PELLETS AND PREY REMAINS AS INDICATORS OF THE DIET OF TWO SYMPATRIC SKUAS (AVES: STERCORARIIDAE) ON KING GEORGE ISLAND, ANTARCTICA

South Polar skua (Stercorarius maccormicki) and Brown skua (Stercorarius antarcticus lonnbergi) have opportunistic feeding habits and are the dominant predators in terrestrial Polar regions. These skuas exploit a wide range of food items, including marine organisms, other birds, and even garbage. In...

Full description

Bibliographic Details
Published in:Canadian Journal of Zoology
Main Authors: Reis, Ana Olívia de Almeida, Costa, Erli Schneider, Torres, João Paulo Machado, Alves, Maria Alice dos Santos
Other Authors: Brazilian National Council for Scientific and Technological Development (CNPq), Brazilian Antarctic Program - PROANTAR/CNPq, Rio de Janeiro State (Carlos Chagas Filho) Research Foundation - FAPERJ
Format: Article in Journal/Newspaper
Language:English
Published: Associação Brasileira de Ciência Ecológica e Conservação 2021
Subjects:
Online Access:https://revistas.ufrj.br/index.php/oa/article/view/34287
https://doi.org/10.4257/oeco.2021.2503.04
id ftjob:oai:www.revistas.ufrj.br:article/34287
record_format openpolar
institution Open Polar
collection Unknown
op_collection_id ftjob
language English
topic Ecology
Brown skua
fish
food resources
penguins
South Polar skua
spellingShingle Ecology
Brown skua
fish
food resources
penguins
South Polar skua
Reis, Ana Olívia de Almeida
Costa, Erli Schneider
Torres, João Paulo Machado
Alves, Maria Alice dos Santos
PELLETS AND PREY REMAINS AS INDICATORS OF THE DIET OF TWO SYMPATRIC SKUAS (AVES: STERCORARIIDAE) ON KING GEORGE ISLAND, ANTARCTICA
topic_facet Ecology
Brown skua
fish
food resources
penguins
South Polar skua
description South Polar skua (Stercorarius maccormicki) and Brown skua (Stercorarius antarcticus lonnbergi) have opportunistic feeding habits and are the dominant predators in terrestrial Polar regions. These skuas exploit a wide range of food items, including marine organisms, other birds, and even garbage. In the present study, we compare the diets of these two skua species during the breeding season, using pellets and prey remains collected within their territories. The samples were collected at six sites in Admiralty Bay, on King George Island, Antarctica. We identified eight different items, which we classified as “penguin”, “flying bird”, “skua”, “fish”, “gastropod”, “krill”, “egg” and “marine debris”. In the first breeding season (2008/2009), penguins and flying birds were the food resources more abundant for both skua species, and their diet composition was similar. In the second breeding season (2010/2011) South Polar skua exploited more fish and flying birds than Brown skua; the latter exploited more eggs and penguins. Our findings corroborate those of previous studies, demonstrating that in sympatry South Polar skua exploit more fish than Brown skua. The diet of South Polar skua also varied between breeding seasons, reflecting the opportunistic foraging behavior of these skuas. As in other studies, we recorded that skua is a food resource for both skua species, but it was more common in the diet of South Polar skua. Marine debris was recorded only in the samples of Brown skua. Birds are important food items for both skuas, although significant differences were found in the diets of these sympatric species, with shifts in the composition of the diet probably reflecting fluctuations in the abundance of prey populations, which are known to be common at Admiralty Bay, although more data will be needed to confirm this link.
