Organic carbon mobilization by different erosive processes in the slope-channel connection

With the purpose of analysing the type (labile or stable) and quantity of organic carbon (OC) mobilized by different erosive processes identified at the slope-bed connection, the erosion deposits of gullies, sheet erosion, bank erosion and tillage erosion were studied in a small catchment (10 ha) an...

Full description

Bibliographic Details
Published in:Pirineos
Main Authors: Nadeu, E., Boix-Fayos, C., de Vente, J., López, J., Martínez-Mena, M.
Format: Article in Journal/Newspaper
Language:Spanish
Published: Consejo Superior de Investigaciones Científicas 2010
Subjects:
Online Access:https://pirineos.revistas.csic.es/index.php/pirineos/article/view/100
https://doi.org/10.3989/Pirineos.2010.165008
id ftjpirineos:oai:pirineos.revistas.csic.es:article/100
record_format openpolar
institution Open Polar
collection Pirineos
op_collection_id ftjpirineos
language Spanish
topic Erosion processes
soil organic carbon
enrichment ratio
catchment
slope-bed connection
Procesos erosivos
carbono orgánico del suelo
razón de enriquecimiento
cuenca
conexión ladera-cauce
spellingShingle Erosion processes
soil organic carbon
enrichment ratio
catchment
slope-bed connection
Procesos erosivos
carbono orgánico del suelo
razón de enriquecimiento
cuenca
conexión ladera-cauce
Nadeu, E.
Boix-Fayos, C.
de Vente, J.
López, J.
Martínez-Mena, M.
Organic carbon mobilization by different erosive processes in the slope-channel connection
topic_facet Erosion processes
soil organic carbon
enrichment ratio
catchment
slope-bed connection
Procesos erosivos
carbono orgánico del suelo
razón de enriquecimiento
cuenca
conexión ladera-cauce
description With the purpose of analysing the type (labile or stable) and quantity of organic carbon (OC) mobilized by different erosive processes identified at the slope-bed connection, the erosion deposits of gullies, sheet erosion, bank erosion and tillage erosion were studied in a small catchment (10 ha) and compared to the characteristics of the catchment soils. Selectivity upon soil detachment and transport was associated to different OC content and types in the erosion deposits. Enrichment ratios of organic carbon sediment/soil were low (~0,40 ± 0,26), even though a slight enrichment was described for fine particles (positively correlated to CO). These results were attributed to mineralization processes prevailing over OC burial in a very active channel where depositional sites are scarce. Con el fin de caracterizar la cantidad y tipo (lábil o recalcitrante) de carbono orgánico (CO) movilizado por distintos procesos erosivos identificados en las conexiones ladera-cauce, se estudiaron las características de los depósitos de erosión concentrada en cárcavas, erosión hídrica laminar, erosión lateral-gravitacional y erosión por laboreo en el contacto ladera-cauce de una cuenca de pequeño tamaño (10 ha) y se relacionaron con las características de los suelos-fuentes originales de donde procedían. La selectividad en el arranque y transporte de suelo de los distintos procesos se pudo asociar a diferentes contenidos y tipos de CO en los depósitos. Las razones de enriquecimiento de carbono orgánico sedimento/suelo fueron bajas (~0,40 ± 0,26), a pesar de haber un ligero enriquecimiento en partículas finas (correlacionadas positivamente con el CO) en los depósitos. Todo ello se atribuyó a los efectos de la mineralización en un cauce muy activo con pocas zonas de deposición y abundantes procesos de erosión no selectiva.
format Article in Journal/Newspaper
author Nadeu, E.
Boix-Fayos, C.
de Vente, J.
López, J.
Martínez-Mena, M.
author_facet Nadeu, E.
Boix-Fayos, C.
de Vente, J.
López, J.
