Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes

In order to quantify the risks of total and local habitats loss of the Andean lichens due to the global warming projected for the end of the century and the associated upward migration, we carried out lichenological collections in the undergrowth forest at the National Park Sierra Nevada de Merida,...

Full description

Bibliographic Details
Main Authors: Marcano, Vicente, Castillo, Laura
Format: Article in Journal/Newspaper
Language:Spanish
English
Published: Consejo Superior de Investigaciones Científicas 2024
Subjects:
Online Access:https://rjb.revistas.csic.es/index.php/rjb/article/view/597
https://doi.org/10.3989/ajbm.597
id ftjrjb:oai:jardinbotanico.revistas.csic.es:article/597
record_format openpolar
institution Open Polar
collection Anales del Jardín Botánico de Madrid (Real Jardín Botánico - CSIC)
op_collection_id ftjrjb
language Spanish
English
topic Lichens
forest understory
Cordillera de Merida
habitat loss
Líquenes
sotobosque
Cordillera de Mérida
pérdida de hábitat
spellingShingle Lichens
forest understory
Cordillera de Merida
habitat loss
Líquenes
sotobosque
Cordillera de Mérida
pérdida de hábitat
Marcano, Vicente
Castillo, Laura
Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes
topic_facet Lichens
forest understory
Cordillera de Merida
habitat loss
Líquenes
sotobosque
Cordillera de Mérida
pérdida de hábitat
description In order to quantify the risks of total and local habitats loss of the Andean lichens due to the global warming projected for the end of the century and the associated upward migration, we carried out lichenological collections in the undergrowth forest at the National Park Sierra Nevada de Merida, Venezuela. We focus on an elevation gradient from the montane forest (2100–3000 m). A total of 1200 individuals, 401 lichenological samples, 38 genera and 145 species were registered; 94 species from the low montane forest and 90 species from the high montane forest. For the purpose of demonstrating the representativeness of the sampling, performance of non-parametric estimators Chao 1 and 2, Jacknife 1 and 2 was evaluated. Assuming a projected temperature increase of 4°C by the end of the century, lichen taxa would require an upward displacement of near 725 m a.s.l for maintain its habitat. The results indicate a total of 56.86% species would be threatened of disappearing by habitat loss having an increase ≤ 0.5°C; 69.60% species will lose its habitat having thermal increase ≤ 1°C; 92.15% species will lose its habitat having thermal increase ≤ 4°C whereas 11% (endemic) species will lose its total habitat having thermal increase ≤ 1°C. Risk of massive disappearance in all the scenarios would be expected. Se estimaron los riesgos de pérdida “local” y “total” de hábitats de macrolíquenes considerando la migración ascendente debido al calentamiento “global” previsto para el presente siglo por el IPCC. Para tal fin, se realizaron muestreos aleatorios en el sotobosque de un bosque montano, parque nacional Sierra Nevada de Mérida, Venezuela. Se escogió una transecta en el rango entre los 2100–3100 msnm. Con el fin de demostrar la representatividad del muestreo, se evaluó el desempeño de los estimadores no paramétricos Chao 1 y 2, Jacknife 1 y 2. Los resultados revelaron 1200 individuos representados por 401 muestras, 38 géneros, 145 especies, ocho especies endémicas y tres especies nuevas; 94 especies en el bosque montano ...
format Article in Journal/Newspaper
author Marcano, Vicente
Castillo, Laura
author_facet Marcano, Vicente
Castillo, Laura
author_sort Marcano, Vicente
title Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes
title_short Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes
title_full Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes
title_fullStr Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes
title_full_unstemmed Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes
title_sort displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern venezuelan andes
publisher Consejo Superior de Investigaciones Científicas
publishDate 2024
url https://rjb.revistas.csic.es/index.php/rjb/article/view/597
https://doi.org/10.3989/ajbm.597
genre Arctic
genre_facet Arctic
op_source Anales del Jardín Botánico de Madrid; Vol. 80 No. 2 (2023); e143
Anales del Jardín Botánico de Madrid; Vol. 80 Núm. 2 (2023); e143
1988-3196
0211-1322
10.3989/ajbm.2023.v80.i2
op_relation https://rjb.revistas.csic.es/index.php/rjb/article/view/597/787
https://rjb.revistas.csic.es/index.php/rjb/article/view/597/788
https://rjb.revistas.csic.es/index.php/rjb/article/view/597/789
Acevedo M.F., Monteleone S., Ataroff M. & Estrada C. 2001. Aberturas del dosel y espectro de luz en el sotobosque de una selva nublada andina, Venezuela. Ciencia 9: 165-183.