author2 Brazilian National Council for Scientific and Technological Development (CNPq)
Brazilian Antarctic Program - PROANTAR/CNPq
Rio de Janeiro State (Carlos Chagas Filho) Research Foundation - FAPERJ
format Article in Journal/Newspaper
author Reis, Ana Olívia de Almeida
Costa, Erli Schneider
Torres, João Paulo Machado
Alves, Maria Alice dos Santos
author_facet Reis, Ana Olívia de Almeida
Costa, Erli Schneider
Torres, João Paulo Machado
Alves, Maria Alice dos Santos
author_sort Reis, Ana Olívia de Almeida
title PELLETS AND PREY REMAINS AS INDICATORS OF THE DIET OF TWO SYMPATRIC SKUAS (AVES: STERCORARIIDAE) ON KING GEORGE ISLAND, ANTARCTICA
title_short PELLETS AND PREY REMAINS AS INDICATORS OF THE DIET OF TWO SYMPATRIC SKUAS (AVES: STERCORARIIDAE) ON KING GEORGE ISLAND, ANTARCTICA
title_full PELLETS AND PREY REMAINS AS INDICATORS OF THE DIET OF TWO SYMPATRIC SKUAS (AVES: STERCORARIIDAE) ON KING GEORGE ISLAND, ANTARCTICA
title_fullStr PELLETS AND PREY REMAINS AS INDICATORS OF THE DIET OF TWO SYMPATRIC SKUAS (AVES: STERCORARIIDAE) ON KING GEORGE ISLAND, ANTARCTICA
title_full_unstemmed PELLETS AND PREY REMAINS AS INDICATORS OF THE DIET OF TWO SYMPATRIC SKUAS (AVES: STERCORARIIDAE) ON KING GEORGE ISLAND, ANTARCTICA
title_sort pellets and prey remains as indicators of the diet of two sympatric skuas (aves: stercorariidae) on king george island, antarctica
publisher Associação Brasileira de Ciência Ecológica e Conservação
publishDate 2021
url https://revistas.ufrj.br/index.php/oa/article/view/34287
https://doi.org/10.4257/oeco.2021.2503.04
op_coverage Antarctica; South Shetland Island; King George Island; Admiralty Bay
geographic Admiralty Bay
King George Island
geographic_facet Admiralty Bay
King George Island
genre Antarc*
Antarctica
antarcticus
Brown Skua
King George Island
Polar Biology
Stercorarius antarcticus
Stercorarius maccormicki
genre_facet Antarc*
Antarctica
antarcticus
Brown Skua
King George Island
Polar Biology
Stercorarius antarcticus
Stercorarius maccormicki
op_source Oecologia Australis; Vol 25, No 3 (2021): Spontaneous Submissions; 674-684
2177-6199
op_relation https://revistas.ufrj.br/index.php/oa/article/view/34287/24977
https://revistas.ufrj.br/index.php/oa/article/downloadSuppFile/34287/11488
https://revistas.ufrj.br/index.php/oa/article/downloadSuppFile/34287/11489
Ainley, D. G., Ribic, C. A., & Fraser, W. R. 1992. Does prey preference affect habitat choice in Antarctic seabirds? Marine Ecology Progress Series, 90, 207–221. DOI:10.3354/meps090207
Avio, C. G., Gorbi, S., & Regoli, F. 2017. Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Marine Environmental Research, 128, 2–11. DOI:10.1016/j.marenvres.2016.05.012
Baker, S. C., & Barbraud, C. 2001. Foods of the South Polar skua Catharacta maccormicki at Ardery Island, Windmill Islands, Antarctica. Polar Biology, 24, 59–61. DOI:10.1007/s003000000163
Bertolin, M. L., & Casaux, R. 2019. Diet overlap among top predators at the South Orkney Islands, Antarctica. Polar Biology, 42, 371–383. DOI:10.1007/s00300-018-2428-9
Borghello, P., Torres, D. S., Montalti, D., & Ibañez, A. E. 2019. Diet of the Brown Skua (Stercorarius antarcticus lonnbergi) at Hope Bay, Antarctic Peninsula: differences between breeders and non-breeders. Polar Biology, 42(2), 385–394. DOI:10.1007/s00300-018-2429-8
Brooke, M. DeL., Keith, D., & Rov, N. 1999. Exploitation of inland breeding Antarctic petrels by South Polar skuas. Oecologia, 121, 25–31. DOI:10.1007/s004420050903
Caldwell, A., Seavey, J., & Craig, E. 2020. Foraging strategy impacts plastic ingestion risk in seabirds. Limnology and Oceanography Letters, 5(1), 163–168. DOI:10.1002/lol2.10126
Carneiro, A. P., Manica, A., Trivelpiece, W. Z., & Phillips, R. A. 2015. Flexibility in foraging strategies of brown skuas in response to local and seasonal dietary constraints. Journal of Ornithology, 156, 625–633. DOI:10.1007/s10336-015-1156-y
Carneiro, A. P. B., Polito, M. J., Sander, M., & Trivelpiece, W. Z. 2010. Abundance and spatial distribution of sympatrically breeding Catharacta spp.(skuas) in Admiralty Bay, King George Island, Antarctica. Polar biology, 33(5), 673–682. DOI:10.1007/s00300-009-0743-x
Carss, D. N., Bevan, R. M., Bonetti, A., Cherubini, G., Davies, J., Doherty, D., El Hili, A., Feltham, M. J., Grade, N., Granadeiro, J. P., Gromadzka, J., Harari, Y. N. R. A., Holden, T., Keller, T., Lariccia, G., Mantovani, R., McCarthy, T. K., Mellin, M., Menke, T., Mirowska-Ibron, I., Muller, W., Musil, P., Nazirides, T., Suter, W., Trauttmansdorff, J. F. G., Volponi, S., & Wilson, B. 1997. Techniques for assessing cormorant diet and food intake: towards a consensus review. Supplemento alle Ricerche di Biologia della Selvaggina, 26, 197–230. DOI:10.13140/RG.2.1.5185.2880
Costa, E. S., & Alves, M. A. S. 2007. Biologia reprodutiva e ecologia comportamental de skuas antárticas Catharacta maccormicki e C. lonnbergi. Oecologia Brasiliensis, 11, 78–94.