Martínez-Mena, M.
author_sort Nadeu, E.
title Organic carbon mobilization by different erosive processes in the slope-channel connection
title_short Organic carbon mobilization by different erosive processes in the slope-channel connection
title_full Organic carbon mobilization by different erosive processes in the slope-channel connection
title_fullStr Organic carbon mobilization by different erosive processes in the slope-channel connection
title_full_unstemmed Organic carbon mobilization by different erosive processes in the slope-channel connection
title_sort organic carbon mobilization by different erosive processes in the slope-channel connection
publisher Consejo Superior de Investigaciones Científicas
publishDate 2010
url https://pirineos.revistas.csic.es/index.php/pirineos/article/view/100
https://doi.org/10.3989/Pirineos.2010.165008
genre Polar Science
Polar Science
genre_facet Polar Science
Polar Science
op_source Pirineos; Vol. 165 (2010); 157-177
1988-4281
0373-2568
10.3989/pirineos.2010.v165
op_relation https://pirineos.revistas.csic.es/index.php/pirineos/article/view/100/100
Avnimelech, Y. & Mchenry, J. R. (1984). Enrichment Of Transported Sediments With Organic Carbon, Nutrients And Clay. Soil Science Society Of America Journal 48(2): 259-266.
Berhe, A. A., Harden, J. W., Torn, M. S. & Harte, J. (2008). Linking Soil Organic Matter Dynamics And Erosion-Induced Terrestrial Carbon Sequestration At Different Landform Positions. Journal Of Geophysical Research 113(4): Art. No. G04039. doi:10.1029/2008JG000751
Berhe, A. A., Harte, J., Harden, J. W. & Torn, M. S. (2007). The Significance Of The Erosion-Induced Terrestrial Carbon Sink. Bioscience 57(4): 337-346. doi:10.1641/B570408
Boix-Fayos, C., De Vente, J., Albaladejo, J. & Martínez-Mena, M. (2009). Soil Carbon Erosion And Stock As Affected By Land Use Changes At The Catchment Scale In Mediterranean Ecosystems. Agriculture, Ecosystems & Environment 133(1-2): 75-85. doi:10.1016/j.agee.2009.05.013
Cambardella, C.A. & Elliot, E.T. (1992). Particulate Organic Matter Changes Across A Grassland Cultivation Sequence. Soil Science Society Of America Journal 56(3): 777-783.
Castillo, V. M., Martinez-Mena, M. & Albaladejo, J. (1997). Runoff And Soil Loss Response To Vegetation Removal In A Semiarid Environment. Soil Science Society Of America Journal 61(4): 1116-1121.
De Vente, J., Poesen, J., Arabkhedri, M. & Verstraeten, G. (2007). The Sediment Delivery Problem Revisited. Progress In Physical Geography 31(2): 155-178. doi:10.1177/0309133307076485
Del Galdo, I., Six, J., Peressotti, A. & Cotrufo, M. F. (2003). Assessing The Impact Of Land-Use Change On Soil C Sequestration In Agricultural Soils By Means Of Organic Matter Fractionation And Stable C Isotopes. Global Change Biology 9(8): 1204-1213. doi:10.1046/j.1365-2486.2003.00657.x
Gregorich, E. G., Greer, K. J., Anderson, D. W. & Liang, B. C. (1998). Carbon Distribution And Losses: Erosion And Deposition Effects. Soil And Tillage Research 47(3-4): 291-302. doi:10.1016/S0167-1987(98)00117-2
Haregeweyn, N., Poesen, J., Deckers, J., Nyssen, J., Haile, M., Govers, G., Verstraeten, G. & Moeyersons, J. (2008). Sedimentbound Nutrient Export From Micro-Dam Catchments In Northern Ethiopia. Land Degradation & Development 19(2): 136-152. doi:10.1002/ldr.830
Jacinthe, P. A., Lal, R., Owens, L. B. & Hothem, D. L. (2004). Transport Of Labile Carbon In Runoff As Affected By Land Use And Rainfall Characteristics. Soil And Tillage Research 77(2): 111-123. doi:10.1016/j.still.2003.11.004
Jin, K., Cornelis, W. M., Gabriels, D., Baert, M., Wu, H. J., Schiettecatte, W., Cai, D. X., De Neve, S., Jin, J. Y., Hartmann, R. & Hofman, G. (2009). Residue Cover And Rainfall Intensity Effects On Runoff Soil Organic Carbon Losses. Catena 78(1): 81-86. doi:10.1016/j.catena.2009.03.001
Lal, R. (2003). Soil Erosion And The Global Carbon Budget. Environment International 29(4): 437-450. doi:10.1016/S0160-4120(02)00192-7
Lal, R. (2002). Soil Carbon Dynamics In Cropland And Rangeland. Environmental Pollution 116(3): 353-362. doi:10.1016/S0269-7491(01)00211-1
Lal, R. (Ed) (2001). Assessment Methods For Soil Carbon. Advances In Soil Science. Crc Press, 403-416 Pp. Boca Raton, Fl.
