Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore

X-ray diffraction, optical microscopy and X-ray microanalysis were used to determine the composition and distribution of elements in the main mineral constituents of oxidized nickel ore at the Sakhalin deposit (goethite, hematite, serpentine, talc and chlorite). The main fraction of nickel is concen...

Full description

Bibliographic Details
Published in:Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy
Main Authors: E. N. Selivanov, S. N. Sergeeva, R. I. Gulyaeva, Е. Н. Селиванов, С. В. Сергеева, Р. И. Гуляева
Other Authors: ИМЕТ УрО РАН, государственное задание по теме № 0396-2015-0082 (регистрационный номер АААА-А16-116022610056-0)
Format: Article in Journal/Newspaper
Language:Russian
Published: Kalvis 2019
Subjects:
Online Access:https://cvmet.misis.ru/jour/article/view/863
https://doi.org/10.17073/0021-3438-2019-1-16-24
id ftjphsnm:oai:oai.cvmet.elpub.ru:article/863
record_format openpolar
institution Open Polar
collection Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy
op_collection_id ftjphsnm
language Russian
topic ферроникель
oxides
nickel
iron
heating
phase transitions
microanalysis
thermal properties
roasting
reduction
ferronickel
оксиды
никель
железо
нагрев
фазовые превращения
микроанализ
термические свойства
обжиг
восстановление
spellingShingle ферроникель
oxides
nickel
iron
heating
phase transitions
microanalysis
thermal properties
roasting
reduction
ferronickel
оксиды
никель
железо
нагрев
фазовые превращения
микроанализ
термические свойства
обжиг
восстановление
E. N. Selivanov
S. N. Sergeeva
R. I. Gulyaeva
Е. Н. Селиванов
С. В. Сергеева
Р. И. Гуляева
Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore
topic_facet ферроникель
oxides
nickel
iron
heating
phase transitions
microanalysis
thermal properties
roasting
reduction
ferronickel
оксиды
никель
железо
нагрев
фазовые превращения
микроанализ
термические свойства
обжиг
восстановление
description X-ray diffraction, optical microscopy and X-ray microanalysis were used to determine the composition and distribution of elements in the main mineral constituents of oxidized nickel ore at the Sakhalin deposit (goethite, hematite, serpentine, talc and chlorite). The main fraction of nickel is concentrated in iron oxides, where its content reaches 2,4 %, while in magnesium silicates it does not exceed 0,4 %. The sequence and temperature intervals of transformations were established when heating ore in inert and reducing media by means of thermal analysis methods combined with mass-spectrometric analysis of gases and subsequent X-ray phase analysis of products. The temperature regimes of ore roasting for the reduction of nickel and iron from their minerals were justified. The temperature regimes of sample heating are assumed to be close to the conditions implemented in industrial units (electric furnaces) where the rate of charge heating varies within 5—15 degrees/min, up to the melting point (1450 °С) of ferronickel and slag. It is proposed to use information on material composition, thermal properties and metal forms in ore to select regimes and technologies for their pyro-or hydrometallurgical processing. Nickel and iron recovery from oxides in CO environment occurs above 800 °С, while serpentines remain stable up to 1200 °С. The use of coke as a reducing agent allows reducing iron and nickel from serpentines at temperatures above 1250 °С. The obtained data were used to substantiate the operating conditions of roaster and electric furnaces during ferronickel smelting from oxidized ores. When roasting, resulting ferronickel particles will contain 2—4 % Ni. Completing recovery processes in the electric furnace will ensure metal recovery from magnesium silicates, which will slightly increase the nickel content in ferro-nickel. Методами рентгенографии, оптической микроскопии и рентгеноспектрального микроанализа определены составы и распределение элементов в основных минеральных составляющих окисленной никелевой ...
author2 ИМЕТ УрО РАН, государственное задание по теме № 0396-2015-0082 (регистрационный номер АААА-А16-116022610056-0)
format Article in Journal/Newspaper
author E. N. Selivanov
S. N. Sergeeva
R. I. Gulyaeva
Е. Н. Селиванов
С. В. Сергеева
Р. И. Гуляева
author_facet E. N. Selivanov
S. N. Sergeeva
R. I. Gulyaeva
Е. Н. Селиванов
С. В. Сергеева
Р. И. Гуляева
author_sort E. N. Selivanov
title Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore
title_short Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore
title_full Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore
title_fullStr Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore
title_full_unstemmed Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore
title_sort phase composition and thermal properties of the sakharinskoe deposit oxidized nickel ore
publisher Kalvis
publishDate 2019
url https://cvmet.misis.ru/jour/article/view/863
https://doi.org/10.17073/0021-3438-2019-1-16-24
long_lat ENVELOPE(16.233,16.233,66.717,66.717)
geographic Ferro
geographic_facet Ferro
genre Sakhalin
genre_facet Sakhalin
op_source Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 1 (2019); 16-24
Известия вузов. Цветная металлургия; № 1 (2019); 16-24
2412-8783
0021-3438
op_relation https://cvmet.misis.ru/jour/article/view/863/413
Резник И.Д., Ермаков Г.Л., Шнеерсон Я.М. Никель. Т. 1. М.: Наука и технологии, 2001.