Costa, E. S., & Alves, M. A. S. 2008. The breeding birds of Hennequin Point: an ice-free area of Admiralty Bay (Antarctic Specially Managed Area), King George Island, Antarctica. Revista Brasileira de Ornitologia, 16, 137–141.
Costa, E. S., & Alves, M. A. S. 2012. Climatic changes, glacial retraction and the skuas (Catharacta sp. Stercorariidae) in Hennequin Point (King George Island, Antarctic Peninsula). Pesquisa Antartica Brasileira, 5, 163–170.
Dalerum, F., & Angerbjörn, A. 2005. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia, 144(4), 647–658. DOI:10.1007/s00442-005-0118-0
Dehnhard, N., Achurch, H., Clarke, J., Michel, L. N., Southwell, C., Sumner, M. D., Eens, M., & Emmerson, L. 2019. High inter‐and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment? Journal of Animal Ecology, 89(1), 104–119. DOI:10.1111/1365-2656.13078
Duffy, D. C., & Jackson, S. 1986. Diet studies of seabirds: a review of methods. Colonial Waterbirds, 9, 1–17. DOI:10.2307/1521138
Gall, S. C., & Thompson, R. C. 2015. The impact of debris on marine life. Marine Pollution Bulletin, 92, 170–179. DOI:10.1016/j.marpolbul.2014.12.041
González-Solís, J., Oro, D., Pedrocchi, V., Lluis, J., & Ruiz, X. 1997. Bias associated with diet samples in Audouin’s gulls. Condor, 99, 773–779. DOI:10.2307/1370488
Grilli, M. G., & Montalti, D. 2012. Trophic interactions between brown and south polar skuas at Deception Island, Antarctica. Polar Biology, 35, 299–304. DOI:10.1007/s00300-011-1054-6
Grilli, M. G., & Montalti, D. 2014. Variation in diet composition during the breeding cycle of an Antarctic seabird in relation to its breeding chronology and that of its main food resource. Polar Biology, 38(5), 643–649. DOI:10.1007/s00300-014-1627-2
Gubiani, R., Benjamin, S., & Muzaffar, S. B. 2012. First record of cannibalism in Socotra Cormorants (Phalacrocorax nigrogularis): large, immature birds opportunistically feed on younger conspecifics. Waterbirds, 35, 338–341. DOI:10.1675/063.035.0215
Hahn, S., Ritz, M.S., & Reinhardt, K. 2008. Marine foraging and annual fish consumption of a south polar skua population in the maritime Antarctic. Polar Biology, 31, 959–969. DOI:10.1007/s00300-008-0436-x
Hammer, S., Nager, R. G., Johnson, P. C. D., Furness, R. W., & Provencher, J. F. 2016. Plastic debris in great skua (Stercorarius skua) pellets corresponds to seabird prey species. Marine Pollution Bulletin, 103, 206–210. DOI:10.1016/j.marpolbul.2015.12.018
Hobson, K. A. 1987. Use of stable-carbon isotope analysis to estimate marine and terrestrial protein content in gull diets. Canadian Journal of Zoology, 65(5), 1210–1213. DOI:10.1139/z87-187
Hobson, K. A. 1995. Reconstructing avian diets using stable carbon and nitrogen isotope analysis of egg components: Patterns of isotopic fractionation and turnover. Condor, 97, 752–762. DOI:10.2307/1369183
Ibañez, A. E., Morales, L. M., Torres, D. S., Borghello, P., Haidr, N. S., & Montalti, D. 2020. Plastic ingestion risk is related to the anthropogenic activity and breeding stage in an Antarctic top predator seabird species. Marine Pollution Bulletin, 157, 111351. DOI:10.1016/j.marpolbul.2020.111351
Lavers, J. L., & Bond, A. L. (2016). Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Marine Pollution Bulletin, 110(1), 493–500. DOI:10.1016/j.marpolbul.2016.06.001
MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101(921), 377–385. DOI:10.1086/282505
Malzof, S. L., & Quintana, R. D. 2008. Diet of the south polar skua and the Brown Skua at Cierva Point, Antarctic Peninsula. Polar Biology, 31, 827–835. DOI:10.1007/s00300-008-0421-4
Mancini, P. L., & Bugoni, L. 2014. Resources partitioning by seabirds and their relationship with other consumers at and around a small tropical archipelago. ICES Journal of Marine Science, 71(9), 2599–2607. DOI:10.1093/icesjms/fsu105
Maxson, S. J., & Bernstein, N. P. 1982. Kleptorparasitism by south polar skuas on blue-eyed shags in Antarctica. Wilson Bulletin, 94, 269–281.
Moller-Schwarze, D., & Moller-Schwarze, C. 1973. Differential predation by South Polar Skuas in an Adelie Penguin rookery. Condor, 75, 127–131.
Moncorps, S., Chapuis, J. L., Haubreux, D., & Bretagnolle, V. 1998. Diet of the brown skua (Catharacta lonnbergi) on the Kerguelen archipelago: comparisons between techniques and between islands. Polar Biology, 19, 9–16. DOI:10.1007/s003000050210
Mougeot, F., Genevois, F., & Bretagnolle, V. 1998. Predation on burrowing petrels by the brown skua (Catharacta skua lönnbergi) at Mayes Island, Kerguelen. Journal of Zoology, 244(3), 429–438. DOI:10.1111/j.1469-7998.1998.tb00047.x
Mund, M. J., & Miller, G. D. 1995. Diet of the south polar skua Catharacta maccormicki at Cape Bird, Ross Island, Antarctica. Polar Biology, 15, 453–455. DOI:10.1007/BF00239723
Norman, F. I., & Ward, S. J. 1990. Foods of the South Polar skua at Hop Island, Rauer Group, East Antarctica. Polar Biology, 10, 489–493. DOI:10.1007/s003000000163
Parmelee, D. F. 1988. The hybrid skua – a southern ocean enigma. Wilson Bulletin, 100, 345–356.
Peter, H-U., Kaiser, M., & Gebauer, A. 1990. Ecological and morphological investigations on South Polar Skuas (Catharacta maccormicki) and Brown Skuas (Catharacta skua lonnbergi) on Fildes Peninsula, King George Island, South Shetland Islands. Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, 117, 201–218.
Petry, M. V., Valls, F. C. L., de Souza Petersen, E., Krüger, L., da Cruz Piuco, R., & dos Santos, C. R. 2015. Breeding sites and population of seabirds on Admiralty Bay, King George Island, Antarctica. Polar Biology, 39, 1343–1349. DOI:10.1007/s00300-015-1846-1
Pfenninger, M., & Nowak, C. 2008. Reproductive isolation and ecological niche partition among larvae of the morphologically cryptic sister species Chironomus riparius and C. piger. PLoS One, 3(5), e2157. DOI:10.1371/journal.pone.0002157
Phillips, R. A., Phalan, B., & Forster, I. P. 2004. Diet and long-term changes in population size and productivity of brown skuas (Catharacta antarctica lonnbergi) at Bird Island, South Georgia. Polar Biology, 27, 555–561. DOI:10.1007/s00300-004-0633-1
Pietz, P. J. 1987. Feeding and nesting ecology of sympatric South Polar and Brown Skuas. Auk, 104, 617–627. DOI:10.1093/auk/104.4.617
Quillfeldt, P., McGill, R. A., & Furness, R. W. 2005. Diet and foraging areas of Southern Ocean seabirds and their prey inferred from stable isotopes: review and case study of Wilson’s storm-petrel. Marine Ecology Progress Series, 295, 295–304. DOI:10.3354/meps295295
Rakusa-Suszczewski, S. 1980. Environmental conditions and the functioning of Admiralty Bay (South Shetland Islands) as a part of the near shore Antarctic ecosystem. Polish Polar Ressearch, 1, 11–27.
