Genome size variation and polyploidy incidence in the alpine flora from Spain

The interest to study genome evolution, in particular genome size variation and polyploid incidence, has increased in recent years. Still, only a few studies have been focused at a community level. Of particular interest are high mountain species, because of the high frequency of narrow endemics and...

Full description

Bibliographic Details
Published in:Anales del Jardín Botánico de Madrid
Main Authors: Loureiro, João, Castro, Mariana, Cerca de Oliveira, José, Mota, Lucie, Torices, Rubén
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2013
Subjects:
Online Access:https://rjb.revistas.csic.es/index.php/rjb/article/view/391
https://doi.org/10.3989/ajbm.2350
id ftjrjb:oai:jardinbotanico.revistas.csic.es:article/391
record_format openpolar
institution Open Polar
collection Anales del Jardín Botánico de Madrid (Real Jardín Botánico - CSIC)
op_collection_id ftjrjb
language English
topic alpine vegetation
DNA ploidy level
nuclear DNA content
Picos de Europa
Sierra Nevada
contenido nuclear de ADN
nivel de ploidía
vegetación alpina
spellingShingle alpine vegetation
DNA ploidy level
nuclear DNA content
Picos de Europa
Sierra Nevada
contenido nuclear de ADN
nivel de ploidía
vegetación alpina
Loureiro, João
Castro, Mariana
Cerca de Oliveira, José
Mota, Lucie
Torices, Rubén
Genome size variation and polyploidy incidence in the alpine flora from Spain
topic_facet alpine vegetation
DNA ploidy level
nuclear DNA content
Picos de Europa
Sierra Nevada
contenido nuclear de ADN
nivel de ploidía
vegetación alpina
description The interest to study genome evolution, in particular genome size variation and polyploid incidence, has increased in recent years. Still, only a few studies have been focused at a community level. Of particular interest are high mountain species, because of the high frequency of narrow endemics and their higher susceptibility to extinction due to the effects of climate change. In the present study we explored genome size variation and polyploidy incidence in the entomophilous plant communities of two distinct mountain ranges, the Sierra Nevada and Picos de Europa National Parks. For that, chromosome numbers and DNA ploidies were assessed through a review of the literature, and the genome size and incidence of polyploidy in 39 taxa from several key genera were estimated using flow cytometry. In this study, first genome size estimations are given for 32 taxa. The majority of the analyzed taxa presented very small to small genome sizes (2C ≤ 7.0 pg), with no differences being detected between genome size and geographic origin and distribution ranges. A low incidence of polyploid taxa was observed (23.3%), with polyploids being more common in Picos de Europa than in Sierra Nevada. Most taxa inferred as polyploids were high altitude plants, but no clear pattern between polyploidy incidence and endemic status was observed. The obtained results are discussed within the context of angiosperm’s genome size variation and of polyploidy incidence in alpine and arctic flora, contributing to the scientific knowledge of these natural communities of great biological importance. El interés en el estudio de la evolución del genoma, especialmente de la variación en tamaño y de la incidencia de poliploidía, se ha incrementado en los últimos años. Sin embargo, sólo unos pocos estudios se han centrado en el nivel de comunidades. Las especies de alta montaña son especialmente interesantes debido a la alta frecuencia de especies endémicas y a que son consideradas muy susceptibles a la extinción por los efectos del cambio climático. En el presente estudio, exploramos la variación en el tamaño genómico y la incidencia de poliploidía en las comunidades de plantas entomófilas de alta montaña de dos macizos montañosos: el Parque Nacional de Sierra Nevada y el Parque Nacional de Picos de Europa. Para ello, se evaluó el número de cromosomas y el nivel de ploidía por medio de una revisión bibliográfica, mientras que el tamaño genómico y la incidencia de poliploidía se estimaron en 39 taxones de varios géneros usando citometría de flujo. En este estudio, se proporcionan las primeras estimaciones del tamaño genómico para 32 taxones. La mayoría de los taxones analizados presentaron tamaños genómicos pequeños o muy pequeños (2C ≤ 7.0 pg), sin mostrar diferencias en el tamaño genómico asociadas a su origen geográfico o rango de distribución. Se observó una baja incidencia de taxones poliploides (23.3%), siendo éstos más comunes entre las plantas de Picos de Europa que entre las de Sierra Nevada. La mayor parte de los taxones considerados como poliploides fueron plantas restringidas a las montañas, sin embargo no se observó un patrón claro entre la incidencia de poliploidía y el grado de endemismo. Los resultados obtenidos son discutidos dentro del contexto de variación en el tamaño del genoma y de la incidencia de poliploidía en las floras árticas y alpinas, contribuyendo al conocimiento científico de estas comunidades naturales de gran importancia biológica.