Liu, S. G., Bliss, N., Sundquist, E. & Huntington, T. G. (2003). Modeling Carbon Dynamics In Vegetation And Soil Under The Impact Of Soil Erosion And Deposition. Global Biogeochemical Cycles 17(2): 1074. doi:10.1029/2002GB002010
Martinez-Mena, M., López, J., Almagro, M., Boix-Fayos, C. & Albaladejo, J. (2008). Effect Of Water Erosion And Cultivation On The Soil Carbon Stock In A Semiarid Area Of South-East Spain. Soil And Tillage Research 99(1): 119-129. doi:10.1016/j.still.2008.01.009
Morari, F., Lugato, E., Berti, A. & Giardini, L. (2006). Long-Term Effects Of Recommended Management Practices On Soil Carbon Changes And Sequestration In North-Eastern Italy. Soil Use And Management 22(1): 71-81. doi:10.1111/j.1475-2743.2005.00006.x
Ohtsuka, T., Hirota, M., Zhang, X., Shimono, A., Senga, Y., Du, M., Yonemura, S., Kawashima, S. & Tang, Y. (2008). Soil Organic Carbon Pools In Alpine To Nival Zones Along An Altitudinal Gradient (4400- 5300 M) On The Tibetan Plateau. Polar Science 2(4): 277-285. doi:10.1016/j.polar.2008.08.003
Owens, L. B., Malone, R. W., Hothem, D. L., Starr, G. C. & Lal, R. (2002). Sediment Carbon Concentration And Transport From Small Watersheds Under Various Conservation Tillage Practices. Soil And Tillage Research 67(1): 65-73. doi:10.1016/S0167-1987(02)00031-4
Polyakov, V. O. & Lal, R. (2004). Soil Erosion And Carbon Dynamics Under Simulated Rainfall. Soil Science 169(8): 590-599. doi:10.1097/01.ss.0000138414.84427.40
Post, W. M. & Kwon, K. C. (2000). Soil Carbon Sequestration And Land-Use Change: Processes And Potential. Global Change Biology 6(3): 317-327. doi:10.1046/j.1365-2486.2000.00308.x
Quinton, J. N., Catt, J. A., Wood, G. A. & Steer, J. (2006). Soil Carbon Losses By Water Erosion: Experimentation And Modeling At Field And National Scales In The Uk. Agriculture, Ecosystems & Environment 112(1): 87- 102. doi:10.1016/j.agee.2005.07.005
Rhoton, F. E., Emmerich, W. E., Goodrich, D. C., Miller, S. N. & Mcchesney, D. S. (2006). Soil Geomorphological Characteristics Of A Semiarid Watershed: Influence On Carbon Distribution And Transport. Soil Science Society Of America Journal 70(5): 1532-1540. doi:10.2136/sssaj2005.0239
Ritchie, J. C., Mccarty, G. W., Venteris, E. R. & Kaspar, T. C. (2007). Soil And Soil Organic Carbon Redistribution On The Landscape. Geomorphology 89(1-2): 163-171. doi:10.1016/j.geomorph.2006.07.021
Rodriguez, A. R., Guerra, A., Arbelo, C., Mora, J. L., Gorrin, S. P. & Armas, C. (2004). Forms Of Eroded Soil Organic Carbon In Andosols Of The Canary Islands (Spain). Geoderma 121(3-4): 205-219. doi:10.1016/j.geoderma.2003.11.009
Roose, E. J. L., R.; Feller, C.; Barthès, B.; Stewart, B.A. (2006), Soil Erosion And Carbon Dynamics, Crc Press, 376 Pp, Boca Raton, Fl.