Reinhardt, K., Hahn, S., Peter, H-U., & Wemhoff, H. 2000. A review of the diets of Southern Hemisphere skuas. Marine Ornithology, 28, 7–19.
Ritz, M. S., Hahn, S., Janicke, T., & Peter, H-U. 2005. Hybridization between South polar skua (Catharacta maccormicki) and Brown skua (C. antarctica lonnbergi) in the Antarctic Peninsula region. Polar Biology, 29, 153–159. DOI:10.1007/s00300-005-0034-0
Robertson, G. S., Bolton, M., Grecian, W. J., Wilson, L. J., Davies, W. & Monaghan, P. 2014. Resource partitioning in three congeneric sympatrically breeding seabirds: Foraging areas and prey utilization. The Auk: Ornithological Advances, 131(3), 434–446. DOI:10.1642/AUK-13-243.1
op_rights Copyright (c) 2021 Oecologia Australis
op_doi https://doi.org/10.4257/oeco.2021.2503.04
https://doi.org/10.1139/z87-187
https://doi.org/10.2307/1369183
https://doi.org/10.1093/auk/104.4.617
https://doi.org/10.2307/4085492
https://doi.org/10.1007/s00300-002-0446-z
https://doi.org/10.1111/j
container_title Canadian Journal of Zoology
container_volume 65
container_issue 5
container_start_page 1210
op_container_end_page 1213
_version_ 1766268087345086464
spelling ftjob:oai:www.revistas.ufrj.br:article/34287 2023-05-15T13:59:31+02:00 PELLETS AND PREY REMAINS AS INDICATORS OF THE DIET OF TWO SYMPATRIC SKUAS (AVES: STERCORARIIDAE) ON KING GEORGE ISLAND, ANTARCTICA Reis, Ana Olívia de Almeida Costa, Erli Schneider Torres, João Paulo Machado Alves, Maria Alice dos Santos Brazilian National Council for Scientific and Technological Development (CNPq) Brazilian Antarctic Program - PROANTAR/CNPq Rio de Janeiro State (Carlos Chagas Filho) Research Foundation - FAPERJ Antarctica; South Shetland Island; King George Island; Admiralty Bay 2021-09-15 application/pdf https://revistas.ufrj.br/index.php/oa/article/view/34287 https://doi.org/10.4257/oeco.2021.2503.04 eng eng Associação Brasileira de Ciência Ecológica e Conservação https://revistas.ufrj.br/index.php/oa/article/view/34287/24977 https://revistas.ufrj.br/index.php/oa/article/downloadSuppFile/34287/11488 https://revistas.ufrj.br/index.php/oa/article/downloadSuppFile/34287/11489 Ainley, D. G., Ribic, C. A., & Fraser, W. R. 1992. Does prey preference affect habitat choice in Antarctic seabirds? Marine Ecology Progress Series, 90, 207–221. DOI:10.3354/meps090207 Avio, C. G., Gorbi, S., & Regoli, F. 2017. Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Marine Environmental Research, 128, 2–11. DOI:10.1016/j.marenvres.2016.05.012 Baker, S. C., & Barbraud, C. 2001. Foods of the South Polar skua Catharacta maccormicki at Ardery Island, Windmill Islands, Antarctica. Polar Biology, 24, 59–61. DOI:10.1007/s003000000163 Bertolin, M. L., & Casaux, R. 2019. Diet overlap among top predators at the South Orkney Islands, Antarctica. Polar Biology, 42, 371–383. DOI:10.1007/s00300-018-2428-9 Borghello, P., Torres, D. S., Montalti, D., & Ibañez, A. E. 2019. Diet of the Brown Skua (Stercorarius antarcticus lonnbergi) at Hope Bay, Antarctic Peninsula: differences between breeders and non-breeders. Polar Biology, 42(2), 385–394. DOI:10.1007/s00300-018-2429-8 Brooke, M. DeL., Keith, D., & Rov, N. 1999. Exploitation of inland breeding Antarctic petrels by South Polar skuas. Oecologia, 121, 25–31. DOI:10.1007/s004420050903 Caldwell, A., Seavey, J., & Craig, E. 2020. Foraging strategy impacts plastic ingestion risk in seabirds. Limnology and Oceanography Letters, 5(1), 163–168. DOI:10.1002/lol2.10126 Carneiro, A. P., Manica, A., Trivelpiece, W. Z., & Phillips, R. A. 2015. Flexibility in foraging strategies of brown skuas in response to local and seasonal dietary constraints. Journal of Ornithology, 156, 625–633. DOI:10.1007/s10336-015-1156-y Carneiro, A. P. B., Polito, M. J., Sander, M., & Trivelpiece, W. Z. 2010. Abundance and spatial distribution of sympatrically breeding Catharacta spp.