format Article in Journal/Newspaper
author Loureiro, João
Castro, Mariana
Cerca de Oliveira, José
Mota, Lucie
Torices, Rubén
author_facet Loureiro, João
Castro, Mariana
Cerca de Oliveira, José
Mota, Lucie
Torices, Rubén
author_sort Loureiro, João
title Genome size variation and polyploidy incidence in the alpine flora from Spain
title_short Genome size variation and polyploidy incidence in the alpine flora from Spain
title_full Genome size variation and polyploidy incidence in the alpine flora from Spain
title_fullStr Genome size variation and polyploidy incidence in the alpine flora from Spain
title_full_unstemmed Genome size variation and polyploidy incidence in the alpine flora from Spain
title_sort genome size variation and polyploidy incidence in the alpine flora from spain
publisher Consejo Superior de Investigaciones Científicas
publishDate 2013
url https://rjb.revistas.csic.es/index.php/rjb/article/view/391
https://doi.org/10.3989/ajbm.2350
long_lat ENVELOPE(-63.383,-63.383,-64.250,-64.250)
ENVELOPE(-60.383,-60.383,-62.660,-62.660)
geographic Alta
Arctic
Baja
Claro
Española
geographic_facet Alta
Arctic
Baja
Claro
Española
genre Arctic
Arctic
árticas
Climate change
genre_facet Arctic
Arctic
árticas
Climate change
op_source Anales del Jardín Botánico de Madrid; Vol. 70 No. 1 (2013); 39-47
Anales del Jardín Botánico de Madrid; Vol. 70 Núm. 1 (2013); 39-47
1988-3196
0211-1322
10.3989/ajbm.2013.v70.i1
op_relation https://rjb.revistas.csic.es/index.php/rjb/article/view/391/386
Abbott, R.J. & Brochmann, C. 2003. History and evolution of the arctic flora: in the footsteps of Eric Hulten. Molecular Ecology 12: 299-313. http://dx.doi.org/10.1046/j.1365-294X.2003.01731.x PMid:12535083
Adams, K.L. & Wendel, J.F. 2005. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology 8: 135-141. http://dx.doi.org/10.1016/j.pbi.2005.01.001 PMid:15752992
Aedo, C. & Castroviejo, S. 2005. Anthos. Sistema de información sobre las plantas de Espa-a. http://www.anthos.es/ (10 August 2011).
Beaulieu, J.M., Moles, A.T., Leitch, I.J., Bennett, M.D., Dickie, J.B. & Knight, C.A. 2007. Correlated evolution of genome size and seed mass. New Phytologist 173: 422-437. http://dx.doi.org/10.1111/j.1469-8137.2006.01919.x PMid:17204088
Bennett, M.D. & Smith, J.B. 1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 274: 227-274. http://dx.doi.org/10.1098/rstb.1976.0044
Bennett, M.D. & Leitch, I.J. 2005. Nuclear DNA amounts in angiosperms: Progress, problems and prospects. Annals of Botany 95: 45-90. http://dx.doi.org/10.1093/aob/mci003 PMid:15596457
Bennett, M.D. & Leitch, I.J. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany 107: 467-590. http://dx.doi.org/10.1093/aob/mcq258 PMid:21257716 PMCid:PMC3043933
Bennett, M.D. & Leitch, I.J. 2012. Angiosperm DNA C-values Database (Release 6.0, Dec. 2012). http://www.kew.org/cvalues/
Blanca, G., Cabezudo, B., Cueto, M., Salazar, C. & Morales Torres, C. 2001. Flora Vascular de Andalucía Oriental. 2a Edición corregida y aumentada. Edn. Universidades de Almería, Granada, Jaén y Málaga.
Borgen, L. 1974. Chromosome numbers of Macaronesian flowering plants II. Norwegian Journal of Botany 21: 195-210.