Schiettecatte, W., Gabriels, D., Cornelis, W. M. & Hofman, G. (2008a). Enrichment Of Organic Carbon In Sediment Transport By Interrill And Rill Erosion Processes. Soil Science Society Of America Journal 72(1): 50- 55. doi:10.2136/sssaj2007.0201
Schiettecatte, W., Gabriels, D., Cornelis, W. M. & Hofman, G. (2008b). Impact Of Deposition On The Enrichment Of Organic Carbon In Eroded Sediment. Catena 72(3): 340-347. doi:10.1016/j.catena.2007.07.001
Schlesinger, W. H. & Melack, J. M. (1981). Transport Of Organic Carbon In The World’S Rivers. Tellus 33(2): 172-187. doi:10.1111/j.2153-3490.1981.tb01742.x
Smith, S. V., Bullock, S. H., Hinojosa-Corona, A., Francovizcaino, E., Escoto-Rodriguez, M., Kretzschmar, T. G., Farfan, L. M. & Salazar-Cesena, J. M. (2007). Soil Erosion And Significance For Carbon Fluxes In A Mountainous Mediterranean-Climate Watershed. Ecological Applications 17(5): 1379-1387. doi:10.1890/06-0615.1 PMid:17708215
Smith, S. V., Renwick, W. H., Buddemeier, R. W. & Crossland, C. J. (2001). Budgets Of Soil Erosion And Deposition For Sediments And Sedimentary Organic Carbon Across The Conterminous United States. Global Biogeochemical Cycles 15(3): 697-707. doi:10.1029/2000GB001341
Stallard, R. F. (1998). Terrestrial Sedimentation And The Carbon Cycle: Coupling Weathering And Erosion To Carbon Burial. Global Biogeochemical Cycles 12(2): 231-257. doi:10.1029/98GB00741
Stoltenberg, N. L. & White, J. L. (1953). Selective Loss Of Plant Nutrients By Erosion. Soil Science Society Of America Journal 17(4): 406-410.
Strickland, T. C., Truman, C. C. & Frauenfeld, B. (2005). Variable Rainfall Intensity Effects On Carbon Characteristics Of Eroded Sediments From Two Coastal Plain Ultisols In Georgia. Journal Of Soil And Water Conservation 60(3): 142-148.
Van Oost, K., Govers, G., Quine, T. A., Heckrath, G., Olesen, J. E., De Gryze, S. & Merckx, R. (2005). Landscape-Scale Modeling Of Carbon Cycling Under The Impact Of Soil Redistribution: The Role Of Tillage Erosion. Global Biogeochemical Cycles 19(4): Gb4014, doi:10.1029/2005GB002471
Walling, D. E. (1983). The Sediment Delivery Problem. Journal Of Hydrology 65(1-3): 209-237. doi:10.1016/0022-1694(83)90217-2
Wei, J. B., Xiao, D. N., Zeng, H. & Fu, Y. K. (2008). Spatial Variability Of Soil Properties In Relation To Land Use And Topography In A Typical Small Watershed Of The Black Soil Region, Northeastern China. Environmental Geology 53(8): 1663-1672. doi:10.1007/s00254-007-0773-z
Weigand, S., Schimmack, W. & Auerswald, K. (1998). The Enrichment Of 137cs In The Soil Loss From Small Agricultural Watersheds. Journal Of Plant Nutrition And Soil Science 161(4): 479-484.
Wu, H. B., Guo, Z. T. & Peng, C. H. (2003). Land Use Induced Changes Of Organic Carbon Storage In Soils Of China. Global Change Biology 9(3): 305- 315. doi:10.1046/j.1365-2486.2003.00590.x
Yeomans, J.C. & Bremner, J.M. (1988). A Rapid And Precise Method For Routine Determination Of Organic Carbon In Soil. Communications In Soil Science & Plant Analysis 19(13): 1467-1476. doi:10.1080/00103628809368027
Yoo, K. (2005). Erosion Of Upland Hillslope Soil Organic Carbon: Coupling Field Measurements With A Sediment Transport Model. Global Biogeochemical Cycles 19(3): No. Art. Gb3003.
