Altitude of the forest upper limit in the Mexican Neovolcanic Axis, a climate reference for high-mountain environment in Mexico

The upper limit of continuous and discontinuous forest in mountains higher than 4000 meters above sea level in Mexico was identified. This study was based on the normalized difference vegetation index and by means of principal component analysis. For the first case, it was found that in each slope t...

Full description

Bibliographic Details
Published in:Complutum
Main Authors: Soto Molina, Víctor Hugo, Pech Canché, Juan Manuel, Alanís Méndez, José Luís
Format: Article in Journal/Newspaper
Language:Spanish
Published: Consejo Superior de Investigaciones Científicas 2021
Subjects:
Online Access:https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/1047
https://doi.org/10.3989/estgeogr.202075.075
id ftjreg:oai:estudiosgeograficos.revistas.csic.es:article/1047
record_format openpolar
institution Open Polar
collection Estudios Geográficos (E-Journal)
op_collection_id ftjreg
language Spanish
topic Climatic variability
forest upper limit
high-mountain climatology
normalized difference vegetation index
principal components analysis
Análisis de componentes principales
climatología de alta montaña
índice de vegetación de diferencia normalizada
límite superior de bosque
variabilidad climática
spellingShingle Climatic variability
forest upper limit
high-mountain climatology
normalized difference vegetation index
principal components analysis
Análisis de componentes principales
climatología de alta montaña
índice de vegetación de diferencia normalizada
límite superior de bosque
variabilidad climática
Soto Molina, Víctor Hugo
Pech Canché, Juan Manuel
Alanís Méndez, José Luís
Altitude of the forest upper limit in the Mexican Neovolcanic Axis, a climate reference for high-mountain environment in Mexico
topic_facet Climatic variability
forest upper limit
high-mountain climatology
normalized difference vegetation index
principal components analysis
Análisis de componentes principales
climatología de alta montaña
índice de vegetación de diferencia normalizada
límite superior de bosque
variabilidad climática
description The upper limit of continuous and discontinuous forest in mountains higher than 4000 meters above sea level in Mexico was identified. This study was based on the normalized difference vegetation index and by means of principal component analysis. For the first case, it was found that in each slope the forest limit reaches a different altitude; however, on average the continuous forest (timberline) ends at 4019 and the discontinuous forest (treeline) at 4072 masl. On the other hand, the statistical analysis made it possible to determine that precipitation, soil type and the rate of solar radiation at the surface level are the main factors that govern its altitude. Finally, it was found that the temperature regime found on this limit approximates the standard values of the intertropical zone. Se identificó el límite superior de bosque continuo y discontinuo en las montañas superiores a 4000 metros sobre el nivel del mar en México. El estudio se basó en el índice de vegetación de diferencia normalizada y mediante el análisis de componentes principales. Para el primer caso, se encontró que en cada vertiente el límite de bosque alcanza una altitud distinta; sin embargo, en promedio el bosque continuo culmina a 4019 y el discontinuo a 4072 msnm. Por su parte, el análisis estadístico permitió determinar que la precipitación, el tipo de suelo y la tasa de radiación solar a nivel de superficie son los principales factores que rigen su altitud. Finalmente se halló que el régimen de temperatura encontrado en esta frontera se aproxima a los valores estándares de la zona intertropical.
format Article in Journal/Newspaper
author Soto Molina, Víctor Hugo
Pech Canché, Juan Manuel
Alanís Méndez, José Luís
author_facet Soto Molina, Víctor Hugo
Pech Canché, Juan Manuel
Alanís Méndez, José Luís
author_sort Soto Molina, Víctor Hugo
title Altitude of the forest upper limit in the Mexican Neovolcanic Axis, a climate reference for high-mountain environment in Mexico
title_short Altitude of the forest upper limit in the Mexican Neovolcanic Axis, a climate reference for high-mountain environment in Mexico
title_full Altitude of the forest upper limit in the Mexican Neovolcanic Axis, a climate reference for high-mountain environment in Mexico
title_fullStr Altitude of the forest upper limit in the Mexican Neovolcanic Axis, a climate reference for high-mountain environment in Mexico
title_full_unstemmed Altitude of the forest upper limit in the Mexican Neovolcanic Axis, a climate reference for high-mountain environment in Mexico
title_sort altitude of the forest upper limit in the mexican neovolcanic axis, a climate reference for high-mountain environment in mexico
publisher Consejo Superior de Investigaciones Científicas
publishDate 2021
url https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/1047
https://doi.org/10.3989/estgeogr.202075.075
long_lat ENVELOPE(-57.629,-57.629,-61.898,-61.898)
geographic Alta
Límite
geographic_facet Alta
Límite
genre Arctic
genre_facet Arctic
op_source Estudios Geográficos; Vol. 82 No. 290 (2021); e063
Estudios Geográficos; Vol. 82 Núm. 290 (2021); e063
1988-8546
0014-1496
10.3989/egeogr.2021.i290
op_relation https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/1047/1244
https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/1047/1245
https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/1047/1246
Aas, B. and Faarlund, T. (1996). The present and the Holocene birch belt in Norway. Paläo-klimaforschung (20), 19-42.