Boscaiu, M., Vicente, O. & Ehrendorfer, F. 1999. Chromosome numbers, karyotypes and nuclear DNA contents from perennial polyploid groups of Cerastium (Caryophyllaceae). Plant Systematics and Evolution 218: 13-21. http://dx.doi.org/10.1007/BF01087030
Brochmann, C., Brysting, A.K., Alsos, I.G., Borgen, L., Grundt, H.H., Scheen, A.C. & Elven, R. 2004. Polyploidy in arctic plants. Biological Journal of the Linnean Society 82: 521-536. http://dx.doi.org/10.1111/j.1095-8312.2004.00337.x
Castro, S., Loureiro, J., Prochazka, T. & Munzbergova, Z. 2012. Cytotype distribution at a diploidhexaploid contact zone in Aster amellus (Asteraceae). Annals of Botany 110: 1047-1055. http://dx.doi.org/10.1093/aob/mcs177 PMid:22887024
Castroviejo, S. & al. 1986-2012. Flora iberica 1-8, 10-15, 17-18, 21. Real Jardín Botánico, CSIC, Madrid. Cires, E., Cuesta, C., Peredo, E.L., Revilla, M.A. & Prieto, J.A.F. 2009. Genome size variation and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the Northwest of Spain. Plant Systematics and Evolution 281: 193-208.
Cires, E., Cuesta, C., Casado, M.A.F., Nava, H.S., Vázquez, V.M. & Prieto, J.A.F. 2011. Isolation of plant nuclei suitable for flow cytometry from species with extremely mucilaginous compounds: an example in the genus Viola L. (Violaceae). Anales del Jardin Botánico de Madrid 68: 139-154. http://dx.doi.org/10.3989/ajbm.2273
Comai, L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836-846. http://dx.doi.org/10.1038/nrg1711 PMid:16304599
Doležel, J., Sgorbati, S. & Lucretti, S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625-631. http://dx.doi.org/10.1111/j.1399-3054.1992.tb04764.x
Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysak, M.A., Nardi, L. & Obermayer, R. 1998. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals Botany 82: 17-26. http://dx.doi.org/10.1006/anbo.1998.0730
Fawcett, J.A. & Van de Peer, Y. 2010. Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology 2010 1:e3: 16-21.
Feliner, G.N. 2011. Southern European glacial refugia: A tale of tales. Taxon 60: 365-372.
Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P. & Firoozabady, E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051. http://dx.doi.org/10.1126/science.220.4601.1049 PMid:17754551
García-Fernández, A., Iriondo, J.M., Vallès, J., Orellana, J. & Escudero, A. 2012. Ploidy level and genome size of locally adapted populations of Silene ciliata across an altitudinal gradient. Plant Systematics and Evolution 298: 139-146. http://dx.doi.org/10.1007/s00606-011-0530-3
Garnatje, T., Garcia, S., Vilatersana, R. & Vallès, J. 2006. Genome size variation in the genus Carthamus (Asteraceae, Cardueae): Systematic implications and additive changes during allopolyploidization. Annals of Botany 97: 461-467. http://dx.doi.org/10.1093/aob/mcj050 PMid:16390843 PMCid:PMC2803645
Garnatje, T., Canela, M.A., Garcia, S., Hidalgo, O., Pellicer, J., Sánchez-Jiménez, I., Siljak-Yakovlev, S., Vitales, D. & Vallès, J. 2010. GSAD: a genome size database in the Asteraceae. Release 1.0, July (http://www.asteraceaegenomesize.com, database environment by Gálvez F.).
Goldblatt, P. & Johnson, D.E. 1976. Index to plant chromosome numbers. In: P. Goldblatt & D.E. Johnson. Missouri Botanical Garden, St. Louis. PMCid:PMC430372
Grant, V. (1981) Plant speciation. Columbia University Press, Columbia.
