LAI/fPAR levels on surfaces affected by forest fires in Aragón. A MODIS MCD15A2 analysis

The Leaf area index (LAI) and the Fractional Photosynthetically Active Radiation (fPAR) are variables related to the structure of the plant canopy that can provide new keys for the understanding of post-fire vegetation processes. In this context, the objective of this work is to characterize differe...

Full description

Bibliographic Details
Published in:Pirineos
Main Authors: Jiménez Ruano, Adrián, Pérez-Cabello, Fernando, Montorio Llovería, Raquel
Format: Article in Journal/Newspaper
Language:Spanish
Published: Consejo Superior de Investigaciones Científicas 2016
Subjects:
LAI
Online Access:https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266
https://doi.org/10.3989/Pirineos.2016.171003
id ftjpirineos:oai:pirineos.revistas.csic.es:article/266
record_format openpolar
institution Open Polar
collection Pirineos (E-Journal)
op_collection_id ftjpirineos
language Spanish
topic Wildfire
LAI
fPAR
MODIS
Aragón
Incendio forestal
spellingShingle Wildfire
LAI
fPAR
MODIS
Aragón
Incendio forestal
Jiménez Ruano, Adrián
Pérez-Cabello, Fernando
Montorio Llovería, Raquel
LAI/fPAR levels on surfaces affected by forest fires in Aragón. A MODIS MCD15A2 analysis
topic_facet Wildfire
LAI
fPAR
MODIS
Aragón
Incendio forestal
description The Leaf area index (LAI) and the Fractional Photosynthetically Active Radiation (fPAR) are variables related to the structure of the plant canopy that can provide new keys for the understanding of post-fire vegetation processes. In this context, the objective of this work is to characterize different burned areas in Aragon using the MDC15A2 (LAI/fPAR) product from MODIS. There are two different types of analysis: (1) static analysis of LAI/ fPAR values from the compound of 2010; (2) multi-year follow-up in 6 large fires occurred in the 2000s, representa difetive of different environmental conditions. The methodological process is based on the selection of 18 forest fires (> 500 ha, occurred between 1975-2010) with digital cartography available; and the download of the product MCD13A2 MODIS (seasonal compounds of 8 days, first week of May and September). A temporal pattern of recovery in the values of LAI has been identified. Fires occurred more than 35 years ago have average LAI values > 1 (1.13/1.40, in September and May respectively), and low values of fPAR (~ 0.5). Meanwhile, a year after the fire LAI/fPAR average values do not exceed 0.20/0.40, respectively. On the other hand, a few months after the fire average LAI values < 0.25 have been observed. In general terms, the MODIS MDC15A2 (LAI/ fPAR) product features an enormous potential in the cartographic analysis of the biological processes of burned areas, despite the problems of interpretation derived from the spatial resolution of the product. El índice de área foliar (LAI) y la fracción de radiación activa fotosintética absorbida por la vegetación (fPAR) son variables relacionadas con la estructura del dosel vegetal que pueden aportar nuevas claves en la comprensión del proceso de regeneración vegetal en zonas quemadas. En este contexto, el objetivo del trabajo es caracterizar diferentes superficies quemadas en Aragón en función del producto MDC15A2 (LAI/fPAR) de MODIS. Se realizan dos tipos diferentes de análisis: (1) análisis estático de los valores de LAI/fPAR a partir del compuesto de 2010; (2) seguimiento multianual en 6 grandes incendios ocurridos en la década de los 2000, representativos de condiciones ambientales diferentes. El proceso metodológico se basa en la selección de 18 incendios forestales (> 500 ha, ocurridos entre 1975-2010) que dispusieran de la cartografía digital; y en la descarga del producto MCD13A2 de MODIS (compuestos estacionales de 8 días, primera semana de mayo y septiembre). Se ha identificado un patrón temporal de recuperación en los valores de LAI. En incendios ocurridos hace más de 35 años se recogen valores promedio de LAI >1 (1,13/1,40, en septiembre y mayo respectivamente), y valores de fPAR bajos (~ 0,5). Mientras, un año después del fuego los valores promedio de LAI/fPAR no superan el 0,20/0,40, respectivamente. Por otro lado, unos meses tras el fuego se han registrado valores promedio de LAI
