean Water and Global Circulation. In: Ocean Circulation and Climate, pp. 419-429. Academic Press.
Demirov, E. and N. Pinardi. – 2002. Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part I. the interannual variability. J. Mar. Syst., 33-34: 23-50. doi:10.1016/S0924-7963(02)00051-9
Ducet, N., P.-Y. Le Traon and G. Reverdin. – 2000. Global high-resolution mapping of ocean circulation from Topex/Poseidon and ERS-1 and -2. J. Geophys. Res. C, 105(C8): 19,477-19,498.
Fernández, V., D.E. Dietrich, R.L. Haney and J. Tintoré. – 2005. Mesoscale, seasonal and interannual variability in the Mediterranean Sea using a numerical ocean model. Prog. Oceanogr., 66: 321-340. doi:10.1016/j.pocean.2004.07.010
García Lafuente, J., J. Delgado and F. Criado. – 2002. Inflow interruption by meteorological forcing in the strait of Gibraltar. Geophys. Res. Lett., 29(19): 1914. doi:10.1029/2002GL015446
Gomis, D., M.N. Tsimplis, B. Martín-Míguez, A.W. Ratsimandresy, J. García-Lafuente and S.A. Josey. – 2006. Mediterranean sea level and barotropic flow through the strait of Gibraltar for the period 1958-2001 and reconstructed since 1659. J. Geophys. Res., 111(C11005).
Herbaut, C., F. Martel and M. Crepon. – 1997. A sensitivity study of the general circulation of the western Mediterranean Sea, the response to atmospheric forcing. J. Phys. Oceanogr., 27(10): 2126-2145. doi:10.1175/1520-0485(1997)027<2126:ASSOTG>2.0.CO;2
Herrmann, M., S. Somot, F. Sevault, C. Estournel and M. Déqué. – 2008. Modelling the deep convection in the north-western Mediterranean sea using an eddy-permitting and an eddy-resolving model: Case study of winter 1986-1987. J. Geophys. Res. C, 113(C04011).
Horton, C., M. Clifford, J. Schmitz and L.H. Kantha. – 1997. A real-time oceanographic nowcast-forecast system for the Mediterranean Sea. J. Geophys. Res. C, 102(C13): 27,991.
Josey, S.A. – 2003. Changes in the heat and freshwater forcing of the eastern Mediterranean and their influence on deep water formation. J. Geophys. Res. C, 108(C7): 3237 doi:10.1029/2003JC001778
Korres, G., N. Pinardi and A. Lascaratos. – 2000. The ocean response to low-frequency interannual atmospheric variability in the Mediterranean Sea, part I: Sensitivity experiments and energy analysis. J. Clim., 13: 705-731. doi:10.1175/1520-0442(2000)013<0705:TORTLF>2.0.CO;2
Krahmann, G. and F. Schott. – 1998. Long-term increases in western Mediterranean salinities and temperatures: Anthropogenic and climatic sources. Geophys. Res. Lett., 25(22): 4209-4212 doi:10.1029/1998GL900143
Larnicol, G., P.-Y. Le Traon, N. Ayoub, and P. De Mey. – 1995. Mean sea level and surface circulation variability of the Mediterranean Sea from 2 years of Topex/Poseidon altimetry. J. Geophys. Res. C, 100(C12): 25,163-25,177.
Le Traon, P.-Y., F. Nadal and N. Ducet. – 1998. An improved mapping method of multisatellite altimeter data. J. Atmos. Ocean Technol., 15(2): 522-534. doi:10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2
Le Traon, P.-Y., Y. Faugere, F. Hernandez, J. Dorandeu, F. Mertz and M. Ablain. – 2003. Can we merge Geosat follow-on with Topex/Poseidon and ERS-2 for an improved description of the ocean circulation? J. Atmos. Ocean Technol., 20(6): 889-895. doi:10.1175/1520-0426(2003)020<0889:CWMGFW>2.0.CO;2
Leaman, K. and F. Schott. – 1991. Hydrographic structure of the convection regime in the gulf of lions - 1987. J. Phys. Oceanogr., 21(4): 575-598. doi:10.1175/1520-0485(1991)021<0575:HSOTCR>2.0.CO;2
Madec, G. – 2008. NEMO reference manual, ocean dynamic component: NEMO-OPA. Preliminary version, Tech. Rep. 27, Note du pôle de modélisation, Institut Pierre Simmon Laplace (IPSL), France, ISSN No 1288-1619.