(skuas) in Admiralty Bay, King George Island, Antarctica. Polar biology, 33(5), 673–682. DOI:10.1007/s00300-009-0743-x Carss, D. N., Bevan, R. M., Bonetti, A., Cherubini, G., Davies, J., Doherty, D., El Hili, A., Feltham, M. J., Grade, N., Granadeiro, J. P., Gromadzka, J., Harari, Y. N. R. A., Holden, T., Keller, T., Lariccia, G., Mantovani, R., McCarthy, T. K., Mellin, M., Menke, T., Mirowska-Ibron, I., Muller, W., Musil, P., Nazirides, T., Suter, W., Trauttmansdorff, J. F. G., Volponi, S., & Wilson, B. 1997. Techniques for assessing cormorant diet and food intake: towards a consensus review. Supplemento alle Ricerche di Biologia della Selvaggina, 26, 197–230. DOI:10.13140/RG.2.1.5185.2880 Costa, E. S., & Alves, M. A. S. 2007. Biologia reprodutiva e ecologia comportamental de skuas antárticas Catharacta maccormicki e C. lonnbergi. Oecologia Brasiliensis, 11, 78–94. Costa, E. S., & Alves, M. A. S. 2008. The breeding birds of Hennequin Point: an ice-free area of Admiralty Bay (Antarctic Specially Managed Area), King George Island, Antarctica. Revista Brasileira de Ornitologia, 16, 137–141. Costa, E. S., & Alves, M. A. S. 2012. Climatic changes, glacial retraction and the skuas (Catharacta sp. Stercorariidae) in Hennequin Point (King George Island, Antarctic Peninsula). Pesquisa Antartica Brasileira, 5, 163–170. Dalerum, F., & Angerbjörn, A. 2005. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia, 144(4), 647–658. DOI:10.1007/s00442-005-0118-0 Dehnhard, N., Achurch, H., Clarke, J., Michel, L. N., Southwell, C., Sumner, M. D., Eens, M., & Emmerson, L. 2019. High inter‐and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: Generalist foraging as an adaptation to a highly variable environment? Journal of Animal Ecology, 89(1), 104–119. DOI:10.1111/1365-2656.13078 Duffy, D. C., & Jackson, S. 1986. Diet studies of seabirds: a review of methods. Colonial Waterbirds, 9, 1–17. DOI:10.2307/1521138 Gall, S. C., & Thompson, R. C. 2015. The impact of debris on marine life. Marine Pollution Bulletin, 92, 170–179. DOI:10.1016/j.marpolbul.2014.12.041 González-Solís, J., Oro, D., Pedrocchi, V., Lluis, J., & Ruiz, X. 1997. Bias associated with diet samples in Audouin’s gulls. Condor, 99, 773–779. DOI:10.2307/1370488 Grilli, M. G., & Montalti, D. 2012. Trophic interactions between brown and south polar skuas at Deception Island, Antarctica. Polar Biology, 35, 299–304. DOI:10.1007/s00300-011-1054-6 Grilli, M. G., & Montalti, D. 2014. Variation in diet composition during the breeding cycle of an Antarctic seabird in relation to its breeding chronology and that of its main food resource. Polar Biology, 38(5), 643–649. DOI:10.1007/s00300-014-1627-2 Gubiani, R., Benjamin, S., & Muzaffar, S. B. 2012. First record of cannibalism in Socotra Cormorants (Phalacrocorax nigrogularis): large, immature birds opportunistically feed on younger conspecifics. Waterbirds, 35, 338–341. DOI:10.1675/063.035.0215 Hahn, S., Ritz, M.S., & Reinhardt, K. 2008. Marine foraging and annual fish consumption of a south polar skua population in the maritime Antarctic. Polar Biology, 31, 959–969. DOI:10.1007/s00300-008-0436-x Hammer, S., Nager, R. G., Johnson, P. C. D., Furness, R. W., & Provencher, J. F. 2016. Plastic debris in great skua (Stercorarius skua) pellets corresponds to seabird prey species. Marine Pollution Bulletin, 103, 206–210. DOI:10.1016/j.marpolbul.2015.12.018 Hobson, K. A. 1987. Use of stable-carbon isotope analysis to estimate marine and terrestrial protein content in gull diets. Canadian Journal of Zoology, 65(5), 1210–1213. DOI:10.1139/z87-187 Hobson, K. A. 