Никитин К.К., Глазковский А.А. Никеленосные коры выветривания ультрабазитов и методы их изучения. М.: Недра, 1970.
Селиванов Е.Н., Сергеева С.В., Удоева Л.Ю, Панкратов А.А. Распределение никеля по фазовым составляющим окисленной никелевой руды Серовского месторождения. Обогащение руд. 2011. No. 5. С. 46—50.
Вершинин А.С., Витковская И.В., Эдельштейн И.И., Ва-реня ГД. Технологическая минералогия гипергенных никелевых руд. Л.: Наука, 1988.
Talovina I.V, Lazarenkov V.G., Ryzhkova S.O., Ugol’kov V.L., Vorontsova N.I. Garnierite in nickel deposits of the Urals. Lithol. Miner. Resources. 2008. Vol. 43. P. 588—595. DOI:10.1134/S0024490208060060.
Powder diffraction file (PDF), produced by the International Centre for Diffraction Data, Newtown Square, PA.
Лазарева С.В, Селиванов Е.Н., Удоева Л.Ю, Гуляева РИ. Термические свойства высокомагнезиальной никелевой руды Серовского месторождения. В сб.: Современные металлические материалы и технологии: Тр. междунар. науч-техн. конф. (г. Санкт-Петербург, 24—26 июня 2009 г.). СПб: Изд-во Политехнического ун-та, 2009. С. 177—182.
Elliott R., Pickles C.A., Forster J. Thermodynamic of the reduction roasting of nickeliferous laterite ore. J. Miner. Mater. Charact. Eng. 2016. Vol. 4. P. 320—346. DOI:10.4236/jmmce.2016.46028.
Pickles C.A., Forster J., Elliott R. Thermodynamic analysis of the carbothermic reduction roasting of a nickeliferous limonitic laterite ore. Miner. Eng. 2014. Vol. 65. P. 33—40. DOI:10.1016/j.mineng.2014.05.006.
Selivanov E.N., Lazareva S.V, Udoeva L.Y, Gulyaeva R.I. Structure and thermal transformations of hydrated magnesium silicates. Defect Diffus. Forum. 2011. Vol. 312—315. P. 708—712. DOI:10.4028/www.scientific.net/DDF.312-315.708.
Rhamdhani M.A., Hayes P.C., Jak E. Nickel laterite. Part 1. Microstructure and phase characterisations during reduction roasting and leaching. Miner. Process. Extract. Metall. 2009. Vol. 118 (3). P. 129—145. DOI:10.1179/174328509X431391.
Хорошавин А.Г. Форстерит. М.: Теплотехника, 2004.
Иванова В.П., Касатов Б.К., Красавина Т.Н. Термический анализ минералов и горных пород. Л.: Недра, 1974.
Bunjaku A., Kekkonen M., Taskinen P., Holappa L. Thermal behavior of hydrous nickel-magnesium silicates when heating up to 750 °C. Miner. Process. Extract. Metall. 2011. Vol. 120 (3). P. 139-146. DOI:10.1179/1743285511Y.0000000011.
Чернобровин В.П., Пашкеев И.Ю, Михайлов Г.Г, Лыка-сов А.А., Сенин А.В., Толканов О.А. Теоретические основы процессов производства углеродистого феррохрома из уральских руд. Челябинск: ЮУрГУ, 2004.
Zevgolis E., Zografidis C., Halikia I. The reducibility of the Greek nickeliferous laterites: A review. Miner. Process. Extract. Metall. 2010. Vol. 119 (1). P. 9-17. DOI:10.1179/174328509X431472.
Tsuji H. Behavior of reduction and growth of metal in smelting of saprolite Ni-ore in rotary kiln for production of ferro-nickel alloy. ISIJInt. 2012. Vol. 52 (6). P. 10001009. DOI:10.2355/isijinternational.52.1000.