Zhang, J. H., Quine, T. A., Ni, S. J. & Ge, F. L. (2006). Stocks And Dynamics Of Soc In Relation To Soil Redistribution By Water And Tillage Erosion. Global Change Biology 12(10): 1834-1841. doi:10.1111/j.1365-2486.2006.01206.x
https://pirineos.revistas.csic.es/index.php/pirineos/article/view/100
doi:10.3989/Pirineos.2010.165008
op_rights Derechos de autor 2010 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_doi https://doi.org/10.3989/Pirineos.2010.16500810.3989/pirineos.2010.v16510.1016/S0160-4120(02)00192-710.1016/S0269-7491(01)00211-110.1029/98GB0074110.1016/0022-1694(83)90217-2
container_title Pirineos
container_volume 165
container_issue 0
container_start_page 157
op_container_end_page 177
_version_ 1802649348648992768
spelling ftjpirineos:oai:pirineos.revistas.csic.es:article/100 2024-06-23T07:56:20+00:00 Organic carbon mobilization by different erosive processes in the slope-channel connection Movilización de carbono orgánico por distintos procesos erosivos en la conexión ladera-cauce Nadeu, E. Boix-Fayos, C. de Vente, J. López, J. Martínez-Mena, M. 2010-12-30 application/pdf https://pirineos.revistas.csic.es/index.php/pirineos/article/view/100 https://doi.org/10.3989/Pirineos.2010.165008 spa spa Consejo Superior de Investigaciones Científicas https://pirineos.revistas.csic.es/index.php/pirineos/article/view/100/100 Avnimelech, Y. & Mchenry, J. R. (1984). Enrichment Of Transported Sediments With Organic Carbon, Nutrients And Clay. Soil Science Society Of America Journal 48(2): 259-266. Berhe, A. A., Harden, J. W., Torn, M. S. & Harte, J. (2008). Linking Soil Organic Matter Dynamics And Erosion-Induced Terrestrial Carbon Sequestration At Different Landform Positions. Journal Of Geophysical Research 113(4): Art. No. G04039. doi:10.1029/2008JG000751 Berhe, A. A., Harte, J., Harden, J. W. & Torn, M. S. (2007). The Significance Of The Erosion-Induced Terrestrial Carbon Sink. Bioscience 57(4): 337-346. doi:10.1641/B570408 Boix-Fayos, C., De Vente, J., Albaladejo, J. & Martínez-Mena, M. (2009). Soil Carbon Erosion And Stock As Affected By Land Use Changes At The Catchment Scale In Mediterranean Ecosystems. Agriculture, Ecosystems & Environment 133(1-2): 75-85. doi:10.1016/j.agee.2009.05.013 Cambardella, C.A. & Elliot, E.T. (1992). Particulate Organic Matter Changes Across A Grassland Cultivation Sequence. Soil Science Society Of America Journal 56(3): 777-783. Castillo, V. M., Martinez-Mena, M. & Albaladejo, J. (1997). Runoff And Soil Loss Response To Vegetation Removal In A Semiarid Environment. Soil Science Society Of America Journal 61(4): 1116-1121. De Vente, J., Poesen, J., Arabkhedri, M. & Verstraeten, G. (2007). The Sediment Delivery Problem Revisited. Progress In Physical Geography 31(2): 155-178. doi:10.1177/0309133307076485 Del Galdo, I., Six, J., Peressotti, A. & Cotrufo, M. F. (2003). Assessing The Impact Of Land-Use Change On Soil C Sequestration In Agricultural Soils By Means Of Organic Matter Fractionation And Stable C Isotopes. Global Change Biology 9(8): 1204-1213. doi:10.1046/j.1365-2486.2003.00657.x Gregorich, E. G., Greer, K. J., Anderson, D. W. & Liang, B. C. (1998). Carbon Distribution And Losses: Erosion And Deposition Effects. Soil And Tillage Research 47(3-4): 291-302. doi:10.1016/S0167-1987(98)00117-2 