Greilhuber, J. & Leitch, I. 2013. Genome Size and the Phenotype. In: J. Greilhuber, J. Doležel & J.F. Wendel (eds), Plant Genome Diversity Volume 2 pp. 323-344 Springer, Vienna. http://dx.doi.org/10.1007/978-3-7091-1160-4_20
Greilhuber, J., Doležel, J., Lysak, M.A. & Bennett, M.D. 2005. The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents. Annals of Botany 95: 255-260. http://dx.doi.org/10.1093/aob/mci019 PMid:15596473
Greilhuber, J., Borsch, T., Muller, K., Worberg, A., Porembski, S. & Barthlott, W. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770-777. http://dx.doi.org/10.1055/s-2006-924101 PMid:17203433
Grime, J.P. & Mowforth, M.A. 1982. Variation in genome size an ecological interpretation. Nature 299: 151-153. http://dx.doi.org/10.1038/299151a0
Hegarty, M.J. & Hiscock, S.J. 2008. Genomic clues to the evolutionary success of review polyploid plants. Current Biology 18: R435-R444. http://dx.doi.org/10.1016/j.cub.2008.03.043 PMid:18492478
Hodgson, J.G. 1987. Why do so few plant species exploit productive habitats? An investigation into cytology, plant strategies and abundance within a local flora. Functional Ecology 1: 243-250. http://dx.doi.org/10.2307/2389427
Knight, C.A. & Ackerly, D.D. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5: 66-76. http://dx.doi.org/10.1046/j.1461-0248.2002.00283.x
Knight, C.A. & Beaulieu, J.M. 2008. Genome size scaling through phenotype space. Annals of Botany 101: 759-766. http://dx.doi.org/10.1093/aob/mcm321 PMid:18222911 PMCid:PMC2710210
Küpfer, P. 1974. Recherches sur les liens de parenté entre la flore orophile des Alpes et celle des Pyrénées. Boissiera 23: 113-131.
Larena, B.G., Aguilar, J.F. & Feliner, G.N. 2002. Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Molecular Ecology 11: 1965-1974. http://dx.doi.org/10.1046/j.1365-294X.2002.01594.x
Leitch, I. & Leitch, A.R. 2013. Genome Size Diversity and Evolution in Land Plants. In: J. Greilhuber, J. Doležel & J.F. Wendel (eds), Plant Genome Diversity Volume 2 pp. 323-344 Springer, Vienna. http://dx.doi.org/10.1007/978-3-7091-1160-4_19
Leitch, I.J., Soltis, D.E., Soltis, P.S. & Bennett, M.D. 2005. Evolution of DNA amounts across land plants (embryophyta). Annals of Botany 95: 207-217. http://dx.doi.org/10.1093/aob/mci014 PMid:15596468
Lexer, C. & van Loo, M. 2006. Contact zones: Natural labs for studying evolutionary transitions. Current Biology 16: R407-R409. http://dx.doi.org/10.1016/j.cub.2006.05.007 PMid:16753551
Lim, K.Y., Souckova-Skalicka, K., Sarasan, V., Clarkson, J.J., Chase, M.W., Kovarik, A. & Leitch, A.R. 2006. A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the Kostoff synthetic tobacco. American Journal of Botany 93: 875-883. http://dx.doi.org/10.3732/ajb.93.6.875 PMid:21642150
Loureiro, J., Rodriguez Rodríguez, E., Doležel, J. & Santos, C. 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany 100: 875-888. http://dx.doi.org/10.1093/aob/mcm152 PMid:17684025 PMCid:PMC2749623
Loureiro, J., Doležel, J., Greilhuber, J., Santos, C. & Suda, J. 2008. Plant flow cytometry - Far beyond the stone age. Cytometry Part A 73: 579-580. http://dx.doi.org/10.1002/cyto.a.20578 PMid:18553508
Löve, A. & Löve, D. 1949. The geobotanical significance of polyploidy. I. Polyploidy and latitude. Portugaliae Acta Biologica Series A: 273-352.
Löve, A. & Löve, D. 1967. Polyploidy and altitude: Mt. Washington. Biologisches Zentralblatt Suppl. Vol.: 307-312.
Lysak, M.A., Koch, M.A., Beaulieu, J.M., Meister, A. & Leitch, I.J. 2009. The dynamic ups and downs of genome size evolution in Brassicaceae. Molecular Biology and Evolution 26: 85-98. http://dx.doi.org/10.1093/molbev/msn223 PMid:18842687
Ma, J.X., SanMiguel, P., Lai, J.S., Messing, J. & Bennetzen, J.L. 2005. DNA rearrangement in orthologous Orp regions of the maize, rice and sorghum genomes. Genetics 170: 1209-1220. http://dx.doi.org/10.1534/genetics.105.040915 PMid:15834137 PMCid:PMC1451190
Marie, D. & Brown, S.C. 1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell 78: 41-51. http://dx.doi.org/10.1016/0248-4900(93)90113-S
Mateo Sanz, M. 1996. Sobre el endemismo cantábrico Hieracium lainzii de Retz (Compositae) y especies afines. Anales del Jardin Botanico de Madrid 54: 364-369.