Bo Li, Hua Wang, Yonggang Wei. The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidization method. Miner. Eng. 2011. Vol. 24. P. 15561562. DOI:10.1016/j.mineng.2011.08.006.
Samouhos M., Taxiarchou M., Hutcheon R., Devlin E. Microwave reduction of a nickeliferous laterite ore. Miner. Eng. 2012. Vol. 34. P. 19-29. DOI:10.1016/j.mineng.2015.09.005.
Song Chen, Shu-qiang Guo, Lan Jiang, Yu-ling Xu, Wei-zhong Ding. Thermodynamic of selective reduction of laterite ore by reducing gases. Trans. Nonfer. Met. Soc. China. 2015. Vol. 25. P. 3133-3138. DOI:10.1016/S1003-6326(15)63943-7.
Utigard T, Bergman R.A. Gaseous reduction of laterite ores. Metall. Mater. Trans. B. 1992. Vol. 23. P. 271-275.
Yang J., Zhang G., Jahanshahi S., Ostrovski O. Reduction of a garnieritic laterite ore by CO-CO2 gas mixtures. In: Energy efficiency and environmental friendliness are the future of the global Ferroalloy industry: 14-th Intern. Ferroalloys congr. (Kiev, Ukraine, 31 May - 4 June 2015). P. 518-527.
Shiwei Zhou, Yonggang Wei, Bo Li, Hua Wang, Baozhonh Ma, Chengyan Wang. Chloridization and reduction roasting of high-magnesium low-nickel oxide ore followed by magnetic separation to enrich ferronickel concentrate. Metall. Mater. Trans. B. 2016. Vol. 47. P. 145-153. DOI:10.1007/s11663-015-0478-8.
Emmanuel N. Zevgolis, Charalabos Zografidis, Theodora Perraki, Eammon Devlin. Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide. J. Therm. Anal. Calorim. 2010. Vol. 100. P. 133-139. DOI:10.1007/s10973-009-0198-x.
https://cvmet.misis.ru/jour/article/view/863
doi:10.17073/0021-3438-2019-1-16-24
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, прилагают к рукописи статьи: 1) лицензионный договор на право опубликования на безвозмездной основе; 2) экспертное заключение от аффилированной организации на возможность публикации в открытой печати; 3) иллюстрации и таблицы.Лицензионный договор должен быть заполнен, подписан всеми авторами и приложен в отсканированном виде в формате pdf; экспертное заключение – в формате pdf.Название каждого файла должно быть написано на латинице и состоять из фамилии первого автора и типа документа (в формате doc, docx), например: Ivanov_paper.doc; Ivanov_figer.doc; Ivanov_agreement.pdf; Ivanov_ conclusion. pdf.Подробно «Правила направления рукописи в редакцию» размещены на сайте в разделе Правила для авторов.
op_rightsnorm CC-BY
op_doi https://doi.org/10.17073/0021-3438-2019-1-16-24
https://doi.org/10.1134/S0024490208060060
https://doi.org/10.4236/jmmce.2016.46028
https://doi.org/10.1016/j.mineng.2014.05.006
https://doi.org/10.4028/www.scientific.net/DDF.312-315.708
https://do
container_title Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy
container_issue 1
container_start_page 16
op_container_end_page 24
_version_ 1766181808507977728
spelling ftjphsnm:oai:oai.cvmet.elpub.ru:article/863 2023-05-15T18:09:19+02:00 Phase composition and thermal properties of the Sakharinskoe deposit oxidized nickel ore Фазовый состав и термические свойства окисленной никелевой руды Сахаринского месторождения E. N. Selivanov S. N. Sergeeva R. I. Gulyaeva Е. Н. Селиванов С. В. Сергеева Р. И. Гуляева ИМЕТ УрО РАН, государственное задание по теме № 0396-2015-0082 (регистрационный номер АААА-А16-116022610056-0) 2019-02-22 application/pdf https://cvmet.misis.ru/jour/article/view/863 https://doi.org/10.17073/0021-3438-2019-1-16-24 rus rus Kalvis https://cvmet.misis.ru/jour/article/view/863/413 Резник И.Д., Ермаков Г.Л., Шнеерсон Я.М. Никель. Т. 1. М.: Наука и технологии, 2001. Никитин К.К., Глазковский А.А. Никеленосные коры выветривания ультрабазитов и методы их изучения. М.: Недра, 1970. Селиванов Е.Н., Сергеева С.В., Удоева Л.Ю, Панкратов А.А. Распределение никеля по фазовым составляющим окисленной никелевой руды Серовского месторождения. Обогащение руд. 2011. No. 5. С. 46—50. Вершинин А.С., Витковская И.В., Эдельштейн И.