Mariotti, A., M. Struglia, N. Zeng and K. Lau. – 2002. The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Clim., 15(13): 1674-1690. doi:10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2
MEDOC Group. – 1970. Observation of formation of deep water in the Mediterranean Sea in 1969. Nature, 227: 1037-1040. doi:10.1038/2271037a0
MEDAR Group. – 2002. Mediterranean and Black Sea Database of Temperature, Salinity and Biochemical Parameters and Climatological Atlas [4 CD-ROMs], Ifremer Ed., Plouzane, France. (Available at http://www.ifremer.fr/sismer/program/medar/)
Molines, J., A. Treguier, B. Barnier, L. Brodeau, J.L. Sommer, G. Madec, T. Penduff, S. Theetten, Y. Drillet, C. Talandier, J. Orr and Z. Lachkar. – 2006. Le modéle drakkar de la variabilité océanique globale, 1958-2004. Technical report, IDRIS.
Özsoy, E. and U. Unluata. – 1998. The Black Sea. In: The Sea, volume 11. Wiley, New York.
Pascual, A., M. Marcos and D. Gomis. – 2008. Comparing the sea level response to pressure and wind forcing of two barotropic models: Validation with tide gauge and altimetry data. J. Geophys. Res., 113(C07011).
Penduff, T., B. Barnier, A.-M. Treguier and P.-Y. Le Traon. – 2006. Synergy between ocean observations and numerical simulations: Clipper heritage and DRAKKAR perspectives. Proceedings of the symposium “15 yearsof progress in radar altimetry”, Venice, 16-18 March 2006. http://earth.esa.int/workshops/venice06/participants/299/paper_299_penduff.pdf.
Peneva, E., E. Stanev, V. Belokopytov and P.Y. Le Traon. – 2001. Water transport in the Bosphorus straits estimated from hydro-meteorological and altimeter data: seasonal to decadal variability. J. Mar. Syst., 31(1-3): 21-33. doi:10.1016/S0924-7963(01)00044-6
Pinardi, N., G. Korres, A. Lascaratos, V. Roussenov and E. Stanev. – 1997. Numerical simulation of the interannual variability of the mediterranean sea upper ocean circulation. Geophys. Res. Lett., 24(4): 425-428. doi:10.1029/96GL03952
Rixen, M., J.-M. Beckers, S. Levitus, J. Antonov, T. Boyer, C. Maillard, M. Fichaut, E. Balopoulos, S. Iona, H. Dooley, M.-J. Garcia, B. Manca, A. Giorgetti, G. Manzella, N. Mikhailov, N. Pinardi and M. Zavatarelli. – 2005. The western Mediterranean deep water: A proxy for climate change. Geophys. Res. Lett., 32(L12608).
Robinson, A., W. Leslie, A. Theocharis and A. Lascaratos. – 2001. Mediterranean Sea Circulation. In: Encyclopedia of Ocean Sciences, pp 1689–1706. Academic Press Ltd., London.
Roussenov, V., E. Stanev, V. Artale and N. Pinardi. – 1995. A seasonal model of the Mediterranean Sea general circulation. J. Geophys. Res., 100(C7): 13,515-13,538
Ruiz, S., D. Gomis, M.G. Sotillo and S.A. Josey. – 2008. Characterization of surface heat fluxes in the Mediterranean Sea from a 44-year high-resolution atmospheric data set. Global Planet. Change, 63(2-3): 258-274. doi:10.1016/j.gloplacha.2007.12.002
Salat, J. and J. Pascual. – 2006. Principales tendencias climatológicas en el mediterráneo noroccidental, a partir de más de 30 años de observaciones oceanográficas en la costa catalana. Clima, Sociedad y Medio Ambiente, A(5): 284-290.
Simmons, A. and J. Gibson. – 2000. The ERA-40 project plan. Technical Report 1, European Centre for Medium Range Weather Forecast, Reading, UK.