Aguilera, N., T. M. Dow and R. Hernández S. (1962). Suelos, problema básico en silvicultura. En: FAO (Ed.) Seminario y viaje de estudio de coníferas latinoamericanas. (pp. 108-140). México, D. F., México: Inst. Nac. Invest. Forest.
Alfaro-Ramírez, F. U., Arredondo-Moreno, J. T., Pérez-Suárez, M., and Endara-Agramont, Á. R. (2017). Pinus hartwegii Lindl. treeline ecotone: structure and altitudinal limits at Nevado de Toluca, Mexico. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 23(2), 261-273. https://doi.org/10.5154/r.rchscfa.2016.10.055
Andrés, N., Estremera, D. P., Zamorano, J. J., y Vázquez-Selem, L. (2010). Distribución del permafrost e intensidad de los procesos periglaciares en el estratovolcán Iztaccíhuatl (México) 1. Eria, (83), 291-310.
Arekhi, M., Goksel, C., Balik Sanli, F., and Senel, G. (2019). Comparative Evaluation of the Spectral and Spatial Consistency of Sentinel-2 and Landsat-8 OLI Data for Igneada Longos Forest. ISPRS International Journal of Geo-Information, 8(2), 56. https://doi.org/10.3390/ijgi8020056
Arno, S. F. (1984). Timberline, mountain and arctic frontiers. Seattle, WA., USA: The Mountaineers, 310 pp.
Arya, P. S. (2001). Introduction to micrometeorology (Vol. 79). Seattle, WA., USA: Academic Press, 420 pp.
Autio, J. (2006). Environmental factors controlling the position of the actual timberline and treeline on the fells of Finnish Lapland. Oulu, Finland: OULU University Press, 63 pp.
Bader, M. Y. and Ruijten, J. J. A. (2008). A topography-based model of forest cover at the alpine treeline in the tropical Andes. J. Biogeogr. (35), 711-723. https://doi.org/10.1111/j.1365-2699.2007.01818.x
Bader, M. Y., van Geloof, I. and Rietkerk, M. (2007). High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol. (191), 33-45. https://doi.org/10.1007/s11258-006-9212-6
Bharti, R. R., Rai, I. D., Adhikari, B. S., and Rawat, G. S. (2011). Timberline change detection using topographic map and satellite imagery: a critique. Tropical Ecology, 52(1), 133-137.
Braunisch, V., Patthey, P., and Arlettaz, R. (2016). Where to combat shrub encroachment in alpine timberline ecosystems: combining remotely sensed vegetation information with species habitat modelling. PloS one, 11(10), e0164318. https://doi.org/10.1371/journal.pone.0164318 PMid:27727325 PMCid:PMC5058552
Cairns, D. M. (1998). Modeling controls on pattern at alpine treeline. Geogr. Environ. Model. 2 (1), 43-63.
Chen, B. X., Sun, Y. F., Zhang, H. B., Han, Z. H., Wang, J. S., Li, Y. K., and Yang, X. L. (2018). Temperature change along elevation and its effect on the alpine timberline tree growth in the southeast of the Tibetan Plateau. Advances in Climate Change Research, 9(3), 185-191. https://doi.org/10.1016/j.accre.2018.05.001
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO (8 de agosto de 2019). Portal de geoinformación. Sistema nacional de información sobre biodiversidad. Recuperado de http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/topog/infgrt/indi50kgw
Dahms, A. (1992). Wachstumsbedingungen bei Picea engelmannii (Parry) Engelm. und Abies lasiocarpa (Hook) Nutt. an unterschiedlich windexponierten Standorten im Waldgrenzbereich der Colorado Front Range, U.S.A. Diss. Mathematisch-Naturwissenschaftliche Fakultät, Westfälische Wilhelms-Universität, Münster.