Morton, J.K. 1993. Chromosome numbers and polyploidy in the flora of Cameroons Mountain. Opera Botanica 121: 159-172.
op_rights Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/ajbm.2350
https://doi.org/10.3989/ajbm.2013.v70.i1
https://doi.org/10.1038/nrg1711
https://doi.org/10.2307/3647446
https://doi.org/10.1007/s006060170022
container_title Anales del Jardín Botánico de Madrid
container_volume 70
container_issue 1
container_start_page 39
op_container_end_page 47
_version_ 1766302554075955200
spelling ftjrjb:oai:jardinbotanico.revistas.csic.es:article/391 2023-05-15T14:28:23+02:00 Genome size variation and polyploidy incidence in the alpine flora from Spain Variación en el tamaño del genoma e incidencia de la poliploidía en la flora alpina española Loureiro, João Castro, Mariana Cerca de Oliveira, José Mota, Lucie Torices, Rubén 2013-06-30 application/pdf https://rjb.revistas.csic.es/index.php/rjb/article/view/391 https://doi.org/10.3989/ajbm.2350 eng eng Consejo Superior de Investigaciones Científicas https://rjb.revistas.csic.es/index.php/rjb/article/view/391/386 Abbott, R.J. & Brochmann, C. 2003. History and evolution of the arctic flora: in the footsteps of Eric Hulten. Molecular Ecology 12: 299-313. http://dx.doi.org/10.1046/j.1365-294X.2003.01731.x PMid:12535083 Adams, K.L. & Wendel, J.F. 2005. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology 8: 135-141. http://dx.doi.org/10.1016/j.pbi.2005.01.001 PMid:15752992 Aedo, C. & Castroviejo, S. 2005. Anthos. Sistema de información sobre las plantas de Espa-a. http://www.anthos.es/ (10 August 2011). Beaulieu, J.M., Moles, A.T., Leitch, I.J., Bennett, M.D., Dickie, J.B. & Knight, C.A. 2007. Correlated evolution of genome size and seed mass. New Phytologist 173: 422-437. http://dx.doi.org/10.1111/j.1469-8137.2006.01919.x PMid:17204088 Bennett, M.D. & Smith, J.B. 1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 274: 227-274. http://dx.doi.org/10.1098/rstb.1976.0044 Bennett, M.D. & Leitch, I.J. 2005. Nuclear DNA amounts in angiosperms: Progress, problems and prospects. Annals of Botany 95: 45-90. http://dx.doi.org/10.1093/aob/mci003 PMid:15596457 Bennett, M.D. & Leitch, I.J. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany 107: 467-590. http://dx.doi.org/10.1093/aob/mcq258 PMid:21257716 PMCid:PMC3043933 Bennett, M.D. & Leitch, I.J. 2012. Angiosperm DNA C-values Database (Release 6.0, Dec. 2012). http://www.kew.org/cvalues/ Blanca, G., Cabezudo, B., Cueto, M., Salazar, C. & Morales Torres, C. 2001. Flora Vascular de Andalucía Oriental. 2a Edición corregida y aumentada. Edn. Universidades de Almería, Granada, Jaén y Málaga. Borgen, L. 1974. Chromosome numbers of Macaronesian flowering plants II. Norwegian Journal of Botany 21: 195-210. Boscaiu, M., Vicente, O. & Ehrendorfer, F. 1999. Chromosome numbers, karyotypes and nuclear DNA contents from perennial polyploid groups of Cerastium (Caryophyllaceae). Plant Systematics and Evolution 218: 13-21. http://dx.doi.org/10.1007/BF01087030 Brochmann, C., Brysting, A.K., Alsos, I.G., Borgen, L., Grundt, H.H., Scheen, A.C. & Elven, R. 2004. Polyploidy in arctic plants. Biological Journal of the Linnean Society 82: 521-536. http://dx.doi.org/10.1111/j.1095-8312.2004.00337.x Castro, S., Loureiro, J., Prochazka, T. & Munzbergova, Z. 2012. Cytotype distribution at a diploidhexaploid contact zone in Aster amellus (Asteraceae). Annals of Botany 110: 1047-1055. http://dx.doi.org/10.1093/aob/mcs177 PMid:22887024 Castroviejo, S. & al. 1986-2012. Flora iberica 1-8, 10-15, 17-18, 21. Real Jardín Botánico, CSIC, Madrid. Cires, E., Cuesta, C., Peredo, E.L., Revilla, M.A. & Prieto, J.A.F. 2009. Genome size variation and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the Northwest of Spain. Plant Systematics and Evolution 281: 193-208. Cires, E., Cuesta, C., Casado, M.A.F., Nava, H.S., Vázquez, V.M. & Prieto, J.A.F. 2011. Isolation of plant nuclei suitable for flow cytometry from species with extremely mucilaginous compounds: an example in the genus Viola L. (Violaceae). Anales del Jardin Botánico de Madrid 68: 139-154. http://dx.doi.org/10.3989/ajbm.2273 Comai, L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836-846. http://dx.doi.org/10.1038/nrg1711 PMid:16304599 Doležel, J., Sgorbati, S. & Lucretti, S. 1992. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85: 625-631. http://dx.doi.org/10.1111/j.1399-3054.1992.tb04764.x Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysak, M.A., Nardi, L. & Obermayer, R. 1998. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals Botany 82: 17-26. http://dx.doi.org/10.1006/anbo.1998.0730 Fawcett, J.A. & Van de Peer, Y. 2010. Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology 2010 1:e3: 16-21. Feliner, G.N. 2011. Southern European glacial refugia: A tale of tales. Taxon 60: 365-372. Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P. & Firoozabady, E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051. http://dx.doi.org/10.1126/science.220.4601.1049 PMid:17754551 García-Fernández, A., Iriondo, J.M., Vallès, J., Orellana, J. & Escudero, A. 2012. Ploidy level and genome size of locally adapted populations of Silene ciliata across an altitudinal gradient. Plant Systematics and Evolution 298: 139-146. http://dx.doi.org/10.1007/s00606-011-0530-3 Garnatje, T., Garcia, S., Vilatersana, R. & Vallès, J. 2006. Genome size variation in the genus Carthamus (Asteraceae, Cardueae): Systematic implications and additive changes during allopolyploidization. Annals of Botany 97: 461-467. http://dx.doi.org/10.1093/aob/mcj050 PMid:16390843 PMCid:PMC2803645 Garnatje, T., Canela, M.A., Garcia, S., Hidalgo, O., Pellicer, J., Sánchez-Jiménez, I., Siljak-Yakovlev, S., Vitales, D. & Vallès, J. 2010. GSAD: a genome size database in the Asteraceae. Release 1.0, July (http://www.asteraceaegenomesize.com, database environment by Gálvez F.). Goldblatt, P. & Johnson, D.E. 1976. Index to plant chromosome numbers. In: P. Goldblatt & D.E. Johnson. Missouri Botanical Garden, St. Louis. PMCid:PMC430372 Grant, V. (1981) Plant speciation. Columbia University Press, Columbia. Greilhuber, J. & Leitch, I. 2013. Genome Size and the Phenotype. In: J. Greilhuber, J. Doležel & J.F. Wendel (eds), Plant Genome Diversity Volume 2 pp. 323-344 Springer, Vienna. http://dx.doi.org/10.1007/978-3-7091-1160-4_20 Greilhuber, J., Doležel, J., Lysak, M.A. & Bennett, M.D. 2005. The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents. Annals of Botany 95: 255-260. http://dx.doi.org/10.1093/aob/mci019 PMid:15596473 Greilhuber, J., Borsch, T., Muller, K., Worberg, A., Porembski, S. & Barthlott, W. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770-777. http://dx.doi.org/10.1055/s-2006-924101 PMid:17203433 Grime, J.P. & Mowforth, M.A. 1982. Variation in genome size an ecological interpretation. Nature 299: 151-153. http://dx.doi.org/10.1038/299151a0 Hegarty, M.J. & Hiscock, S.J. 2008. Genomic clues to the evolutionary success of review polyploid plants. Current Biology 18: R435-R444. http://dx.doi.org/10.1016/j.cub.2008.03.043 PMid:18492478 Hodgson, J.G. 1987. Why do so few plant species exploit productive habitats? An investigation into cytology, plant strategies and abundance within a local flora. Functional Ecology 1: 243-250. http://dx.doi.org/10.2307/2389427 Knight, C.A. & Ackerly, D.D. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5: 66-76. http://dx.doi.org/10.1046/j.1461-0248.2002.00283.x Knight, C.A. & Beaulieu, J.M. 2008. Genome size scaling through phenotype space. Annals of Botany 101: 759-766. http://dx.doi.org/10.1093/aob/mcm321 PMid:18222911 PMCid:PMC2710210 Küpfer, P. 1974. Recherches sur les liens de parenté entre la flore orophile des Alpes et celle des Pyrénées. Boissiera 23: 113-131. Larena, B.G., Aguilar, J.F. & Feliner, G.N. 2002. Glacial-induced altitudinal migrations in Armeria (Plumbaginaceae) inferred from patterns of chloroplast DNA haplotype sharing. Molecular Ecology 11: 1965-1974. http://dx.doi.org/10.1046/j.1365-294X.2002.01594.x Leitch, I. & Leitch, A.R. 2013. Genome Size Diversity and Evolution in Land Plants. In: J. Greilhuber, J. Doležel & J.F. Wendel (eds), Plant Genome Diversity Volume 2 pp. 323-344 Springer, Vienna. http://dx.doi.org/10.1007/978-3-7091-1160-4_19 Leitch, I.J., Soltis, D.E., Soltis, P.S. & Bennett, M.D. 2005. Evolution of DNA amounts across land plants (embryophyta). Annals of Botany 95: 207-217. http://dx.doi.org/10.1093/aob/mci014 PMid:15596468 Lexer, C. & van Loo, M. 2006. Contact zones: Natural labs for studying evolutionary transitions. Current Biology 16: R407-R409. http://dx.doi.org/10.1016/j.cub.2006.05.007 PMid:16753551 Lim, K.Y., Souckova-Skalicka, K., Sarasan, V., Clarkson, J.J., Chase, M.W., Kovarik, A. & Leitch, A.R. 2006. A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the Kostoff synthetic tobacco. American Journal of Botany 93: 875-883. http://dx.doi.org/10.3732/ajb.93.6.875 PMid:21642150 Loureiro, J., Rodriguez Rodríguez, E., Doležel, J. & Santos, C. 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany 100: 875-888. http://dx.doi.org/10.1093/aob/mcm152 PMid:17684025 PMCid:PMC2749623 Loureiro, J., Doležel, J., Greilhuber, J., Santos, C. & Suda, J. 2008. Plant flow cytometry - Far beyond the stone age. Cytometry Part A 73: 579-580. http://dx.doi.org/10.1002/cyto.a.20578 PMid:18553508 Löve, A. & Löve, D. 1949. The geobotanical significance of polyploidy. I. Polyploidy and latitude. Portugaliae Acta Biologica Series A: 273-352. Löve, A. & Löve, D. 1967. Polyploidy and altitude: Mt. Washington. Biologisches Zentralblatt Suppl. Vol.: 307-312. Lysak, M.A., Koch, M.A., Beaulieu, J.M., Meister, A. & Leitch, I.J. 2009. The dynamic ups and downs of genome size evolution in Brassicaceae. Molecular Biology and Evolution 26: 85-98. http://dx.doi.org/10.1093/molbev/msn223 PMid:18842687 Ma, J.X., SanMiguel, P., Lai, J.S., Messing, J. & Bennetzen, J.L. 2005. DNA rearrangement in orthologous Orp regions of the maize, rice and sorghum genomes. Genetics 170: 1209-1220. http://dx.doi.org/10.1534/genetics.105.040915 PMid:15834137 PMCid:PMC1451190 Marie, D. & Brown, S.C. 1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell 78: 41-51. http://dx.doi.org/10.1016/0248-4900(93)90113-S Mateo Sanz, M. 1996. Sobre el endemismo cantábrico Hieracium lainzii de Retz (Compositae) y especies afines. Anales del Jardin Botanico de Madrid 54: 364-369. Morton, J.K. 1993. Chromosome numbers and polyploidy in the flora of Cameroons Mountain. Opera Botanica 121: 159-172. Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Anales del Jardín Botánico de Madrid; Vol. 70 No. 1 (2013); 39-47 Anales del Jardín Botánico de Madrid; Vol. 70 Núm. 1 (2013); 39-47 1988-3196 0211-1322 10.3989/ajbm.2013.v70.i1 alpine vegetation DNA ploidy level nuclear DNA content Picos de Europa Sierra Nevada contenido nuclear de ADN nivel de ploidía vegetación alpina info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion revisado por pares; peer-reviewed 2013 ftjrjb https://doi.org/10.3989/ajbm.2350 https://doi.org/10.3989/ajbm.2013.v70.i1 https://doi.org/10.1038/nrg1711 https://doi.org/10.2307/3647446 https://doi.org/10.1007/s006060170022 2022-01-07T08:05:11Z The interest to study genome