Somot, S., F. Sevault and M. Déqué. – 2006. Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Clim. Dyn., 27(7): 851-879. doi:10.1007/s00382-006-0167-z
Sparnocchia, S., G. Manzella and P. La Violette. – 1994. The interannual and seasonal variability of maw and LIW core properties in the western Mediterranean Sea. Coast. Estuar. Stud., 46: 177-194.
Tonani, M., N. Pinardi, S. Dobricic, I. Pujol and C. Fratianni. – 2008. A high-resolution free-surface model of the Mediterranean Sea. Ocean Sci., 4(1): 1-14. doi:10.5194/os-4-1-2008
Tsimplis, M., M. Marcos, J. Colin, S. Somot, A. Pascual and A. Shaw. – 2009. Sea level variability in the Mediterranean Sea during the 1990s on the basis of two 2D and one 3D model. J. Mar. Syst., 78(1): 109-123. doi:10.1016/j.jmarsys.2009.04.003
Tsimplis, M.N. and T.F. Baker. – 2000. Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophys. Res. Lett., 27(12): 1731-1734. doi:10.1029/1999GL007004
Tsimplis, M.N. and H.L. Bryden. – 2000. Estimation of the transports through the strait of Gibraltar. Deep-Sea Res., 47(I): 2219-2242.
Tsimplis, M.N., M. Marcos, S. Somot and B. Barnier. – 2008. Sea level forcing in the Mediterranean Sea between 1960 and 2000. Global Planet. Change, 63(4): 325-332. doi:10.1016/j.gloplacha.2008.07.004
Tsimplis, M.N. and M. Rixen. – 2002. Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. Geophys. Res. Lett., 29(23): 2136 doi:10.1029/2002GL015870
op_rights Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/scimar.2011.75n1071
https://doi.org/10.3989/scimar.2011.75n1
https://doi.org/10.1016/S0079-6611(99)00021-X
https://doi.org/10.1007/s10236-006-0082-1
https://doi.org/10.1016/S0924-7963(02)00060-X
https://doi.org/10.1029/98
container_title Scientia Marina
container_volume 75
container_issue 1
container_start_page 71
op_container_end_page 86
_version_ 1766161083251294208
spelling ftjscientiamarin:oai:scientiamarina.revistas.csic.es:article/1229 2023-05-15T17:53:23+02:00 Analysis of a 44-year hindcast for the Mediterranean Sea: comparison with altimetry and in situ observations Evaluación de un retroanálisis de 44 años para el mar Mediterráneo: comparación con altimetría y observaciones in situ Vidal-Vijande, Enrique Pascual, Ananda Barnier, Bernard Molines, Jean-Marc Tintoré, Joaquín 2011-03-30 application/pdf https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1229 https://doi.org/10.3989/scimar.2011.75n1071 eng eng Consejo Superior de Investigaciones Científicas https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1229/1294 Alvarez, A., J. Tintoré, G. Holloway, M. Eby and J.M. Beckers. – 1994. Effect of topographic stress on circulation in the western mediterranean. J. Geophys. Res., 99(C8): 16,053-16,064. Astraldi, M., S. Balopoulos, J. Candela, J. Font, M. Gacic, G.P. Gasparini, B. Manca, A. Theocharis and J. Tintoré. – 1999. The role of straits and channels in understanding the characteristics of mediterranean circulation. Prog. Oceanogr., 44(1-3): 65-108. doi:10.1016/S0079-6611(99)00021-X Barnier, B., L. Brodeau, J. le Sommer, J.M. Molines, T. Penduff, S. Theetten, A.-M. Treguier, G. Madec, A. Biastoch, C. Böning, J. Dengg, S. Gulev, B.R. Badie, J. Chanut, G. Garric, S. Alderson, A. Coward, B. de Cuevas, A. New, K. Haines, G. Smith, S. Drijfhout, W. Hazeleger, C. Severijns and P. Myers. – 2007. Eddy-permitting ocean circulation hindcasts of past decades. In: P. Killworth, A. Pirani and H. Cattle (eds.), CLIVAR Exchanges, No. 42(Vol. 12 No.3). Barnier, B., G. Madec, T. Penduff, J.-M. Molines, A.-M. Treguier, J.L. Sommer, A. Beckmann, A. Biastoch, C. Böning, J. Dengg, C. Derval, E. Durand, S. Gulev, E. Remy, C. Talandier, S. Theetten, M. Maltrud, J. McClean and B.D. Cuevas. – 2006. Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dynamics, 56: 543-567. doi:10.1007/s10236-006-0082-1 Beckers, J.M., M. Rixen, P. Brasseur, J.M. Brankart, A. Elmoussaoui, M. Crépon, Herbaut, F. Martel, F.V. den Berghe, L. Mortie, A. Lascaratos, P. Drakopoulos, G. Korres, K. Nittis, N. Pinardi, E. Masetti, S. Castellari, P. Carini, J. Tintoré, A. Alvarez, S. Monserrat, D. Parrilla, R. Vautard and S. Speich. – 2002. Model intercomparison in the Mediterranean: Medmex simulations of the seasonal cycle. J. Mar. Syst., 33-34: 215-251. doi:10.1016/S0924-7963(02)00060-X Bethoux, J., B. Gentili and D. Tailliez. – 1998. Warming and freshwater budget change in the Mediterranean since the 1940s, their possible relation to the greenhouse effect. Geophys. Res. Lett., 25: 1023-1026. doi:10.1029/98GL00724 Bethoux, J.P. and B. Gentili. – 1996. The Mediterranean Sea, coastal and deep-sea signatures of climatic and environmental changes. J. Mar. Syst., 7(2-4): 383-394. doi:10.1016/0924-7963(95)00008-9 Bethoux, J.P. and B. Gentili. – 1999. Functioning of the Mediterranean Sea: past and present changes related to freshwater input and climate changes. J. Mar. Syst., 20(1-4): 33-47. doi:10.1016/S0924-7963(98)00069-4 Bouzinac, C., J. Font and J. Johannessen. – 2003. Annual cycles of sea level and sea surface temperature in the western Mediterranean Sea. J. Geophys. Res., 108(C8): 19,477-19,498. Candela, J. – 2001. Mediterranean Water and Global Circulation. In: Ocean Circulation and Climate, pp. 419-429. Academic Press. Demirov, E. and N. Pinardi. – 2002. Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part I. the interannual variability. J. Mar. Syst., 33-34: 23-50. doi:10.1016/S0924-7963(02)00051-9 Ducet, N., P.-Y. Le Traon and G. Reverdin. – 2000. Global high-resolution mapping of ocean circulation from Topex/Poseidon and ERS-1 and -2. J. Geophys. Res. C, 105(C8): 19,477-19,498. Fernández, V., D.E. Dietrich, R.L. Haney and J. Tintoré. – 2005. Mesoscale, seasonal and interannual variability in the Mediterranean Sea using a numerical ocean model. Prog. Oceanogr., 66: 321-340. doi:10.1016/j.pocean.2004.07.010 García Lafuente, J., J. Delgado and F. Criado. – 2002. Inflow interruption by meteorological forcing in the strait of Gibraltar. Geophys. Res. Lett., 29(19): 1914. doi:10.1029/2002GL015446 Gomis, D., M.N. Tsimplis, B. Martín-Míguez, A.W. Ratsimandresy, J. García-Lafuente and S.A. Josey. – 2006. Mediterranean sea level and barotropic flow through the strait of Gibraltar for the period 1958-2001 and reconstructed since 1659. J. Geophys. Res., 111(C11005). Herbaut, C., F. Martel and M. Crepon. – 1997. A sensitivity study of the general circulation of the western Mediterranean Sea, the response to atmospheric forcing. J. Phys. Oceanogr., 27(10): 2126-2145. doi:10.1175/1520-0485(1997)027<2126:ASSOTG>2.0.CO;2 Herrmann, M., S. Somot, F. Sevault, C. Estournel and M. Déqué. – 2008. Modelling the deep convection in the north-western Mediterranean sea using an eddy-permitting and an eddy-resolving model: Case study of winter 1986-1987. J. Geophys. Res. C, 113(C04011). Horton, C., M. Clifford, J. Schmitz and L.H. Kantha. – 1997. A real-time oceanographic nowcast-forecast system for the Mediterranean Sea. J. Geophys. Res. C, 102(C13): 27,991. Josey, S.A. – 2003. Changes in the heat and freshwater forcing of the eastern Mediterranean and their influence on deep water formation. J. Geophys. Res. C, 108(C7): 3237 doi:10.1029/2003JC001778 Korres, G., N. Pinardi and A. Lascaratos. – 2000. The ocean response to low-frequency interannual atmospheric variability in the Mediterranean Sea, part I: Sensitivity experiments and energy analysis. J. Clim., 13: 705-731. doi:10.1175/1520-0442(2000)013<0705:TORTLF>2.0.CO;2 Krahmann, G. and F. Schott. – 1998. Long-term increases in western Mediterranean salinities and temperatures: Anthropogenic and climatic sources. Geophys. Res. Lett., 25(22): 4209-4212 doi:10.1029/1998GL900143 Larnicol, G., P.