1995. Reconstructing avian diets using stable carbon and nitrogen isotope analysis of egg components: Patterns of isotopic fractionation and turnover. Condor, 97, 752–762. DOI:10.2307/1369183 Ibañez, A. E., Morales, L. M., Torres, D. S., Borghello, P., Haidr, N. S., & Montalti, D. 2020. Plastic ingestion risk is related to the anthropogenic activity and breeding stage in an Antarctic top predator seabird species. Marine Pollution Bulletin, 157, 111351. DOI:10.1016/j.marpolbul.2020.111351 Lavers, J. L., & Bond, A. L. (2016). Ingested plastic as a route for trace metals in Laysan Albatross (Phoebastria immutabilis) and Bonin Petrel (Pterodroma hypoleuca) from Midway Atoll. Marine Pollution Bulletin, 110(1), 493–500. DOI:10.1016/j.marpolbul.2016.06.001 MacArthur, R., & Levins, R. (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101(921), 377–385. DOI:10.1086/282505 Malzof, S. L., & Quintana, R. D. 2008. Diet of the south polar skua and the Brown Skua at Cierva Point, Antarctic Peninsula. Polar Biology, 31, 827–835. DOI:10.1007/s00300-008-0421-4 Mancini, P. L., & Bugoni, L. 2014. Resources partitioning by seabirds and their relationship with other consumers at and around a small tropical archipelago. ICES Journal of Marine Science, 71(9), 2599–2607. DOI:10.1093/icesjms/fsu105 Maxson, S. J., & Bernstein, N. P. 1982. Kleptorparasitism by south polar skuas on blue-eyed shags in Antarctica. Wilson Bulletin, 94, 269–281. Moller-Schwarze, D., & Moller-Schwarze, C. 1973. Differential predation by South Polar Skuas in an Adelie Penguin rookery. Condor, 75, 127–131. Moncorps, S., Chapuis, J. L., Haubreux, D., & Bretagnolle, V. 1998. Diet of the brown skua (Catharacta lonnbergi) on the Kerguelen archipelago: comparisons between techniques and between islands. Polar Biology, 19, 9–16. DOI:10.1007/s003000050210 Mougeot, F., Genevois, F., & Bretagnolle, V. 1998. Predation on burrowing petrels by the brown skua (Catharacta skua lönnbergi) at Mayes Island, Kerguelen. Journal of Zoology, 244(3), 429–438. DOI:10.1111/j.1469-7998.1998.tb00047.x Mund, M. J., & Miller, G. D. 1995. Diet of the south polar skua Catharacta maccormicki at Cape Bird, Ross Island, Antarctica. Polar Biology, 15, 453–455. DOI:10.1007/BF00239723 Norman, F. I., & Ward, S. J. 1990. Foods of the South Polar skua at Hop Island, Rauer Group, East Antarctica. Polar Biology, 10, 489–493. DOI:10.1007/s003000000163 Parmelee, D. F. 1988. The hybrid skua – a southern ocean enigma. Wilson Bulletin, 100, 345–356. Peter, H-U., Kaiser, M., & Gebauer, A. 1990. Ecological and morphological investigations on South Polar Skuas (Catharacta maccormicki) and Brown Skuas (Catharacta skua lonnbergi) on Fildes Peninsula, King George Island, South Shetland Islands. Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, 117, 201–218. Petry, M. V., Valls, F. C. L., de Souza Petersen, E., Krüger, L., da Cruz Piuco, R., & dos Santos, C. R. 2015. Breeding sites and population of seabirds on Admiralty Bay, King George Island, Antarctica. Polar Biology, 39, 1343–1349. DOI:10.1007/s00300-015-1846-1 Pfenninger, M., & Nowak, C. 2008. Reproductive isolation and ecological niche partition among larvae of the morphologically cryptic sister species Chironomus riparius and C. piger. PLoS One, 3(5), e2157. DOI:10.1371/journal.pone.0002157 Phillips, R. A., Phalan, B., & Forster, I. P. 2004. Diet and long-term changes in population size and productivity of brown skuas (Catharacta antarctica lonnbergi) at Bird Island, South Georgia. Polar Biology, 27, 555–561. DOI:10.1007/s00300-004-0633-1 Pietz, P. J. 1987. Feeding and nesting ecology of sympatric South Polar and Brown Skuas. Auk, 104, 617–627. DOI:10.1093/auk/104.4.617 