Haregeweyn, N., Poesen, J., Deckers, J., Nyssen, J., Haile, M., Govers, G., Verstraeten, G. & Moeyersons, J. (2008). Sedimentbound Nutrient Export From Micro-Dam Catchments In Northern Ethiopia. Land Degradation & Development 19(2): 136-152. doi:10.1002/ldr.830 Jacinthe, P. A., Lal, R., Owens, L. B. & Hothem, D. L. (2004). Transport Of Labile Carbon In Runoff As Affected By Land Use And Rainfall Characteristics. Soil And Tillage Research 77(2): 111-123. doi:10.1016/j.still.2003.11.004 Jin, K., Cornelis, W. M., Gabriels, D., Baert, M., Wu, H. J., Schiettecatte, W., Cai, D. X., De Neve, S., Jin, J. Y., Hartmann, R. & Hofman, G. (2009). Residue Cover And Rainfall Intensity Effects On Runoff Soil Organic Carbon Losses. Catena 78(1): 81-86. doi:10.1016/j.catena.2009.03.001 Lal, R. (2003). Soil Erosion And The Global Carbon Budget. Environment International 29(4): 437-450. doi:10.1016/S0160-4120(02)00192-7 Lal, R. (2002). Soil Carbon Dynamics In Cropland And Rangeland. Environmental Pollution 116(3): 353-362. doi:10.1016/S0269-7491(01)00211-1 Lal, R. (Ed) (2001). Assessment Methods For Soil Carbon. Advances In Soil Science. Crc Press, 403-416 Pp. Boca Raton, Fl. Liu, S. G., Bliss, N., Sundquist, E. & Huntington, T. G. (2003). Modeling Carbon Dynamics In Vegetation And Soil Under The Impact Of Soil Erosion And Deposition. Global Biogeochemical Cycles 17(2): 1074. doi:10.1029/2002GB002010 Martinez-Mena, M., López, J., Almagro, M., Boix-Fayos, C. & Albaladejo, J. (2008). Effect Of Water Erosion And Cultivation On The Soil Carbon Stock In A Semiarid Area Of South-East Spain. Soil And Tillage Research 99(1): 119-129. doi:10.1016/j.still.2008.01.009 Morari, F., Lugato, E., Berti, A. & Giardini, L. (2006). Long-Term Effects Of Recommended Management Practices On Soil Carbon Changes And Sequestration In North-Eastern Italy. Soil Use And Management 22(1): 71-81. doi:10.1111/j.1475-2743.2005.00006.x Ohtsuka, T., Hirota, M., Zhang, X., Shimono, A., Senga, Y., Du, M., Yonemura, S., Kawashima, S. & Tang, Y. (2008). Soil Organic Carbon Pools In Alpine To Nival Zones Along An Altitudinal Gradient (4400- 5300 M) On The Tibetan Plateau. Polar Science 2(4): 277-285. doi:10.1016/j.polar.2008.08.003 Owens, L. B., Malone, R. W., Hothem, D. L., Starr, G. C. & Lal, R. (2002). Sediment Carbon Concentration And Transport From Small Watersheds Under Various Conservation Tillage Practices. Soil And Tillage Research 67(1): 65-73. doi:10.1016/S0167-1987(02)00031-4 Polyakov, V. O. & Lal, R. (2004). Soil Erosion And Carbon Dynamics Under Simulated Rainfall. Soil Science 169(8): 590-599. doi:10.1097/01.ss.0000138414.84427.40 Post, W. M. & Kwon, K. C. (2000). Soil Carbon Sequestration And Land-Use Change: Processes And Potential. Global Change Biology 6(3): 317-327. doi:10.1046/j.1365-2486.2000.00308.x Quinton, J. N., Catt, J. A., Wood, G. A. & Steer, J. (2006). Soil Carbon Losses By Water Erosion: Experimentation And Modeling At Field And National Scales In The Uk. Agriculture, Ecosystems & Environment 112(1): 87- 102. doi:10.1016/j.agee.2005.07.005 Rhoton, F. E., Emmerich, W. E., Goodrich, D. C., Miller, S. N. & Mcchesney, D. S. (2006). Soil Geomorphological Characteristics Of A Semiarid Watershed: Influence On Carbon Distribution And Transport. Soil Science Society Of America Journal 70(5): 1532-1540. doi:10.2136/sssaj2005.0239 