evolution, in particular genome size variation and polyploid incidence, has increased in recent years. Still, only a few studies have been focused at a community level. Of particular interest are high mountain species, because of the high frequency of narrow endemics and their higher susceptibility to extinction due to the effects of climate change. In the present study we explored genome size variation and polyploidy incidence in the entomophilous plant communities of two distinct mountain ranges, the Sierra Nevada and Picos de Europa National Parks. For that, chromosome numbers and DNA ploidies were assessed through a review of the literature, and the genome size and incidence of polyploidy in 39 taxa from several key genera were estimated using flow cytometry. In this study, first genome size estimations are given for 32 taxa. The majority of the analyzed taxa presented very small to small genome sizes (2C ≤ 7.0 pg), with no differences being detected between genome size and geographic origin and distribution ranges. A low incidence of polyploid taxa was observed (23.3%), with polyploids being more common in Picos de Europa than in Sierra Nevada. Most taxa inferred as polyploids were high altitude plants, but no clear pattern between polyploidy incidence and endemic status was observed. The obtained results are discussed within the context of angiosperm’s genome size variation and of polyploidy incidence in alpine and arctic flora, contributing to the scientific knowledge of these natural communities of great biological importance. El interés en el estudio de la evolución del genoma, especialmente de la variación en tamaño y de la incidencia de poliploidía, se ha incrementado en los últimos años. Sin embargo, sólo unos pocos estudios se han centrado en el nivel de comunidades. Las especies de alta montaña son especialmente interesantes debido a la alta frecuencia de especies endémicas y a que son consideradas muy susceptibles a la extinción por los efectos del cambio climático. En el presente estudio, exploramos la variación en el tamaño genómico y la incidencia de poliploidía en las comunidades de plantas entomófilas de alta montaña de dos macizos montañosos: el Parque Nacional de Sierra Nevada y el Parque Nacional de Picos de Europa. Para ello, se evaluó el número de cromosomas y el nivel de ploidía por medio de una revisión bibliográfica, mientras que el tamaño genómico y la incidencia de poliploidía se estimaron en 39 taxones de varios géneros usando citometría de flujo. En este estudio, se proporcionan las primeras estimaciones del tamaño genómico para 32 taxones. La mayoría de los taxones analizados presentaron tamaños genómicos pequeños o muy pequeños (2C ≤ 7.0 pg), sin mostrar diferencias en el tamaño genómico asociadas a su origen geográfico o rango de distribución. Se observó una baja incidencia de taxones poliploides (23.3%), siendo éstos más comunes entre las plantas de Picos de Europa que entre las de Sierra Nevada. La mayor parte de los taxones considerados como poliploides fueron plantas restringidas a las montañas, sin embargo no se observó un patrón claro entre la incidencia de poliploidía y el grado de endemismo. Los resultados obtenidos son discutidos dentro del contexto de variación en el tamaño del genoma y de la incidencia de poliploidía en las floras árticas y alpinas, contribuyendo al conocimiento científico de estas comunidades naturales de gran importancia biológica. Article in Journal/Newspaper Arctic Arctic árticas Climate change Anales del Jardín Botánico de Madrid (Real Jardín Botánico - CSIC) Alta Arctic Baja Claro ENVELOPE(-63.383,-63.383,-64.250,-64.250) Española ENVELOPE(-60.383,-60.383,-62.660,-62.660) Anales del Jardín Botánico de Madrid 70 1 39 47