Quillfeldt, P., McGill, R. A., & Furness, R. W. 2005. Diet and foraging areas of Southern Ocean seabirds and their prey inferred from stable isotopes: review and case study of Wilson’s storm-petrel. Marine Ecology Progress Series, 295, 295–304. DOI:10.3354/meps295295 Rakusa-Suszczewski, S. 1980. Environmental conditions and the functioning of Admiralty Bay (South Shetland Islands) as a part of the near shore Antarctic ecosystem. Polish Polar Ressearch, 1, 11–27. Reinhardt, K., Hahn, S., Peter, H-U., & Wemhoff, H. 2000. A review of the diets of Southern Hemisphere skuas. Marine Ornithology, 28, 7–19. Ritz, M. S., Hahn, S., Janicke, T., & Peter, H-U. 2005. Hybridization between South polar skua (Catharacta maccormicki) and Brown skua (C. antarctica lonnbergi) in the Antarctic Peninsula region. Polar Biology, 29, 153–159. DOI:10.1007/s00300-005-0034-0 Robertson, G. S., Bolton, M., Grecian, W. J., Wilson, L. J., Davies, W. & Monaghan, P. 2014. Resource partitioning in three congeneric sympatrically breeding seabirds: Foraging areas and prey utilization. The Auk: Ornithological Advances, 131(3), 434–446. DOI:10.1642/AUK-13-243.1 Copyright (c) 2021 Oecologia Australis Oecologia Australis; Vol 25, No 3 (2021): Spontaneous Submissions; 674-684 2177-6199 Ecology Brown skua fish food resources penguins South Polar skua info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftjob https://doi.org/10.4257/oeco.2021.2503.04 https://doi.org/10.1139/z87-187 https://doi.org/10.2307/1369183 https://doi.org/10.1093/auk/104.4.617 https://doi.org/10.2307/4085492 https://doi.org/10.1007/s00300-002-0446-z https://doi.org/10.1111/j 2021-12-19T13:30:00Z South Polar skua (Stercorarius maccormicki) and Brown skua (Stercorarius antarcticus lonnbergi) have opportunistic feeding habits and are the dominant predators in terrestrial Polar regions. These skuas exploit a wide range of food items, including marine organisms, other birds, and even garbage. In the present study, we compare the diets of these two skua species during the breeding season, using pellets and prey remains collected within their territories. The samples were collected at six sites in Admiralty Bay, on King George Island, Antarctica. We identified eight different items, which we classified as “penguin”, “flying bird”, “skua”, “fish”, “gastropod”, “krill”, “egg” and “marine debris”. In the first breeding season (2008/2009), penguins and flying birds were the food resources more abundant for both skua species, and their diet composition was similar. In the second breeding season (2010/2011) South Polar skua exploited more fish and flying birds than Brown skua; the latter exploited more eggs and penguins. Our findings corroborate those of previous studies, demonstrating that in sympatry South Polar skua exploit more fish than Brown skua. The diet of South Polar skua also varied between breeding seasons, reflecting the opportunistic foraging behavior of these skuas. As in other studies, we recorded that skua is a food resource for both skua species, but it was more common in the diet of South Polar skua. Marine debris was recorded only in the samples of Brown skua. Birds are important food items for both skuas, although significant differences were found in the diets of these sympatric species, with shifts in the composition of the diet probably reflecting fluctuations in the abundance of prey populations, which are known to be common at Admiralty Bay, although more data will be needed to confirm this link. Article in Journal/Newspaper Antarc* Antarctica antarcticus Brown Skua King George Island Polar Biology Stercorarius antarcticus Stercorarius maccormicki Unknown Admiralty Bay King George Island Canadian Journal of Zoology 65 5 1210 1213