Danzeglocke, J. (2005). Remote sensing of upper timberline elevation in the Alps on different scales. In proc. 24th EARSeL Symp. New Strategies for European Remote Sensing. 25-27th May 2004.
Delegido, J., Tenjo, C., Ruiz, A., Pereira, M., Pasqualotto, N., Gibaja, G. and Sanchis, J. (2016). Aplicaciones de Sentinel-2 a estudios de vegetación y calidad de aguas continentales. In Conference: XVII Simposio Internacional En Percepción Remota Y Sistemas de Información Geográfica (SELPER). Puerto Iguazú, Argentina.
Demant, A. (1978). Características del Eje Neovolcánico Transmexicano y sus problemas de interpretación. Revista mexicana de ciencias geológicas, 2(2), 172-187.
European Space Agency, ESA (2015). Sentinel-2 User Handbook. Issue 1 Rev. 2. 64 pp. https://doi.org/10.1016/S1290-0958(00)87127-0
Ferrari, L., Orozco-Esquivel, T., Manea, V., and Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122-149. https://doi.org/10.1016/j.tecto.2011.09.018
French, H. M. (2018). The periglacial environment (4th edition). Chichester, UK: John Wiley & Sons. 513 pp.
Gaire, N. P., Koirala, M., Bhuju, D. R., and Carrer, M. (2017). Site-and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia, 41, 44-56. https://doi.org/10.1016/j.dendro.2016.03.001
García, E. (2004). "Modificaciones al sistema de clasificación climática de Köppen (Para adaptarlo a las condiciones de la República Mexicana)" 5ª edición. Instituto de Geografía, Universidad Nacional Autónoma de México, México. (No. C/551.6972 G3/2004), 90 pp.
Gellhorn, J. (2002). Song of the alpine: The Rocky Mountain tundra through the seasons. Boulder, Co. USA: Big Earth Publishing. 263 pp.
Gernandt, D. S., and Pérez-de la Rosa, J. A. (2014). Biodiversidad de Pinophyta (coníferas) en México. Revista mexicana de biodiversidad, 85, 126-133. https://doi.org/10.7550/rmb.32195
Hatfield, J. L., and Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and climate extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001
Hoch, G. and Körner, C. (2003). The carbon charging of pines at the climatic treeline: A global comparison. Oecologia, (135), 10-21. https://doi.org/10.1007/s00442-002-1154-7 PMid:12647099
Hofgaard, A. (1997). Structural changes in the forest-tundra ecotone: a dynamic process. In Past and future rapid environmental changes (pp. 255-263). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-60599-4_20
Holtmeier, F. K. (2009). Mountain timberlines: ecology, patchiness, and dynamics (Vol. 36). Geneva, Switzerland: Springer Science & Business Media. 445 pp. https://doi.org/10.1007/978-1-4020-9705-8
Hreško, J., Bugár, G., and Petrovič, F. (2009). Changes of vegetation and soil cover in alpine zone due to anthropogenic and geomorphological processes. Landform Analysis, 10, 39-43.
Instituto Nacional de Estadística, Geografía e Informática, INEGI (2017). "Anuario estadístico y geográfico de los Estados Unidos Mexicanos". Aguascalientes, Ags. Méx: INEGI. 1066 pp.
Instituto Nacional de Estadística, Geografía e Informática, INEGI (7 de agosto de 2019). Continuo de Elevaciones Mexicano. Recuperado de https://www.inegi.org.mx/app/geo2/elevacionesmex/
Jandl, N., Jandl, R., and Schindlbacher, A. (2018). Future management options for cembran pine forests close to the alpine timberline. Annals of Forest Science, 75(3), 81. https://doi.org/10.1007/s13595-018-0760-4
Jáuregui, O., E. (1975). Los sistemas de tiempo en el Golfo de México y su vecindad. Investigaciones geográficas, (6), 7-36. https://doi.org/10.14350/rig.58888
Kaczka, R. J., Lempa, M., Czajka, B., Janecka, K., Rączkowska, Z., Hreško, J., and Bugar, G. (2015). The recent timberline changes in the Tatra Mountains: A case study of the Mengusovská Valley (Slovakia) and the Rybi Potok Valley (Poland). Geographia Polonica, 88(2), 71-83. https://doi.org/10.7163/GPol.0016
Kogan, F., Gitelson, A., Zakarin, E., Spivak, L., and Lebed, L. (2003). AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogrammetric Engineering and Remote Sensing, 69(8), 899-906. https://doi.org/10.14358/PERS.69.8.899
Kullman, L. (1987). A decade of tree-line monitoring in the southern Swedish Scandes. UNGI Rep. (65), 91-202.