format Article in Journal/Newspaper
author Jiménez Ruano, Adrián
Pérez-Cabello, Fernando
Montorio Llovería, Raquel
author_facet Jiménez Ruano, Adrián
Pérez-Cabello, Fernando
Montorio Llovería, Raquel
author_sort Jiménez Ruano, Adrián
title LAI/fPAR levels on surfaces affected by forest fires in Aragón. A MODIS MCD15A2 analysis
title_short LAI/fPAR levels on surfaces affected by forest fires in Aragón. A MODIS MCD15A2 analysis
title_full LAI/fPAR levels on surfaces affected by forest fires in Aragón. A MODIS MCD15A2 analysis
title_fullStr LAI/fPAR levels on surfaces affected by forest fires in Aragón. A MODIS MCD15A2 analysis
title_full_unstemmed LAI/fPAR levels on surfaces affected by forest fires in Aragón. A MODIS MCD15A2 analysis
title_sort lai/fpar levels on surfaces affected by forest fires in aragón. a modis mcd15a2 analysis
publisher Consejo Superior de Investigaciones Científicas
publishDate 2016
url https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266
https://doi.org/10.3989/Pirineos.2016.171003
long_lat ENVELOPE(-56.317,-56.317,-63.467,-63.467)
geographic Bajos
geographic_facet Bajos
genre Polar Science
Polar Science
genre_facet Polar Science
Polar Science
op_source Pirineos; Vol. 171 (2016); e019
1988-4281
0373-2568
10.3989/pirineos.2016.v171
op_relation https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266/309
https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266/310
https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266/311
Chen, J. M. & Black, T. A., 1992. Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15 (4): 421-429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x
Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M. & Plummer, S. 1997. Leaf area index of boreal forests: Theory, techniques and measurements. Journal of Geophysical Research. Atmospheres, 102: 429-443. https://doi.org/10.1029/97JD01107
Chuvieco, E., Giglio, L. & Justice, C. O., 2008. Global Characterization of Fire Activity: Towards Defining Fire Regimes From Earth Observation Data. Global Change Biology, 14: 1488-1502. https://doi.org/10.1111/j.1365-2486.2008.01585.x
Cohen, W. B., Maierpserger, T. K., Gower, S. T., & Turner, D. P. 2003. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of Environment, 84: 561-571. https://doi.org/10.1016/S0034-4257(02)00173-6
Díaz-Delgado, R. & Pons, X., 2001. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: analysis of vegetation recovery after the fire. Forest Ecology and Management, 147: 67-74. https://doi.org/10.1016/S0378-1127(00)00434-5
Durá, E., Mendiguren, G., Pacheco, J., Martín, M. P., Ria-o, D., Iturrate, M., Gimeno, C. & Carrara, A., 2013. Validación de productos MODIS relacionados con la estimación de flujos de carbono en un ecosistema de dehesa. GeoFocus, 13(1): 291-310.
Fensholt, R., Sandholt, I. & Rasmussen, M. S., 2004. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment, 91: 490-507. https://doi.org/10.1016/j.rse.2004.04.009
Frazier, A. E., Renschler, C. S. & Miles, S. B., 2013. Evaluating post-disaster ecosystem resilience using MODIS GPP data. International Journal Applied Earth Observation, 21: 43-52. https://doi.org/10.1016/j.jag.2012.07.019
Gao, B.-C., 1996. NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation. Liquid Water From Space. Remote Sensing of Environment, 58: 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
Gilabert, M. A., González-Piqueras, J. & García-Haro, J., 1997. Acerca de los índices de vegetación. Revista de Teledetección, 8: 35-45.