Ritchie, J. C., Mccarty, G. W., Venteris, E. R. & Kaspar, T. C. (2007). Soil And Soil Organic Carbon Redistribution On The Landscape. Geomorphology 89(1-2): 163-171. doi:10.1016/j.geomorph.2006.07.021 Rodriguez, A. R., Guerra, A., Arbelo, C., Mora, J. L., Gorrin, S. P. & Armas, C. (2004). Forms Of Eroded Soil Organic Carbon In Andosols Of The Canary Islands (Spain). Geoderma 121(3-4): 205-219. doi:10.1016/j.geoderma.2003.11.009 Roose, E. J. L., R.; Feller, C.; Barthès, B.; Stewart, B.A. (2006), Soil Erosion And Carbon Dynamics, Crc Press, 376 Pp, Boca Raton, Fl. Schiettecatte, W., Gabriels, D., Cornelis, W. M. & Hofman, G. (2008a). Enrichment Of Organic Carbon In Sediment Transport By Interrill And Rill Erosion Processes. Soil Science Society Of America Journal 72(1): 50- 55. doi:10.2136/sssaj2007.0201 Schiettecatte, W., Gabriels, D., Cornelis, W. M. & Hofman, G. (2008b). Impact Of Deposition On The Enrichment Of Organic Carbon In Eroded Sediment. Catena 72(3): 340-347. doi:10.1016/j.catena.2007.07.001 Schlesinger, W. H. & Melack, J. M. (1981). Transport Of Organic Carbon In The World’S Rivers. Tellus 33(2): 172-187. doi:10.1111/j.2153-3490.1981.tb01742.x Smith, S. V., Bullock, S. H., Hinojosa-Corona, A., Francovizcaino, E., Escoto-Rodriguez, M., Kretzschmar, T. G., Farfan, L. M. & Salazar-Cesena, J. M. (2007). Soil Erosion And Significance For Carbon Fluxes In A Mountainous Mediterranean-Climate Watershed. Ecological Applications 17(5): 1379-1387. doi:10.1890/06-0615.1 PMid:17708215 Smith, S. V., Renwick, W. H., Buddemeier, R. W. & Crossland, C. J. (2001). Budgets Of Soil Erosion And Deposition For Sediments And Sedimentary Organic Carbon Across The Conterminous United States. Global Biogeochemical Cycles 15(3): 697-707. doi:10.1029/2000GB001341 Stallard, R. F. (1998). Terrestrial Sedimentation And The Carbon Cycle: Coupling Weathering And Erosion To Carbon Burial. Global Biogeochemical Cycles 12(2): 231-257. doi:10.1029/98GB00741 Stoltenberg, N. L. & White, J. L. (1953). Selective Loss Of Plant Nutrients By Erosion. Soil Science Society Of America Journal 17(4): 406-410. Strickland, T. C., Truman, C. C. & Frauenfeld, B. (2005). Variable Rainfall Intensity Effects On Carbon Characteristics Of Eroded Sediments From Two Coastal Plain Ultisols In Georgia. Journal Of Soil And Water Conservation 60(3): 142-148. Van Oost, K., Govers, G., Quine, T. A., Heckrath, G., Olesen, J. E., De Gryze, S. & Merckx, R. (2005). Landscape-Scale Modeling Of Carbon Cycling Under The Impact Of Soil Redistribution: The Role Of Tillage Erosion. Global Biogeochemical Cycles 19(4): Gb4014, doi:10.1029/2005GB002471 Walling, D. E. (1983). The Sediment Delivery Problem. Journal Of Hydrology 65(1-3): 209-237. doi:10.1016/0022-1694(83)90217-2 Wei, J. B., Xiao, D. N., Zeng, H. & Fu, Y. K. (2008). Spatial Variability Of Soil Properties In Relation To Land Use And Topography In A Typical Small Watershed Of The Black Soil Region, Northeastern China. Environmental Geology 53(8): 1663-1672. doi:10.1007/s00254-007-0773-z Weigand, S., Schimmack, W. & Auerswald, K. (1998). The Enrichment Of 137cs In The Soil Loss From Small Agricultural Watersheds. Journal Of Plant Nutrition And Soil Science 161(4): 479-484. Wu, H. B., Guo, Z. T. & Peng, C. H. (2003). Land Use Induced Changes Of Organic Carbon Storage In Soils Of China. Global