Lauer, W. and Klaus, D. (1975). Geoecological investigations on the timberline of Pico de Orizaba, Mexico. Arct. Alp. Res. 7 (4), 315-330. https://doi.org/10.2307/1550176
Li, B. S. (1993). The alpine timberline of Tibet. In: (Alden, J., Mastrantonio, J. L. and Odum, S., Eds.) Forest development in cold climates: (pp. 511-527), New York, USA: Spinger. https://doi.org/10.1007/978-1-4899-1600-6_34
Li, Y., Chen, J., Ma, Q., Zhang, H. K., and Liu, J. (2018). Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(6), 1997-2021. https://doi.org/10.1109/JSTARS.2018.2835823
Macías, J., Arce, J., García-Tenorio, F., Layer, P., Rueda, H., Reyes-Agustín, G., López-Pizaña, F., and Avellán, D. (2012). Geology and geochronology of Tlaloc, Telapón, Iztaccíhuatl, and Popocatépetl volcanoes, Sierra Nevada, central Mexico. In Aranda-Gómez, J.J., Tolson, G., and Molina-Garza, R.S., (Eds.) The Southern Cordillera and Beyond: Field Guide. 25. (pp. 163-193). Boulder, Co., USA: The Geological Society of America. https://doi.org/10.1130/2012.0025(08)
Malini, A. S., and Somashekar, R. K. (2013). Multispectral Monitoring of Vegetation Cover of Bangalore Metropolitan Area. Global Journal of Bio-Science and Biotechnology, 2(1), 27-32.
Malyshev, L. (1993). Levels of upper forest boundary in northern Asia. Vegetation (109), 175-186. https://doi.org/10.1007/BF00044749
Martin-Del Pozzo, A. L. (2012). Precursors to eruptions of Popocatépetl volcano, Mexico. Geofísica internacional, 51(1), 87-107. https://doi.org/10.22201/igeof.00167169p.2012.51.1.148
Montero-García, I. A. (2004). Atlas arqueológico de la alta Montaña mexicana. México, D.F. Méx: SEMARNAT. 180 pp.
Mooser, F. (1958). Active volcanoes of Mexico. In Meyer, A. H. and MacBirney, A. R. (Eds). Catalogue of active volcanoes of the world including Solfatara Fields. Part VI. Mexico and Central America. Naples, Italy: International Volcanological Association. 36 pp.
op_rights Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/estgeogr.202075.075
https://doi.org/10.3989/egeogr.2021.i290
https://doi.org/10.5154/r.rchscfa.2016.10.055
https://doi.org/10.3390/ijgi8020056
https://doi.org/10.1111/j.1365-2699.2007.01818.x
https://doi.org/10.1007/s1125
container_title Complutum
container_volume 32
container_issue 1
container_start_page 9
op_container_end_page 27
_version_ 1766302656082477056
spelling ftjreg:oai:estudiosgeograficos.revistas.csic.es:article/1047 2023-05-15T14:28:30+02:00 Altitude of the forest upper limit in the Mexican Neovolcanic Axis, a climate reference for high-mountain environment in Mexico Altitud del límite superior de bosque en el Eje Neovolcánico Mexicano, un referente climático de la alta montaña en México Soto Molina, Víctor Hugo Pech Canché, Juan Manuel Alanís Méndez, José Luís 2021-07-07 text/html application/pdf text/xml https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/1047 https://doi.org/10.3989/estgeogr.202075.075 spa spa Consejo Superior de Investigaciones Científicas https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/1047/1244 https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/1047/1245 https://estudiosgeograficos.revistas.csic.es/index.php/estudiosgeograficos/article/view/1047/1246 Aas, B. and Faarlund, T. (1996). The present and the Holocene birch belt in Norway. Paläo-klimaforschung (20), 19-42. Aguilera, N., T. M. Dow and R. Hernández S. (1962). Suelos, problema básico en silvicultura. En: FAO (Ed.) Seminario y viaje de estudio de coníferas latinoamericanas. (pp. 108-140). México, D. F., México: Inst. Nac. Invest. Forest. Alfaro-Ramírez, F. U., Arredondo-Moreno, J. T., Pérez-Suárez, M., and Endara-Agramont, Á. R. (2017). Pinus hartwegii Lindl. treeline ecotone: structure and altitudinal limits at Nevado de Toluca, Mexico. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 23(2), 261-273. https://doi.org/10.5154/r.rchscfa.2016.10.055 Andrés, N., Estremera, D. P., Zamorano, J. J., y Vázquez-Selem, L. (2010). Distribución del permafrost e intensidad de los procesos periglaciares en el estratovolcán Iztaccíhuatl (México) 1. Eria, (83), 291-310. Arekhi, M., Goksel, C., Balik Sanli, F., and Senel, G. (2019). Comparative Evaluation of the Spectral and Spatial Consistency of Sentinel-2 and Landsat-8 OLI Data for Igneada Longos Forest. ISPRS International Journal of Geo-Information, 8(2), 56. https://doi.org/10.3390/ijgi8020056 Arno, S. F. (1984). Timberline, mountain and arctic frontiers. Seattle, WA., USA: The Mountaineers, 310 pp. Arya, P. S. (2001). Introduction to micrometeorology (Vol. 79). Seattle, WA., USA: Academic Press, 420 pp. Autio, J. (2006). Environmental factors controlling the position of the actual timberline and treeline on the fells of Finnish Lapland. Oulu, Finland: OULU University Press, 63 pp. Bader, M. Y. and Ruijten, J. J. A. (2008). A topography-based model of forest cover at the alpine treeline in the tropical Andes. J. Biogeogr. (35), 711-723. https://doi.org/10.1111/j.1365-2699.2007.01818.x Bader, M. Y., van Geloof, I. and Rietkerk, M. (2007). High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecol. (191), 33-45. https://doi.org/10.1007/s11258-006-9212-6 Bharti, R. R., Rai, I. D., Adhikari, B. S., and Rawat, G. S. (2011). Timberline change detection using topographic map and satellite imagery: a critique. Tropical Ecology, 52(1), 133-137. Braunisch, V., Patthey, P., and Arlettaz, R. (2016). Where to combat shrub encroachment in alpine timberline ecosystems: combining remotely sensed vegetation information with species habitat modelling. PloS one, 11(10), e0164318. https://doi.org/10.1371/journal.pone.0164318 PMid:27727325 PMCid:PMC5058552 Cairns, D. M. (1998). Modeling controls on pattern at alpine treeline. Geogr. Environ. Model. 2 (1), 43-63. Chen, B. X., Sun, Y. F., Zhang, H. B., Han, Z. H., Wang, J. S., Li, Y. K., and Yang, X. L. (2018). Temperature change along elevation and its effect on the alpine timberline tree growth in the southeast of the Tibetan Plateau. Advances in Climate Change Research, 9(3), 185-191. https://doi.org/10.1016/j.accre.2018.05.001 Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO (8 de agosto de 2019). Portal de geoinformación. Sistema nacional de información sobre biodiversidad. Recuperado de http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/topog/infgrt/indi50kgw Dahms, A. (1992). Wachstumsbedingungen bei Picea engelmannii (Parry) Engelm. und Abies lasiocarpa (Hook) Nutt. an unterschiedlich windexponierten Standorten im Waldgrenzbereich der Colorado Front Range, U.S.A. Diss. Mathematisch-Naturwissenschaftliche Fakultät, Westfälische Wilhelms-Universität, Münster. Danzeglocke, J. (2005). Remote sensing of upper timberline elevation in the Alps on different scales. In proc. 24th EARSeL Symp. New Strategies for European Remote Sensing. 25-27th May 2004. Delegido, J., Tenjo, C., Ruiz, A., Pereira, M., Pasqualotto, N., Gibaja, G. and Sanchis, J. (2016). Aplicaciones de Sentinel-2 a estudios de vegetación y calidad de aguas continentales. In Conference: XVII Simposio Internacional En Percepción Remota Y Sistemas de Información Geográfica (SELPER). Puerto Iguazú, Argentina. Demant, A. (1978). Características del Eje Neovolcánico Transmexicano y sus problemas de interpretación. Revista mexicana de ciencias geológicas, 2(2), 172-187. European Space Agency, ESA (2015). Sentinel-2 User Handbook. Issue 1 Rev. 2. 