Glenn, E., Huete, A. R., Nagler, P. L. & Nelson, S. G., 2008. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors, 8: 2136-2160. https://doi.org/10.3390/s8042136 PMid:27879814 PMCid:PMC3673410
Huete, A. R., 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of the Environment, 25: 295-309. https://doi.org/10.1016/0034-4257(88)90106-X
Iwata, H., Ueyama, M., Iwama, C. & Harazono Y., 2013. A variation in the fraction of absorbed photosynthetically active radiation and a comparison with MODIS data in burned black spruce forests of interior Alaska. Polar Science, 7: 113-124. https://doi.org/10.1016/j.polar.2013.03.004
Jones, H. G. & Vaughan, R. A., 2010. Remote sensing of vegetation. Principles, techniques and applications. New York, USA: Oxford University Press.
Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E. & El-Saleous, N., 2002. An overview of MODIS land data processing and product status. Remote Sensing of Environment, 83: 3-15. https://doi.org/10.1016/S0034-4257(02)00084-6
Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J. & Running, S. W., 1998. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal Geophysics Research, 103: 32257-32275. https://doi.org/10.1029/98JD02462
López, F., Cabrera, M. & Cuadrat, J. M., 2007. Atlas climático de Aragón. Gobierno de Aragón. ISBN 978-84-8380-071-3.
Mooney, H. A. & Hobbs, R. H., 1986. Resilience at the individual plant level. In: Dell, D., Hopkins, A.J.; Lamont, B.B. (eds) Resilience in Mediterrenean type ecosystems, 65-82 pp. La Haya. https://doi.org/10.1007/978-94-009-4822-8_5
Myneni, R., Knyazikhin, Y., Glassy, J., Votava, P. & Shabanov, N., 2003. FPAR, LAI (ESDT: MOD15A2) 8-day Composite NASA MODIS Land Algorithm, User's Guide. MODIS website.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y. Wang, Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R. & Running, S. W., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83: 214-231. https://doi.org/10.1016/S0034-4257(02)00074-3
Nemani, R., Pierce, L., Running, S. & Band, L., 1993. Forest ecosystem processes at the watershed scale: sensitivity to remotely sensed leaf-area index estimates. International Journal of Remote Sensing, 14 (13): 2519-2534. https://doi.org/10.1080/01431169308904290
Norman, J. M. & Campbell, G. S., 1989. Canopy structure, Plant Physiological Ecology: Field Methods and Instrumentation. R. W. Pearcy, et al., 301-326, Chapman and Hall. pp.: 301-326. New York.
Pausas, J. G., 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Climatic Change, 63: 337- 350. https://doi.org/10.1023/B:CLIM.0000018508.94901.9c
Pausas, J.G., 2012. Incendios forestales. Catarata y CSIC, 128 pp., Zaragoza.
Pérez-Cabello F., 2002. Paisajes forestales y fuego en el Prepirineo occidental oscense. Un modelo regional de reconstrucción ambiental. Serie Investigación 33. Publicaciones del Consejo de Protección de la Naturaleza de Aragón, 358 pp., Zaragoza.
Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M. T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio, R. & Palacios, V., 2012. Micro-scale post-fire surface cover changes monitored using high spatial resolution photography in a semiarid environment: A useful tool in the study of post-fire soil erosion processes. Journal of Arid Environments, 76: 88-96. https://doi.org/10.1016/j.jaridenv.2011.08.007
Romo Leon, J. R., van Leeuwen, W. J. D. & Casady, G. M., 2012. Using MODIS-NDVI for the Modeling of Post-Wildfire Vegetation Response as a Function of Environmental Conditions and Pre-Fire Restoration Treatments. Remote Sensing, 4(3): 598-621. https://doi.org/10.3390/rs4030598
Ruíz de la Torre, J. 1990a. Mapa forestal de Espa-a. Escala 1:200.000. Hoja 8-3. Huesca. Ministerio de Agricultura, Pesca y Alimentación. Madrid.