-Y. Le Traon, N. Ayoub, and P. De Mey. – 1995. Mean sea level and surface circulation variability of the Mediterranean Sea from 2 years of Topex/Poseidon altimetry. J. Geophys. Res. C, 100(C12): 25,163-25,177. Le Traon, P.-Y., F. Nadal and N. Ducet. – 1998. An improved mapping method of multisatellite altimeter data. J. Atmos. Ocean Technol., 15(2): 522-534. doi:10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2 Le Traon, P.-Y., Y. Faugere, F. Hernandez, J. Dorandeu, F. Mertz and M. Ablain. – 2003. Can we merge Geosat follow-on with Topex/Poseidon and ERS-2 for an improved description of the ocean circulation? J. Atmos. Ocean Technol., 20(6): 889-895. doi:10.1175/1520-0426(2003)020<0889:CWMGFW>2.0.CO;2 Leaman, K. and F. Schott. – 1991. Hydrographic structure of the convection regime in the gulf of lions - 1987. J. Phys. Oceanogr., 21(4): 575-598. doi:10.1175/1520-0485(1991)021<0575:HSOTCR>2.0.CO;2 Madec, G. – 2008. NEMO reference manual, ocean dynamic component: NEMO-OPA. Preliminary version, Tech. Rep. 27, Note du pôle de modélisation, Institut Pierre Simmon Laplace (IPSL), France, ISSN No 1288-1619. Mariotti, A., M. Struglia, N. Zeng and K. Lau. – 2002. The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Clim., 15(13): 1674-1690. doi:10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2 MEDOC Group. – 1970. Observation of formation of deep water in the Mediterranean Sea in 1969. Nature, 227: 1037-1040. doi:10.1038/2271037a0 MEDAR Group. – 2002. Mediterranean and Black Sea Database of Temperature, Salinity and Biochemical Parameters and Climatological Atlas [4 CD-ROMs], Ifremer Ed., Plouzane, France. (Available at http://www.ifremer.fr/sismer/program/medar/) Molines, J., A. Treguier, B. Barnier, L. Brodeau, J.L. Sommer, G. Madec, T. Penduff, S. Theetten, Y. Drillet, C. Talandier, J. Orr and Z. Lachkar. – 2006. Le modéle drakkar de la variabilité océanique globale, 1958-2004. Technical report, IDRIS. Özsoy, E. and U. Unluata. – 1998. The Black Sea. In: The Sea, volume 11. Wiley, New York. Pascual, A., M. Marcos and D. Gomis. – 2008. Comparing the sea level response to pressure and wind forcing of two barotropic models: Validation with tide gauge and altimetry data. J. Geophys. Res., 113(C07011). Penduff, T., B. Barnier, A.-M. Treguier and P.-Y. Le Traon. – 2006. Synergy between ocean observations and numerical simulations: Clipper heritage and DRAKKAR perspectives. Proceedings of the symposium “15 yearsof progress in radar altimetry”, Venice, 16-18 March 2006. http://earth.esa.int/workshops/venice06/participants/299/paper_299_penduff.pdf. Peneva, E., E. Stanev, V. Belokopytov and P.Y. Le Traon. – 2001. Water transport in the Bosphorus straits estimated from hydro-meteorological and altimeter data: seasonal to decadal variability. J. Mar. Syst., 31(1-3): 21-33. doi:10.1016/S0924-7963(01)00044-6 Pinardi, N., G. Korres, A. Lascaratos, V. Roussenov and E. Stanev. – 1997. Numerical simulation of the interannual variability of the mediterranean sea upper ocean circulation. Geophys. Res. Lett., 24(4): 425-428. doi:10.1029/96GL03952 Rixen, M., J.-M. Beckers, S. Levitus, J. Antonov, T. Boyer, C. Maillard, M. Fichaut, E. Balopoulos, S. Iona, H. Dooley, M.