Acevedo M.F., Ataroff M., Monteleone S. & Estrada C. 2003. Heterogeneidad estructural y lumínica del sotobosque de una selva nublada andina, Venezuela. Interciencia 28: 394-403.
Aguirre J. & Rangel-Ch. J.O. 2007. Amenazas a la conservación de las especies de musgos y líquenes en Colombia -una aproximación inicial. Caldasia 29: 235-262.
Allen J.L. & Lendemer J.C. 2016. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation 25: 555-568.
Armstrong R. 2013. The influence of environment on foliose lichen growth and its ecological significance. En Daniels J.A. (eds.), Advances in Environmental Research: 145-162. Nova Science, New York.
Angert L.A., Crozier L.G., Rissler L.E, Gilman S.E., Tewksbury J.J. & Chunco A.J. 2011. Do species´ traits predict recent shifts at expanding range edges? Ecology Letters 14: 677-689.
Aptroot A. & van Herk C.M. 2002. Lichens and global warming. International Lichenological Newsletter 35: 57-58.
Aptroot A. & van Herk C.M. 2007. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146: 293-298.
Arup U., Ekman S., Lindblom L. & Mattson J.E. 1993. High performance thin layer chromatography, HPTLC, an advised method for screening lichen substances. The Lichenologist 25: 61-71.
Ataroff M. 2003. Selvas y bosques de montaña. En Aguilera M., Azocar A. & Jiménez E.G. (eds.), Biodiversidad en Venezuela, Tomo II: 762-810. Fundación Polar-FONACIT, Editorial ExLibris, Caracas.
Ataroff M. & García-Núñez C. 2013. Selvas y bosques nublados de Venezuela. En Medina, E., Huber O., Nassar J.M. & Navarro P. (eds.), Recorriendo el paisaje vegetal de Venezuela: 125-155. Ediciones IVIC, Caracas.
Azocar A. & Fariñas M. 2003. Páramos. En Aguilera M., Azocar A. & Jiménez E.G. (eds.), Biodiversidad en Venezuela. Tomo II: 716-733. Fundación Polar-FONACIT, Editorial ExLibris, Caracas.
Bellard C., Bertelsmeier C., Leadley P., Thuiller W. & Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365-377.
Bjerke J.W., Lerfall K. & Elvebbakk A. 2002. Effects of ultraviolet radiation at high altitude on the physiology and the biochemistry of a terricolous lichen (Cetraria islandica L.). Symbiosis 23: 197-217.
Branquinho C., Matos P. & Pinho P. 2015. Lichens as ecological indicators to track atmospheric changes: future challenges. En Lindenmayer D., Barton P. & Pierson J. (eds.), Indicators and surrogates of biodiversity and environmental change. CSIRO Publishing, CRC Press, Melbourne.
Cáceres M.S. Lücking R. & Rambold G. 2007. Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous crustose lichen communities in the Atlantic rain forest of northeastern Brazil. Mycological Progresses 10: 190-210.
Canziani O.F. & Díaz S. 1998. Latin America. En Watson R.T., Zinyowera M.C., Moss R.H. & Dokken D.J. (eds.), The Regional Impacts of Climate Change: 197-230. IPCC & Cambridge University Press, Cambridge.
Cearreta A. 2017. Antropoceno. Grand Place 7: 39-51.
Ceballos G., Garcia A. & Ehrlich P.R. 2010. The sixth extinction crisis: Loss of animal populations and species. Journal of Cosmology 8: 1821-1831.
Chacón-Moreno E., Rodriguez-Morales M., Paredes D., Suarez de Moral P. & Albarrán A. 2021. Impacts of global change on the spatial dynamics of treeline in Venezuelan Andes. Frontiers in Ecology and Evolution 9: 615223.