Ruíz de la Torre, J. 1990b. Mapa forestal de Espa-a. Escala 1:200.000. Hoja 7-4. Zaragoza. Ministerio de Agricultura, Pesca y Alimentación. Madrid.
Serbin, S. P., Ahl, D. E. & Gower, S. T., 2013. Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence. Remote Sensing of Environment, 133: 71-84. https://doi.org/10.1016/j.rse.2013.01.022
Steinberg, D. C., Goetz, S. J., & Hyer, E. J., 2006. Validation of MODIS FPAR products in boreal forests of Alaska. IEEE Transactions on Geoscience and Remote Sensing, 44: 1818-1828. https://doi.org/10.1109/TGRS.2005.862266
Tanase, M., de la Riva, R. R., Santoro, M., Pérez-Cabello, F. & Kasischke, E., 2011. Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sensing of Environment, 115: 2075-2085. https://doi.org/10.1016/j.rse.2011.04.009
Turner, D., Cohen, W., Kennedy, R., Fassnacht, K. & Briggs, J., 1999. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment, 70: 2-68. https://doi.org/10.1016/S0034-4257(99)00057-7
Vicente-Serrano, S. M., Pérez-Cabello, F. & Lasanta, T., 2011. Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images. International Journal of Wildland Fire, 20: 195-208. https://doi.org/10.1071/WF08203
Viedma, O., Melia, J., Segarra, D. & García-Haro, J., 1997. Modeling rates of ecosystem recovery after fires by using Landsat TM data. Remote Sensing of Environment, 61: 383-398. https://doi.org/10.1016/S0034-4257(97)00048-5
Villar, L., 1990. Vegetación. En: Mapa forestal de Espa-a. Escala 1:200.000. Hoja 7-4. Zaragoza, 53- 78 pp., ETSIM e ICONA. Madrid.
Yang, W. Z., Tan, B., Huang, D., Rautiainen, M., Shabanov, N. V., Wang, Y., et al., 2006. MODIS leaf area index products: From validation to algorithm improvement. IEEE Transactions on Geoscience and Remote Sensing, 44: 1885-1898. https://doi.org/10.1109/TGRS.2006.871215
Zarate-Valdez, J. L., Whiting, M. L., Lampinen, B. D., Metcalf, S., Ustin, SL. & Brown, P.H., 2012. Prediction of leaf area index in almonds by vegetation indexes. Computers and Electronics in Agriculture, 85: 24-32. https://doi.org/10.1016/j.compag.2012.03.009
https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266
doi:10.3989/Pirineos.2016.171003
op_rights Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/Pirineos.2016.171003
https://doi.org/10.3989/pirineos.2016.v171
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1023/B:CLIM.0000018508.94901.9c
https://doi.org
container_title Pirineos
container_volume 171
container_issue 0
container_start_page e019
_version_ 1766173485309100032
spelling ftjpirineos:oai:pirineos.revistas.csic.es:article/266 2023-05-15T18:02:49+02:00 LAI/fPAR levels on surfaces affected by forest fires in Aragón. A MODIS MCD15A2 analysis Niveles de LAI/fPAR en superficies afectadas por incendios forestales en Aragón. Análisis mediante el producto MCD15A2 DE MODIS Jiménez Ruano, Adrián Pérez-Cabello, Fernando Montorio Llovería, Raquel 2016-12-30 text/html application/pdf text/xml https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266 https://doi.org/10.3989/Pirineos.2016.171003 spa spa Consejo Superior de Investigaciones Científicas https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266/309 https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266/310 https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266/311 Chen, J. M. & Black, T. A., 1992. Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15 (4): 421-429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M. & Plummer, S. 1997. Leaf area index of boreal forests: Theory, techniques and measurements. Journal of Geophysical Research. Atmospheres, 102: 429-443. https://doi.org/10.1029/97JD01107 Chuvieco, E., Giglio, L. & Justice, C. O., 2008. Global Characterization of Fire Activity: Towards Defining Fire Regimes From Earth Observation Data. Global Change Biology, 14: 1488-1502. https://doi.org/10.1111/j.1365-2486.2008.01585.x Cohen, W. B., Maierpserger, T. K., Gower, S. T., & Turner, D. P. 2003. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of Environment, 84: 561-571. https://doi.org/10.1016/S0034-4257(02)00173-6 Díaz-Delgado, R. & Pons, X., 2001. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: analysis of vegetation recovery after the fire. Forest Ecology and Management, 147: 67-74. https://doi.org/10.1016/S0378-1127(00)00434-5 Durá, E., Mendiguren, G., Pacheco, J., Martín, M. P., Ria-o, D., Iturrate, M., Gimeno, C. & Carrara, A., 2013. Validación de productos MODIS relacionados con la estimación de flujos de carbono en un ecosistema de dehesa. GeoFocus, 13(1): 291-310. Fensholt, R., Sandholt, I. & Rasmussen, M. S., 2004. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment, 91: 490-507. https://doi.org/10.1016/j.rse.2004.04.009 Frazier, A. E., Renschler, C. S. & Miles, S. B., 2013. Evaluating post-disaster ecosystem resilience using MODIS GPP data. International Journal Applied Earth Observation, 21: 43-52. https://doi.org/10.1016/j.jag.2012.07.019 Gao, B.-C., 1996. NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation. Liquid Water From Space. Remote Sensing of Environment, 58: 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3 Gilabert, M. A., González-Piqueras, J. & García-Haro, J., 1997. Acerca de los índices de vegetación. Revista de Teledetección, 8: 35-45. Glenn, E., Huete, A. R., Nagler, P. L. & Nelson, S. G., 2008. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors, 8: 2136-2160. https://doi.org/10.3390/s8042136 PMid:27879814 PMCid:PMC3673410 Huete, A. R., 1988. A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of the Environment, 25: 295-309. https://doi.org/10.1016/0034-4257(88)90106-X Iwata, H., Ueyama, M., Iwama, C. & Harazono Y., 2013. A variation in the fraction of absorbed photosynthetically active radiation and a comparison with MODIS data in burned black spruce forests of interior Alaska. Polar Science, 7: 113-124. https://doi.org/10.1016/j.polar.2013.03.004 Jones, H. G. & Vaughan, R. A., 2010. Remote sensing of vegetation. Principles, techniques and applications. New York, USA: Oxford University Press. Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E. & El-Saleous, N., 2002. An overview of MODIS land data processing and product status. Remote Sensing of Environment, 83: 3-15. https://doi.org/10.1016/S0034-4257(02)00084-6 Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J. & Running, S. W., 1998. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal Geophysics Research, 103: 32257-32275. https://doi.org/10.1029/98JD02462 López, F., Cabrera, M. & Cuadrat, J. M., 2007. Atlas climático de Aragón. Gobierno de Aragón. ISBN 978-84-8380-071-3. Mooney, H. A. & Hobbs, R. H., 1986. Resilience at the individual plant level. In: Dell, D., Hopkins, A.J.; Lamont, B.B. (eds) Resilience in Mediterrenean type ecosystems, 65-82 pp. La Haya. https://doi.org/10.1007/978-94-009-4822-8_5 Myneni, R., Knyazikhin, Y., Glassy, J., Votava, P. & Shabanov, N., 2003. FPAR, LAI (ESDT: MOD15A2) 8-day Composite NASA MODIS Land Algorithm, User's Guide. MODIS website. Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y. Wang, Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R. & Running, S. W., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83: 214-231. https://doi.org/10.1016/S0034-4257(02)00074-3 Nemani, R., Pierce, L., Running, S. & Band, L., 1993. Forest ecosystem processes at the watershed scale: sensitivity to remotely sensed leaf-area index estimates. International Journal of Remote Sensing, 14 (13): 2519-2534. https://doi.org/10.1080/01431169308904290 Norman, J. M. & Campbell, G. S., 1989. Canopy structure, Plant Physiological Ecology: Field Methods and Instrumentation. R. W. Pearcy, et al., 301-326, Chapman and Hall. pp.: 301-326. New York. Pausas, J. G., 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Climatic Change, 63: 337- 350. https://doi.org/10.1023/B:CLIM.0000018508.94901.9c Pausas, J.G., 2012. Incendios forestales. Catarata y CSIC, 128 pp., Zaragoza. Pérez-Cabello F., 2002. Paisajes forestales y fuego en el Prepirineo occidental oscense. Un modelo regional de reconstrucción ambiental. Serie Investigación 33. Publicaciones del Consejo de Protección de la Naturaleza de Aragón, 358 pp., Zaragoza. Pérez-Cabello, F., Cerdà, A., de la Riva, J., Echeverría, M. T., García-Martín, A., Ibarra, P., Lasanta, T., Montorio, R. & Palacios, V., 2012. Micro-scale post-fire surface cover changes monitored using high spatial resolution photography in a semiarid environment: A useful tool in the study of post-fire soil erosion processes. Journal of Arid Environments, 76: 88-96. https://doi.org/10.1016/j.jaridenv.2011.08.007 Romo Leon, J. R., van Leeuwen, W. J. D. & Casady, G. M., 2012. Using MODIS-NDVI for the Modeling of Post-Wildfire Vegetation Response as a Function of Environmental Conditions and Pre-Fire Restoration Treatments. Remote Sensing, 4(3): 598-621. https://doi.org/10.3390/rs4030598 Ruíz de la Torre, J. 1990a. Mapa forestal de Espa-a. Escala 1:200.000. Hoja 8-3. Huesca. Ministerio de Agricultura, Pesca y Alimentación. Madrid. Ruíz de la Torre, J. 1990b. Mapa forestal de Espa-a. Escala 1:200.000. Hoja 7-4. Zaragoza. Ministerio de Agricultura, Pesca y Alimentación. Madrid. Serbin, S. P., Ahl, D. E. & Gower, S. T., 2013. Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence. Remote Sensing of Environment, 133: 71-84. https://doi.org/10.1016/j.rse.2013.01.022 Steinberg, D. C., Goetz, S. J., & Hyer, E. J., 2006. Validation of MODIS FPAR products in boreal forests of Alaska. IEEE Transactions on Geoscience and Remote Sensing, 44: 1818-1828. https://doi.org/10.1109/TGRS.2005.862266 Tanase, M., de la Riva, R. R., Santoro, M., Pérez-Cabello, F. & Kasischke, E., 2011. Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sensing of Environment, 115: 2075-2085. https://doi.org/10.1016/j.rse.2011.04.009 Turner, D., Cohen, W., Kennedy, R., Fassnacht, K. & Briggs, J., 1999. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment, 70: 2-68. https://doi.org/10.1016/S0034-4257(99)00057-7 Vicente-Serrano, S. M., Pérez-Cabello, F. & Lasanta, T., 2011. Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images. International Journal of Wildland Fire, 20: 195-208. https://doi.org/10.1071/WF08203 Viedma, O., Melia, J., Segarra, D. & García-Haro, J., 1997. Modeling rates of ecosystem recovery after fires by using Landsat TM data. Remote Sensing of Environment, 61: 383-398. https://doi.org/10.1016/S0034-4257(97)00048-5 Villar, L., 1990. Vegetación. En: Mapa forestal de Espa-a. Escala 1:200.000. Hoja 7-4. Zaragoza, 53- 78 pp., ETSIM e ICONA. Madrid. Yang, W. Z., Tan, B., Huang, D., Rautiainen, M., Shabanov, N. V., Wang, Y., et al., 2006. MODIS leaf area index products: From validation to algorithm improvement. IEEE Transactions on Geoscience and Remote Sensing, 44: 1885-1898. https://doi.org/10.1109/TGRS.2006.871215 Zarate-Valdez, J. L., Whiting, M. L., Lampinen, B. D., Metcalf, S., Ustin, SL. & Brown, P.H., 2012. Prediction of leaf area index in almonds by vegetation indexes. Computers and Electronics in Agriculture, 85: 24-32. https://doi.org/10.1016/j.compag.2012.03.009 