64 pp. https://doi.org/10.1016/S1290-0958(00)87127-0 Ferrari, L., Orozco-Esquivel, T., Manea, V., and Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122-149. https://doi.org/10.1016/j.tecto.2011.09.018 French, H. M. (2018). The periglacial environment (4th edition). Chichester, UK: John Wiley & Sons. 513 pp. Gaire, N. P., Koirala, M., Bhuju, D. R., and Carrer, M. (2017). Site-and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia, 41, 44-56. https://doi.org/10.1016/j.dendro.2016.03.001 García, E. (2004). "Modificaciones al sistema de clasificación climática de Köppen (Para adaptarlo a las condiciones de la República Mexicana)" 5ª edición. Instituto de Geografía, Universidad Nacional Autónoma de México, México. (No. C/551.6972 G3/2004), 90 pp. Gellhorn, J. (2002). Song of the alpine: The Rocky Mountain tundra through the seasons. Boulder, Co. USA: Big Earth Publishing. 263 pp. Gernandt, D. S., and Pérez-de la Rosa, J. A. (2014). Biodiversidad de Pinophyta (coníferas) en México. Revista mexicana de biodiversidad, 85, 126-133. https://doi.org/10.7550/rmb.32195 Hatfield, J. L., and Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and climate extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001 Hoch, G. and Körner, C. (2003). The carbon charging of pines at the climatic treeline: A global comparison. Oecologia, (135), 10-21. https://doi.org/10.1007/s00442-002-1154-7 PMid:12647099 Hofgaard, A. (1997). Structural changes in the forest-tundra ecotone: a dynamic process. In Past and future rapid environmental changes (pp. 255-263). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-60599-4_20 Holtmeier, F. K. (2009). Mountain timberlines: ecology, patchiness, and dynamics (Vol. 36). Geneva, Switzerland: Springer Science & Business Media. 445 pp. https://doi.org/10.1007/978-1-4020-9705-8 Hreško, J., Bugár, G., and Petrovič, F. (2009). Changes of vegetation and soil cover in alpine zone due to anthropogenic and geomorphological processes. Landform Analysis, 10, 39-43. Instituto Nacional de Estadística, Geografía e Informática, INEGI (2017). "Anuario estadístico y geográfico de los Estados Unidos Mexicanos". Aguascalientes, Ags. Méx: INEGI. 1066 pp. Instituto Nacional de Estadística, Geografía e Informática, INEGI (7 de agosto de 2019). Continuo de Elevaciones Mexicano. Recuperado de https://www.inegi.org.mx/app/geo2/elevacionesmex/ Jandl, N., Jandl, R., and Schindlbacher, A. (2018). Future management options for cembran pine forests close to the alpine timberline. Annals of Forest Science, 75(3), 81. https://doi.org/10.1007/s13595-018-0760-4 Jáuregui, O., E. (1975). Los sistemas de tiempo en el Golfo de México y su vecindad. Investigaciones geográficas, (6), 7-36. https://doi.org/10.14350/rig.58888 Kaczka, R. J., Lempa, M., Czajka, B., Janecka, K., Rączkowska, Z., Hreško, J., and Bugar, G. (2015). The recent timberline changes in the Tatra Mountains: A case study of the Mengusovská Valley (Slovakia) and the Rybi Potok Valley (Poland). Geographia Polonica, 88(2), 71-83. https://doi.org/10.7163/GPol.0016 Kogan, F., Gitelson, A., Zakarin, E., Spivak, L., and Lebed, L. (2003). AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogrammetric Engineering and Remote Sensing, 69(8), 899-906. https://doi.org/10.14358/PERS.69.8.899 Kullman, L. (1987). A decade of tree-line monitoring in the southern Swedish Scandes. UNGI Rep. (65), 91-202. Lauer, W. and Klaus, D. (1975). Geoecological investigations on the timberline of Pico de Orizaba, Mexico. Arct. Alp. Res. 7 (4), 315-330. https://doi.org/10.2307/1550176 Li, B. S. (1993). The alpine timberline of Tibet. In: (Alden, J., Mastrantonio, J. L. and Odum, S., Eds.) Forest development in cold climates: (pp. 511-527), New York, USA: Spinger. https://doi.org/10.1007/978-1-4899-1600-6_34 Li, Y., Chen, J., Ma, Q., Zhang, H. K., and Liu, J. (2018). Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(6), 1997-2021. https://doi.org/10.1109/JSTARS.2018.2835823 Macías, J., Arce, J., García-Tenorio, F., Layer, P., Rueda, H., Reyes-Agustín, G., López-Pizaña, F., and Avellán, D. (2012). Geology and geochronology of Tlaloc, Telapón, Iztaccíhuatl, and Popocatépetl volcanoes, Sierra Nevada, central Mexico. In Aranda-Gómez, J.J., Tolson, G., and Molina-Garza, R.S., (Eds.) The Southern Cordillera and Beyond: Field Guide. 25. (pp. 163-193). Boulder, Co., USA: The Geological Society of America. https://doi.org/10.1130/2012.0025(08) Malini, A. S., and Somashekar, R. K. (2013). Multispectral Monitoring of Vegetation Cover of Bangalore Metropolitan Area. Global Journal of Bio-Science and Biotechnology, 2(1), 27-32. Malyshev, L. (1993). Levels of upper forest boundary in northern Asia. Vegetation (109), 175-186. https://doi.org/10.1007/BF00044749 Martin-Del Pozzo, A. L. (2012). Precursors to eruptions of Popocatépetl volcano, Mexico. Geofísica internacional, 51(1), 87-107. https://doi.org/10.22201/igeof.00167169p.2012.51.1.148 Montero-García, I. A. (2004). Atlas arqueológico de la alta Montaña mexicana. México, D.F. Méx: SEMARNAT. 180 pp. Mooser, F. (1958). Active volcanoes of Mexico. In Meyer, A. H. and MacBirney, A. R. (Eds). Catalogue of active volcanoes of the world including Solfatara Fields. Part VI. Mexico and Central America. Naples, Italy: International Volcanological Association. 36 pp. Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Estudios Geográficos; Vol. 82 No. 290 (2021); e063 Estudios Geográficos; Vol. 82 Núm. 290 (2021); e063 1988-8546 0014-1496 10.3989/egeogr.2021.i290 Climatic variability forest upper limit high-mountain climatology normalized difference vegetation index principal components analysis Análisis de componentes principales climatología de alta montaña índice de vegetación de diferencia normalizada límite superior de bosque variabilidad climática info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2021 ftjreg https://doi.org/10.3989/estgeogr.202075.075 https://doi.org/10.3989/egeogr.2021.i290 https://doi.org/10.5154/r.rchscfa.2016.10.055 https://doi.org/10.3390/ijgi8020056 https://doi.org/10.1111/j.1365-2699.2007.01818.x https://doi.org/10.1007/s1125 2022-06-12T20:27:00Z The upper limit of continuous and discontinuous forest in mountains higher than 4000 meters above sea level in Mexico was identified. This study was based on the normalized difference vegetation index and by means of principal component analysis. For the first case, it was found that in each slope the forest limit reaches a different altitude; however, on average the continuous forest (timberline) ends at 4019 and the discontinuous forest (treeline) at 4072 masl. On the other hand, the statistical analysis made it possible to determine that precipitation, soil type and the rate of solar radiation at the surface level are the main factors that govern its altitude. Finally, it was found that the temperature regime found on this limit approximates the standard values of the intertropical zone. Se identificó el límite superior de bosque continuo y discontinuo en las montañas superiores a 4000 metros sobre el nivel del mar en México. El estudio se basó en el índice de vegetación de diferencia normalizada y mediante el análisis de componentes principales. Para el primer caso, se encontró que en cada vertiente el límite de bosque alcanza una altitud distinta; sin embargo, en promedio el bosque continuo culmina a 4019 y el discontinuo a 4072 msnm. Por su parte, el análisis estadístico permitió determinar que la precipitación, el tipo de suelo y la tasa de radiación solar a nivel de superficie son los principales factores que rigen su altitud. Finalmente se halló que el régimen de temperatura encontrado en esta frontera se aproxima a los valores estándares de la zona intertropical. Article in Journal/Newspaper Arctic Estudios Geográficos (E-Journal) Alta Límite ENVELOPE(-57.629,-57.629,-61.898,-61.898) Complutum 32 1 9 27