Chatellenaz M.L. & Ferraro L.I. 2007. Usnea y Ramalina en la construcción de nidos de Parula pitiayumi (Aves, Parulidae): ¿sostén estructural o defensa contra parásitos? Tomo 33: 49-54.
Chen I., Hill J.K, Ohlemuller R., Roy D.B. & Thomas C.D. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024-1026.
Chuquimarca L., Gaona F.P. Iñiguez-Armijos C. & Benítez A. 2019. Lichen responses to disturbance: clues for biomonitoring land-use effects on riparian Andean ecosystems. Diversity 11: 73.
Churchill S.P. 2011. Diversity of mosses in the tropical Andes. En Herzog S.K., Martinez R., Jörgensen P.M. & Tiessen H. (eds.), Climate change and biodiversity in the tropical Andes: 224-227. Inter-American Institute for Global Change Research (IAI) & Scientific Committee on Problems of the Environment (SCOPE).
Clubbe C. 1996. Threats to biodiversity. En Blackmore R. & Reddish A. (eds.). Global environmental issues. Hodder & Stoughton, London, 67-89.
Colwell R.K. & Coddington J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London Series B 345: 101-118.
Colwell R. 2019. EstimateS 9.1. Statistical estimation of species richness and shared species from samples. Version 9 and earlier. User´s guide and application. University of Connecticut, Storrs, Conneticut.
Cuesta-Camacho F. 2007. Efectos del cambio climático en el rango de distribución de especies en los Andes del Norte. Curso GLORIA, La Paz.
Czech B. 2008. Prospects for reconciling the conflict between economic growth and biodiversity conservation with technological progress. Conservation Biology 22: 1389-1398.
Dirnböck T., Dullinger S. & Grabherr G. 2003. A regional impact assessment of climate and land use change on alpine vegetation. Journal of Biogeography 30: 401-417.
Edman M., Eriksson A.M. & Villard M.A. 2008. Effects of selection cutting on the abundance and fertility of indicator lichens Lobaria pulmonaria and Lobaria quercizans. Journal of Applied Ecology 45: 26-33.
Ellis C.J. 2012. Lichen epiphyte diversity: a species, community and trait-based review. Perspectives in Plant Ecology 14: 131-152.
Ellis C.J. 2013. A risk-based model of climate change threat: hazard, exposure and vulnerability in the ecology of lichen epiphytes. Botany 91: 1-11.
Ellis C.J. 2019. Climate change, bioclimatic models and the risk to lichen diversity. Diversity 11: 54.
Ferwerda F. 1987. The influence of potato cultivation on the natural bunchgrass paramo in the Colombian Cordillera Oriental. Informe 220, Laboratorio Hugo de Vries, Universidad de Amsterdam, Amsterdam.
Flores-García M.E., Balza-Quintero A., Benítez P. & Miranda-Contreras L. 2011. Pesticide residues in drinking water of an agricultural community in the state of Mérida, Venezuela. Revista de Investigacion Clínica 52: 295-311.
Foster P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73-106.
García-Mora N. 2004. Desarrollo e implementación de un sistema experto para la predicción del clima asociado a posibles escenarios ambientales en el parque Sierra Nevada de Mérida. Tesis de Maestría, Facultad de Ingeniería, Universidad de Los Andes, Mérida, Venezuela.
Green T.G.A., Sancho L.G. & Pintado A. 2011. Ecophysiology of desiccation/rehydration cycles in mosses and lichens. En Luettge H. & al. (eds.), Plant desiccation tolerance, Ecological studies 215: 89-120. Springer, Berlín.
Gu W.D., Kuusinen M., Konttinen T. & Hanski I. 2001. Spatial pattern in the occurrence of the lichen Lobaria pulmonaria in managed and virgin boreal forest. Ecography 24: 139-150.
Hansell M. 2000. Bird nests and construction behaviour. Cambridge University Press, Cambridge.
Herk C.M., Aptroot A. & van Dobben H.F. 2002. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. The Lichenologist 34: 141-154.
Herzog S.K., Martínez R., Jörgensen P.M. & Tiessen H. (eds.) 2011. Climate change and biodiversity in the tropical Andes: 1-348. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).
Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K. & Johnson C.A. 2001. Climate Change 2001: the scientific basis. Cambridge University Press, Cambridge.