https://pirineos.revistas.csic.es/index.php/pirineos/article/view/266 doi:10.3989/Pirineos.2016.171003 Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Pirineos; Vol. 171 (2016); e019 1988-4281 0373-2568 10.3989/pirineos.2016.v171 Wildfire LAI fPAR MODIS Aragón Incendio forestal info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2016 ftjpirineos https://doi.org/10.3989/Pirineos.2016.171003 https://doi.org/10.3989/pirineos.2016.v171 https://doi.org/10.1016/S0034-4257(96)00067-3 https://doi.org/10.1016/0034-4257(88)90106-X https://doi.org/10.1023/B:CLIM.0000018508.94901.9c https://doi.org 2022-02-22T15:47:42Z The Leaf area index (LAI) and the Fractional Photosynthetically Active Radiation (fPAR) are variables related to the structure of the plant canopy that can provide new keys for the understanding of post-fire vegetation processes. In this context, the objective of this work is to characterize different burned areas in Aragon using the MDC15A2 (LAI/fPAR) product from MODIS. There are two different types of analysis: (1) static analysis of LAI/ fPAR values from the compound of 2010; (2) multi-year follow-up in 6 large fires occurred in the 2000s, representa difetive of different environmental conditions. The methodological process is based on the selection of 18 forest fires (> 500 ha, occurred between 1975-2010) with digital cartography available; and the download of the product MCD13A2 MODIS (seasonal compounds of 8 days, first week of May and September). A temporal pattern of recovery in the values of LAI has been identified. Fires occurred more than 35 years ago have average LAI values > 1 (1.13/1.40, in September and May respectively), and low values of fPAR (~ 0.5). Meanwhile, a year after the fire LAI/fPAR average values do not exceed 0.20/0.40, respectively. On the other hand, a few months after the fire average LAI values < 0.25 have been observed. In general terms, the MODIS MDC15A2 (LAI/ fPAR) product features an enormous potential in the cartographic analysis of the biological processes of burned areas, despite the problems of interpretation derived from the spatial resolution of the product. El índice de área foliar (LAI) y la fracción de radiación activa fotosintética absorbida por la vegetación (fPAR) son variables relacionadas con la estructura del dosel vegetal que pueden aportar nuevas claves en la comprensión del proceso de regeneración vegetal en zonas quemadas. En este contexto, el objetivo del trabajo es caracterizar diferentes superficies quemadas en Aragón en función del producto MDC15A2 (LAI/fPAR) de MODIS. Se realizan dos tipos diferentes de análisis: (1) análisis estático de los valores de LAI/fPAR a partir del compuesto de 2010; (2) seguimiento multianual en 6 grandes incendios ocurridos en la década de los 2000, representativos de condiciones ambientales diferentes. El proceso metodológico se basa en la selección de 18 incendios forestales (> 500 ha, ocurridos entre 1975-2010) que dispusieran de la cartografía digital; y en la descarga del producto MCD13A2 de MODIS (compuestos estacionales de 8 días, primera semana de mayo y septiembre). Se ha identificado un patrón temporal de recuperación en los valores de LAI. En incendios ocurridos hace más de 35 años se recogen valores promedio de LAI >1 (1,13/1,40, en septiembre y mayo respectivamente), y valores de fPAR bajos (~ 0,5). Mientras, un año después del fuego los valores promedio de LAI/fPAR no superan el 0,20/0,40, respectivamente. Por otro lado, unos meses tras el fuego se han registrado valores promedio de LAI Article in Journal/Newspaper Polar Science Polar Science Pirineos (E-Journal) Bajos ENVELOPE(-56.317,-56.317,-63.467,-63.467) Pirineos 171 0 e019