-J. Garcia, B. Manca, A. Giorgetti, G. Manzella, N. Mikhailov, N. Pinardi and M. Zavatarelli. – 2005. The western Mediterranean deep water: A proxy for climate change. Geophys. Res. Lett., 32(L12608). Robinson, A., W. Leslie, A. Theocharis and A. Lascaratos. – 2001. Mediterranean Sea Circulation. In: Encyclopedia of Ocean Sciences, pp 1689–1706. Academic Press Ltd., London. Roussenov, V., E. Stanev, V. Artale and N. Pinardi. – 1995. A seasonal model of the Mediterranean Sea general circulation. J. Geophys. Res., 100(C7): 13,515-13,538 Ruiz, S., D. Gomis, M.G. Sotillo and S.A. Josey. – 2008. Characterization of surface heat fluxes in the Mediterranean Sea from a 44-year high-resolution atmospheric data set. Global Planet. Change, 63(2-3): 258-274. doi:10.1016/j.gloplacha.2007.12.002 Salat, J. and J. Pascual. – 2006. Principales tendencias climatológicas en el mediterráneo noroccidental, a partir de más de 30 años de observaciones oceanográficas en la costa catalana. Clima, Sociedad y Medio Ambiente, A(5): 284-290. Simmons, A. and J. Gibson. – 2000. The ERA-40 project plan. Technical Report 1, European Centre for Medium Range Weather Forecast, Reading, UK. Somot, S., F. Sevault and M. Déqué. – 2006. Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Clim. Dyn., 27(7): 851-879. doi:10.1007/s00382-006-0167-z Sparnocchia, S., G. Manzella and P. La Violette. – 1994. The interannual and seasonal variability of maw and LIW core properties in the western Mediterranean Sea. Coast. Estuar. Stud., 46: 177-194. Tonani, M., N. Pinardi, S. Dobricic, I. Pujol and C. Fratianni. – 2008. A high-resolution free-surface model of the Mediterranean Sea. Ocean Sci., 4(1): 1-14. doi:10.5194/os-4-1-2008 Tsimplis, M., M. Marcos, J. Colin, S. Somot, A. Pascual and A. Shaw. – 2009. Sea level variability in the Mediterranean Sea during the 1990s on the basis of two 2D and one 3D model. J. Mar. Syst., 78(1): 109-123. doi:10.1016/j.jmarsys.2009.04.003 Tsimplis, M.N. and T.F. Baker. – 2000. Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophys. Res. Lett., 27(12): 1731-1734. doi:10.1029/1999GL007004 Tsimplis, M.N. and H.L. Bryden. – 2000. Estimation of the transports through the strait of Gibraltar. Deep-Sea Res., 47(I): 2219-2242. Tsimplis, M.N., M. Marcos, S. Somot and B. Barnier. – 2008. Sea level forcing in the Mediterranean Sea between 1960 and 2000. Global Planet. Change, 63(4): 325-332. doi:10.1016/j.gloplacha.2008.07.004 Tsimplis, M.N. and M. Rixen. – 2002. Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. Geophys. Res. Lett., 29(23): 2136 doi:10.1029/2002GL015870 Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Scientia Marina; Vol. 75 No. 1 (2011); 71-86 Scientia Marina; Vol. 75 Núm. 1 (2011); 71-86 1886-8134 0214-8358 10.3989/scimar.2011.75n1 sea level altimetry temperature salinity modelling Mediterranean Sea nivel del mar altimetría temperatura salinidad modelos numéricos mar Mediterráneo info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2011 ftjscientiamarin https://doi.org/10.3989/scimar.2011.75n1071 https://doi.org/10.3989/scimar.2011.75n1 https://doi.org/10.1016/S0079-6611(99)00021-X https://doi.org/10.1007/s10236-006-0082-1 https://doi.org/10.1016/S0924-7963(02)00060-X https://doi.org/10.1029/98 2022-03-20T16:31:10Z We study the interannual and seasonal variability in the Mediterranean Sea over the period 1958-2004 by comparing a numerical simulation (the 1/4º ORCA-R025 G70 model run, ‘ORCA’ hereafter) with altimetry and the MEDAR temperature and salinity database. The model is forced by the ERA40 atmospheric forcing and has a salinity restoring term applied at surface. Comparing temperature between ORCA and MEDAR shows good interannual variability agreement (correlations of ~0.8 in the western