Huber O. & Alarcón C. 1988. Mapa de vegetación de Venezuela. Escala 1.2.000.000. MARNR y The Nature Conservancy, Caracas.
Innes J.L. 1983. Size frequency distributions as a lichenometric technique: an assessment. Arctic an Alpine Research 15: 285-294.
IPCC 2014. AR5 Synthesis report, climate change 2014. Explore. Working Group Report, finalized on 2 November 2014, IPCC, Geneva.
op_rights Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_doi https://doi.org/10.3989/ajbm.59710.3989/ajbm.2023.v80.i2
_version_ 1790595532077400064
spelling ftjrjb:oai:jardinbotanico.revistas.csic.es:article/597 2024-02-11T09:59:46+01:00 Displacement of the habitat of the macrolichens of the montane forest under a global warming scenario in the northeastern Venezuelan Andes Desplazamiento del Hábitat de Macrolíquenes del Bosque Montano en un Escenario de Calentamiento Global en el Noreste de los Andes Venezolanos Marcano, Vicente Castillo, Laura 2024-01-17 text/html application/pdf text/xml https://rjb.revistas.csic.es/index.php/rjb/article/view/597 https://doi.org/10.3989/ajbm.597 spa eng spa eng Consejo Superior de Investigaciones Científicas https://rjb.revistas.csic.es/index.php/rjb/article/view/597/787 https://rjb.revistas.csic.es/index.php/rjb/article/view/597/788 https://rjb.revistas.csic.es/index.php/rjb/article/view/597/789 Acevedo M.F., Monteleone S., Ataroff M. & Estrada C. 2001. Aberturas del dosel y espectro de luz en el sotobosque de una selva nublada andina, Venezuela. Ciencia 9: 165-183. Acevedo M.F., Ataroff M., Monteleone S. & Estrada C. 2003. Heterogeneidad estructural y lumínica del sotobosque de una selva nublada andina, Venezuela. Interciencia 28: 394-403. Aguirre J. & Rangel-Ch. J.O. 2007. Amenazas a la conservación de las especies de musgos y líquenes en Colombia -una aproximación inicial. Caldasia 29: 235-262. Allen J.L. & Lendemer J.C. 2016. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation 25: 555-568. Armstrong R. 2013. The influence of environment on foliose lichen growth and its ecological significance. En Daniels J.A. (eds.), Advances in Environmental Research: 145-162. Nova Science, New York. Angert L.A., Crozier L.G., Rissler L.E, Gilman S.E., Tewksbury J.J. & Chunco A.J. 2011. Do species´ traits predict recent shifts at expanding range edges? Ecology Letters 14: 677-689. Aptroot A. & van Herk C.M. 2002. Lichens and global warming. International Lichenological Newsletter 35: 57-58. Aptroot A. & van Herk C.M. 2007. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146: 293-298. Arup U., Ekman S., Lindblom L. & Mattson J.E. 1993. High performance thin layer chromatography, HPTLC, an advised method for screening lichen substances. The Lichenologist 25: 61-71. Ataroff M. 2003. Selvas y bosques de montaña. En Aguilera M., Azocar A. & Jiménez E.G. (eds.), Biodiversidad en Venezuela, Tomo II: 762-810. Fundación Polar-FONACIT, Editorial ExLibris, Caracas. Ataroff M. & García-Núñez C. 2013. Selvas y bosques nublados de Venezuela. En Medina, E., Huber O., Nassar J.M. & Navarro P. (eds.), Recorriendo el paisaje vegetal de Venezuela: 125-155. Ediciones IVIC, Caracas. Azocar A. & Fariñas M. 2003. Páramos. En Aguilera M., Azocar A. & Jiménez E.G. (eds.), Biodiversidad en Venezuela. Tomo II: 716-733. Fundación Polar-FONACIT, Editorial ExLibris, Caracas. Bellard C., Bertelsmeier C., Leadley P., Thuiller W. & Courchamp F. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365-377. Bjerke J.W., Lerfall K. & Elvebbakk A. 2002. Effects of ultraviolet radiation at high altitude on the physiology and the biochemistry of a terricolous lichen (Cetraria islandica L.). Symbiosis 23: 197-217. Branquinho C., Matos P. & Pinho P. 2015. Lichens as ecological indicators to track atmospheric changes: future challenges. En Lindenmayer D., Barton P. & Pierson J. (eds.), Indicators and surrogates of biodiversity and environmental change. CSIRO Publishing, CRC Press, Melbourne. Cáceres M.S. Lücking R. & Rambold G. 2007. Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous crustose lichen communities in the Atlantic rain forest of northeastern Brazil. Mycological Progresses 10: 190-210. Canziani O.F. & Díaz S. 1998. Latin America. En Watson R.T., Zinyowera M.C., Moss R.H. & Dokken D.J. (eds.), The Regional Impacts of Climate Change: 197-230. IPCC & Cambridge University Press, Cambridge. Cearreta A. 2017. Antropoceno. Grand Place 7: 39-51. Ceballos G., Garcia A. & Ehrlich P.R. 2010. The sixth extinction crisis: Loss of animal populations and species. Journal of Cosmology 8: 1821-1831. Chacón-Moreno E., Rodriguez-Morales M., Paredes D., Suarez de Moral P. & Albarrán A. 2021. Impacts of global change on the spatial dynamics of treeline in Venezuelan Andes. Frontiers in Ecology and Evolution 9: 615223. Chatellenaz M.L. & Ferraro L.I. 2007. Usnea y Ramalina en la construcción de nidos de Parula pitiayumi (Aves, Parulidae): ¿sostén estructural o defensa contra parásitos? Tomo 33: 49-54. Chen I., Hill J.K, Ohlemuller R., Roy D.B. & Thomas C.D. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333: 1024-1026. Chuquimarca L., Gaona F.P. Iñiguez-Armijos C. & Benítez A. 2019. Lichen responses to disturbance: clues for biomonitoring land-use effects on riparian Andean ecosystems. Diversity 11: 73. Churchill S.P. 2011. Diversity of mosses in the tropical Andes. En Herzog S.K., Martinez R., Jörgensen P.M. & Tiessen H. (eds.), Climate change and biodiversity in the tropical Andes: 224-227. Inter-American Institute for Global Change Research (IAI) & Scientific Committee on Problems of the Environment (SCOPE). Clubbe C. 1996. Threats to biodiversity. En Blackmore R. & Reddish A. (eds.). Global environmental issues. Hodder & Stoughton, London, 67-89. Colwell R.K. & Coddington J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London Series B 345: 101-118. Colwell R. 2019. EstimateS 9.1. Statistical estimation of species richness and shared species from samples. Version 9 and earlier. User´s guide and application. University of Connecticut, Storrs, Conneticut. Cuesta-Camacho F. 2007. Efectos del cambio climático en el rango de distribución de especies en los Andes del Norte. Curso GLORIA, La Paz. Czech B. 2008. Prospects for reconciling the conflict between economic growth and biodiversity conservation with technological progress. Conservation Biology 22: 1389-1398. Dirnböck T., Dullinger S. & Grabherr G. 2003. A regional impact assessment of climate and land use change on alpine vegetation. Journal of Biogeography 30: 401-417. Edman M., Eriksson A.M. & Villard M.A. 2008. Effects of selection cutting on the abundance and fertility of indicator lichens Lobaria pulmonaria and Lobaria quercizans. Journal of Applied Ecology 45: 26-33. Ellis C.J. 2012. Lichen epiphyte diversity: a species, community and trait-based review. Perspectives in Plant Ecology 14: 131-152. Ellis C.J. 2013. A risk-based model of climate change threat: hazard, exposure and vulnerability in the ecology of lichen epiphytes. Botany 91: 1-11. Ellis C.J. 2019. Climate change, bioclimatic models and the risk to lichen diversity. Diversity 11: 54. Ferwerda F. 1987. The influence of potato cultivation on the natural bunchgrass paramo in the Colombian Cordillera Oriental. Informe 220, Laboratorio Hugo de Vries, Universidad de Amsterdam, Amsterdam. Flores-García M.E., Balza-Quintero A., Benítez P. & Miranda-Contreras L. 2011. Pesticide residues in drinking water of an agricultural community in the state of Mérida, Venezuela. Revista de Investigacion Clínica 52: 295-311. Foster P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73-106. García-Mora N. 2004. Desarrollo e implementación de un sistema experto para la predicción del clima asociado a posibles escenarios ambientales en el parque Sierra Nevada de Mérida. Tesis de Maestría, Facultad de Ingeniería, Universidad de Los Andes, Mérida, Venezuela. Green T.G.A., Sancho L.G. & Pintado A. 2011. Ecophysiology of desiccation/rehydration cycles in mosses and lichens. En Luettge H. & al. (eds.), Plant desiccation tolerance, Ecological studies 215: 89-120. Springer, Berlín. Gu W.D., Kuusinen M., Konttinen T. & Hanski I. 2001. Spatial pattern in the occurrence of the lichen Lobaria pulmonaria in managed and virgin boreal forest. Ecography 24: 139-150. Hansell M. 2000. Bird nests and construction behaviour. Cambridge University Press, Cambridge. Herk C.M., Aptroot A. & van Dobben H.F. 2002. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. The Lichenologist 34: 141-154. Herzog S.K., Martínez R., Jörgensen P.M. & Tiessen H. (eds.) 2011. Climate change and biodiversity in the tropical Andes: 1-348. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE). Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K. & Johnson C.A. 2001. Climate Change 2001: the scientific basis. Cambridge University Press, Cambridge. Huber O. & Alarcón C. 1988. Mapa de vegetación de Venezuela. Escala 1.2.000.000. MARNR y The Nature Conservancy, Caracas. Innes J.L. 1983. Size frequency distributions as a lichenometric technique: an assessment. Arctic an Alpine Research 15: 285-294. IPCC 2014. AR5 Synthesis report, climate change 2014. Explore. Working Group Report, finalized on 2 November 2014, IPCC, Geneva. Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 Anales del Jardín Botánico de Madrid; Vol. 80 No. 2 (2023); e143 Anales del Jardín Botánico de Madrid; Vol. 80 Núm. 2 (2023); e143 1988-3196 0211-1322 10.3989/ajbm.2023.v80.i2 Lichens forest understory Cordillera de Merida habitat loss Líquenes sotobosque Cordillera de Mérida pérdida de hábitat info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion revisado por pares; peer-reviewed 2024 ftjrjb https://doi.org/10.3989/ajbm.59710.3989/ajbm.2023.v80.i2 2024-01-24T01:01:57Z In order to quantify the risks of total and local habitats loss of the Andean lichens due to the global warming projected for the end of the century and the associated upward migration, we carried out lichenological collections in the undergrowth forest at the National Park Sierra Nevada de Merida, Venezuela. We focus on an elevation gradient from the montane forest (2100–3000 m). A total of 1200 individuals, 401 lichenological samples, 38 genera and 145 species were registered; 94 species from the low montane forest and 90 species from the high montane forest. For the purpose of demonstrating the representativeness of the sampling, performance of non-parametric estimators Chao 1 and 2, Jacknife 1 and 2 was evaluated. Assuming a projected temperature increase of 4°C by the end of the century, lichen taxa would require an upward displacement of near 725 m a.s.l for maintain its habitat. The results indicate a total of 56.86% species would be threatened of disappearing by habitat loss having an increase ≤ 0.5°C; 69.60% species will lose its habitat having thermal increase ≤ 1°C; 92.15% species will lose its habitat having thermal increase ≤ 4°C whereas 11% (endemic) species will lose its total habitat having thermal increase ≤ 1°C. Risk of massive disappearance in all the scenarios would be expected. Se estimaron los riesgos de pérdida “local” y “total” de hábitats de macrolíquenes considerando la migración ascendente debido al calentamiento “global” previsto para el presente siglo por el IPCC. Para tal fin, se realizaron muestreos aleatorios en el sotobosque de un bosque montano, parque nacional Sierra Nevada de Mérida, Venezuela. Se escogió una transecta en el rango entre los 2100–3100 msnm. Con el fin de demostrar la representatividad del muestreo, se evaluó el desempeño de los estimadores no paramétricos Chao 1 y 2, Jacknife 1 y 2. Los resultados revelaron 1200 individuos representados por 401 muestras, 38 géneros, 145 especies, ocho especies endémicas y tres especies nuevas; 94 especies en el bosque montano ... Article in Journal/Newspaper Arctic Anales del Jardín Botánico de Madrid (Real Jardín Botánico - CSIC)