Change Biology 9(3): 305- 315. doi:10.1046/j.1365-2486.2003.00590.x Yeomans, J.C. & Bremner, J.M. (1988). A Rapid And Precise Method For Routine Determination Of Organic Carbon In Soil. Communications In Soil Science & Plant Analysis 19(13): 1467-1476. doi:10.1080/00103628809368027 Yoo, K. (2005). Erosion Of Upland Hillslope Soil Organic Carbon: Coupling Field Measurements With A Sediment Transport Model. Global Biogeochemical Cycles 19(3): No. Art. Gb3003. Zhang, J. H., Quine, T. A., Ni, S. J. & Ge, F. L. (2006). Stocks And Dynamics Of Soc In Relation To Soil Redistribution By Water And Tillage Erosion. Global Change Biology 12(10): 1834-1841. doi:10.1111/j.1365-2486.2006.01206.x https://pirineos.revistas.csic.es/index.php/pirineos/article/view/100 doi:10.3989/Pirineos.2010.165008 Derechos de autor 2010 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 Pirineos; Vol. 165 (2010); 157-177 1988-4281 0373-2568 10.3989/pirineos.2010.v165 Erosion processes soil organic carbon enrichment ratio catchment slope-bed connection Procesos erosivos carbono orgánico del suelo razón de enriquecimiento cuenca conexión ladera-cauce info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2010 ftjpirineos https://doi.org/10.3989/Pirineos.2010.16500810.3989/pirineos.2010.v16510.1016/S0160-4120(02)00192-710.1016/S0269-7491(01)00211-110.1029/98GB0074110.1016/0022-1694(83)90217-2 2024-05-27T03:01:36Z With the purpose of analysing the type (labile or stable) and quantity of organic carbon (OC) mobilized by different erosive processes identified at the slope-bed connection, the erosion deposits of gullies, sheet erosion, bank erosion and tillage erosion were studied in a small catchment (10 ha) and compared to the characteristics of the catchment soils. Selectivity upon soil detachment and transport was associated to different OC content and types in the erosion deposits. Enrichment ratios of organic carbon sediment/soil were low (~0,40 ± 0,26), even though a slight enrichment was described for fine particles (positively correlated to CO). These results were attributed to mineralization processes prevailing over OC burial in a very active channel where depositional sites are scarce. Con el fin de caracterizar la cantidad y tipo (lábil o recalcitrante) de carbono orgánico (CO) movilizado por distintos procesos erosivos identificados en las conexiones ladera-cauce, se estudiaron las características de los depósitos de erosión concentrada en cárcavas, erosión hídrica laminar, erosión lateral-gravitacional y erosión por laboreo en el contacto ladera-cauce de una cuenca de pequeño tamaño (10 ha) y se relacionaron con las características de los suelos-fuentes originales de donde procedían. La selectividad en el arranque y transporte de suelo de los distintos procesos se pudo asociar a diferentes contenidos y tipos de CO en los depósitos. Las razones de enriquecimiento de carbono orgánico sedimento/suelo fueron bajas (~0,40 ± 0,26), a pesar de haber un ligero enriquecimiento en partículas finas (correlacionadas positivamente con el CO) en los depósitos. Todo ello se atribuyó a los efectos de la mineralización en un cauce muy activo con pocas zonas de deposición y abundantes procesos de erosión no selectiva. Article in Journal/Newspaper Polar Science Polar Science Pirineos Pirineos 165 0 157 177