Mediterranean and ~0.5 in the eastern Mediterranean) at surface layers (0-150 m), but slightly higher mean values in the model (0.08-0.16°C). The salinity analysis shows that the surface salinity restoring term has obliterated most of the interannual variability. Mean surface salinities are slightly lower in the model (~0.3), replicated in deeper layers to a lesser degree, and could mean that the restoring term applies insufficient evaporation to compensate for a weak atmospheric forcing (ERA40) water loss flux. The sea level analysis comparing sea surface height (SSH) and steric height from ORCA and sea level anomalies from altimetry (1993-2004) shows good correlations (~0.8) in the interannual variability and annual cycle. However, the model’s SSH overestimates (~15 mm/yr) observed positive altimetric trends (~3-4 mm/yr). In an attempt to identify the source of this overestimation, a water budget calculation was performed between the horizontal and vertical water fluxes in the Mediterranean Sea. Horizontal transport through the main straits shows appropriate values when compared to observations. Thus, the cause of the exaggerated SSH trend is probably a water flux imbalance. By improving surface salinity restoring and atmospheric forcing, the ORCA simulations can provide very promising tools for studies of interannual variability in the Mediterranean Sea. Estudiamos la variabilidad estacional e interanual en el mar Mediterráneo durante el periodo 1958-2004, comparando una simulación numérica (la simulación de 1/4º ORCA-R025 G70, ‘ORCA’ de ahora en adelante) con datos de altimetría, y temperatura y salinidad (MEDAR). El modelo utiliza el forzamiento atmosférico ERA40 y tiene aplicado un término de relajación a la salinidad en superficie. La comparación de temperatura entre ORCA y MEDAR muestra un buen acuerdo de la variabilidad interanual (correlación ~0.8 en el Mediterráneo Occidental (WMED), ~0.5 en el Mediterráneo Oriental (EMED)) en las capas superficiales (0-150 m), pero con valores medios ligeramente superiores en el modelo (0.08-0.16ºC). El análisis de salinidad muestra que la mayor parte de la variabilidad en superficie ha sido destruida por el término de relajación. Las salinidades medias en superficie son ligeramente inferiores en el modelo (~0.3), lo cual se repite en capas más profundas pero en menor grado. Esto podría significar que el término de relajación no aplica suficiente evaporación para compensar un débil flujo de pérdida de agua en el forzamiento atmosférico (ERA 40). El análisis de altura de nivel del mar (SSH) y altura estérica (SH) del modelo ORCA y anomalía del nivel del mar proveniente de la altimetría (1993-2004) muestra buenas correlaciones (~0.8) en la variabilidad interanual y ciclo estacional. Sin embargo la SSH del modelo sobreestima (~15 mm/año) la tendencia positiva observada por la altimetría (~3-4 mm/año). En un intento de identificar el origen de esta sobreestimación, se hizo un cálculo de balance de masas entre los flujos horizontales y verticales (E-P-R) que entran al mar Mediterráneo. Los flujos horizontales a través de los principales estrechos muestran valores adecuados cuando se comparan con observaciones. Por lo tanto, la exagerada tendencia en SSH del modelo es probablemente debido a un desequilibrio entre la E-P-R (evaporación, precipitación y aporte fluvial). Mejorando el término de relajación de salinidad y el forzamiento atmosférico, las simulaciones ORCA pueden proporcionar unas herramientas muy prometedoras para estudios de variabilidad interanual en el mar Mediterráneo. Article in Journal/Newspaper Orca Scientia Marina (E-Journal) Scientia Marina 75 1 71 86