И., Ва-реня ГД. Технологическая минералогия гипергенных никелевых руд. Л.: Наука, 1988. Talovina I.V, Lazarenkov V.G., Ryzhkova S.O., Ugol’kov V.L., Vorontsova N.I. Garnierite in nickel deposits of the Urals. Lithol. Miner. Resources. 2008. Vol. 43. P. 588—595. DOI:10.1134/S0024490208060060. Powder diffraction file (PDF), produced by the International Centre for Diffraction Data, Newtown Square, PA. Лазарева С.В, Селиванов Е.Н., Удоева Л.Ю, Гуляева РИ. Термические свойства высокомагнезиальной никелевой руды Серовского месторождения. В сб.: Современные металлические материалы и технологии: Тр. междунар. науч-техн. конф. (г. Санкт-Петербург, 24—26 июня 2009 г.). СПб: Изд-во Политехнического ун-та, 2009. С. 177—182. Elliott R., Pickles C.A., Forster J. Thermodynamic of the reduction roasting of nickeliferous laterite ore. J. Miner. Mater. Charact. Eng. 2016. Vol. 4. P. 320—346. DOI:10.4236/jmmce.2016.46028. Pickles C.A., Forster J., Elliott R. Thermodynamic analysis of the carbothermic reduction roasting of a nickeliferous limonitic laterite ore. Miner. Eng. 2014. Vol. 65. P. 33—40. DOI:10.1016/j.mineng.2014.05.006. Selivanov E.N., Lazareva S.V, Udoeva L.Y, Gulyaeva R.I. Structure and thermal transformations of hydrated magnesium silicates. Defect Diffus. Forum. 2011. Vol. 312—315. P. 708—712. DOI:10.4028/www.scientific.net/DDF.312-315.708. Rhamdhani M.A., Hayes P.C., Jak E. Nickel laterite. Part 1. Microstructure and phase characterisations during reduction roasting and leaching. Miner. Process. Extract. Metall. 2009. Vol. 118 (3). P. 129—145. DOI:10.1179/174328509X431391. Хорошавин А.Г. Форстерит. М.: Теплотехника, 2004. Иванова В.П., Касатов Б.К., Красавина Т.Н. Термический анализ минералов и горных пород. Л.: Недра, 1974. Bunjaku A., Kekkonen M., Taskinen P., Holappa L. Thermal behavior of hydrous nickel-magnesium silicates when heating up to 750 °C. Miner. Process. Extract. Metall. 2011. Vol. 120 (3). P. 139-146. DOI:10.1179/1743285511Y.0000000011. Чернобровин В.П., Пашкеев И.Ю, Михайлов Г.Г, Лыка-сов А.А., Сенин А.В., Толканов О.А. Теоретические основы процессов производства углеродистого феррохрома из уральских руд. Челябинск: ЮУрГУ, 2004. Zevgolis E., Zografidis C., Halikia I. The reducibility of the Greek nickeliferous laterites: A review. Miner. Process. Extract. Metall. 2010. Vol. 119 (1). P. 9-17. DOI:10.1179/174328509X431472. Tsuji H. Behavior of reduction and growth of metal in smelting of saprolite Ni-ore in rotary kiln for production of ferro-nickel alloy. ISIJInt. 2012. Vol. 52 (6). P. 10001009. DOI:10.2355/isijinternational.52.1000. Bo Li, Hua Wang, Yonggang Wei. The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidization method. Miner. Eng. 2011. Vol. 24. P. 15561562. DOI:10.1016/j.mineng.2011.08.006. Samouhos M., Taxiarchou M., Hutcheon R., Devlin E. Microwave reduction of a nickeliferous laterite ore. Miner. Eng. 2012. Vol. 34. P. 19-29. DOI:10.1016/j.mineng.2015.09.005. Song Chen, Shu-qiang Guo, Lan Jiang, Yu-ling Xu, Wei-zhong Ding. Thermodynamic of selective reduction of laterite ore by reducing gases. Trans. Nonfer. Met. Soc. China. 2015. Vol. 25. P. 3133-3138. DOI:10.1016/S1003-6326(15)63943-7. Utigard T, Bergman R.A. Gaseous reduction of laterite ores. Metall. Mater. Trans. B. 1992. Vol. 23. P. 271-275. Yang J., Zhang G., Jahanshahi S., Ostrovski O. Reduction of a garnieritic laterite ore by CO-CO2 gas mixtures. In: Energy efficiency and environmental friendliness are the future of the global Ferroalloy industry: 14-th Intern. Ferroalloys congr. (Kiev, Ukraine, 31 May - 4 June 2015). P. 518-527. Shiwei Zhou, Yonggang Wei, Bo Li, Hua Wang, Baozhonh Ma, Chengyan Wang. Chloridization and reduction roasting of high-magnesium low-nickel oxide ore followed by magnetic separation to enrich ferronickel concentrate. Metall. Mater. Trans. B. 2016. Vol. 47. P. 145-153. DOI:10.1007/s11663-015-0478-8. Emmanuel N. Zevgolis, Charalabos Zografidis, Theodora Perraki, Eammon Devlin. Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide. J. Therm. Anal. Calorim. 2010. Vol. 100. P. 133-139. DOI:10.1007/s10973-009-0198-x. https://cvmet.misis.ru/jour/article/view/863 doi:10.17073/0021-3438-2019-1-16-24 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, прилагают к рукописи статьи: 1) лицензионный договор на право опубликования на безвозмездной основе; 2) экспертное заключение от аффилированной организации на возможность публикации в открытой печати; 3) иллюстрации и таблицы.Лицензионный договор должен быть заполнен, подписан всеми авторами и приложен в отсканированном виде в формате pdf; экспертное заключение – в формате pdf.Название каждого файла должно быть написано на латинице и состоять из фамилии первого автора и типа документа (в формате doc, docx), например: Ivanov_paper.doc; Ivanov_figer.doc; Ivanov_agreement.pdf; Ivanov_ conclusion. pdf.Подробно «Правила направления рукописи в редакцию» размещены на сайте в разделе Правила для авторов. CC-BY Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 1 (2019); 16-24 Известия вузов. Цветная металлургия; № 1 (2019); 16-24 2412-8783 0021-3438 ферроникель oxides nickel iron heating phase transitions microanalysis thermal properties roasting reduction ferronickel оксиды никель железо нагрев фазовые превращения микроанализ термические свойства обжиг восстановление info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjphsnm https://doi.org/10.17073/0021-3438-2019-1-16-24 https://doi.org/10.1134/S0024490208060060 https://doi.org/10.4236/jmmce.2016.46028 https://doi.org/10.1016/j.mineng.2014.05.006 https://doi.org/10.4028/www.scientific.net/DDF.312-315.708 https://do 2022-12-06T16:28:10Z X-ray diffraction, optical microscopy and X-ray microanalysis were used to determine the composition and distribution of elements in the main mineral constituents of oxidized nickel ore at the Sakhalin deposit (goethite, hematite, serpentine, talc and chlorite). The main fraction of nickel is concentrated in iron oxides, where its content reaches 2,4 %, while in magnesium silicates it does not exceed 0,4 %. The sequence and temperature intervals of transformations were established when heating ore in inert and reducing media by means of thermal analysis methods combined with mass-spectrometric analysis of gases and subsequent X-ray phase analysis of products. The temperature regimes of ore roasting for the reduction of nickel and iron from their minerals were justified. The temperature regimes of sample heating are assumed to be close to the conditions implemented in industrial units (electric furnaces) where the rate of charge heating varies within 5—15 degrees/min, up to the melting point (1450 °С) of ferronickel and slag. It is proposed to use information on material composition, thermal properties and metal forms in ore to select regimes and technologies for their pyro-or hydrometallurgical processing. Nickel and iron recovery from oxides in CO environment occurs above 800 °С, while serpentines remain stable up to 1200 °С. The use of coke as a reducing agent allows reducing iron and nickel from serpentines at temperatures above 1250 °С. The obtained data were used to substantiate the operating conditions of roaster and electric furnaces during ferronickel smelting from oxidized ores. When roasting, resulting ferronickel particles will contain 2—4 % Ni. Completing recovery processes in the electric furnace will ensure metal recovery from magnesium silicates, which will slightly increase the nickel content in ferro-nickel. Методами рентгенографии, оптической микроскопии и рентгеноспектрального микроанализа определены составы и распределение элементов в основных минеральных составляющих окисленной никелевой ... Article in Journal/Newspaper Sakhalin Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy Ferro ENVELOPE(16.233,16.233,66.717,66.717) Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy 1 16 24