Alkali-silica reaction in volcanic rocks: a worldwide comparative approach

The potential alkali-silica reactivity (ASR) of volcanic aggregates, especially basalts, remains a source of debate in the scientific community. When evaluating the potentially deleterious character of this type of aggregate, different laboratory testing methods may produce contradictory data; this...

Full description

Bibliographic Details
Published in:Space Science Reviews
Main Authors: Medeiros, S., Fernandes, I., Fournier, B., Nunes, J.C., Santos-Silva, A., Ramos, V., Soares, D.
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2022
Subjects:
Online Access:https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2940
https://doi.org/10.3989/mc.2022.16221
id ftjmdc:oai:materialesdeconstruccion.revistas.csic.es:article/2940
record_format openpolar
institution Open Polar
collection Materiales de Construcción (E-Journal)
op_collection_id ftjmdc
language English
topic Alkali-Silica reaction
Petrography
Accelerated expansion tests
Volcanic aggregates
Reacción álcali-sílice
Petrografía
Ensayos de expansión acelerada
Áridos volcánicos
spellingShingle Alkali-Silica reaction
Petrography
Accelerated expansion tests
Volcanic aggregates
Reacción álcali-sílice
Petrografía
Ensayos de expansión acelerada
Áridos volcánicos
Medeiros, S.
Fernandes, I.
Fournier, B.
Nunes, J.C.
Santos-Silva, A.
Ramos, V.
Soares, D.
Alkali-silica reaction in volcanic rocks: a worldwide comparative approach
topic_facet Alkali-Silica reaction
Petrography
Accelerated expansion tests
Volcanic aggregates
Reacción álcali-sílice
Petrografía
Ensayos de expansión acelerada
Áridos volcánicos
description The potential alkali-silica reactivity (ASR) of volcanic aggregates, especially basalts, remains a source of debate in the scientific community. When evaluating the potentially deleterious character of this type of aggregate, different laboratory testing methods may produce contradictory data; this is particularly evident when using the accelerated mortar bar test (AMBT). In order to better understand such discrepancies, this study applied several methods of characterizing potential aggregate alkali reactivity, including the accelerated mortar bar test (AMBT), petrographic characterization, and the concrete prism test (CPT). Moreover, this study assessed volcanic aggregate samples from sites around the world, including the Azores, Brazil, Canada, the Canary and Hawaiian Islands, Iceland, Japan, Mozambique, New Zealand, Norway, and Turkey. The results obtained contribute to accurately assessing the potential alkali reactivity of volcanic aggregates and enhance the understanding of their different behaviours. La reactividad potencial álcali-sílice (RAS) de los áridos volcánicos, especialmente basaltos, sigue siendo una fuente de debate en la comunidad científica. Se puede obtener información contradictoria dependiendo de los métodos de ensayo utilizados en el laboratorio para evaluar el carácter potencialmente perjudicial de tales áridos, especialmente en el caso del ensayo acelerado de barra de mortero. Para comprender mejor esta discrepancia, se realizaron una serie de ensayos: caracterización petrográfica, ensayo acelerado de barra de mortero y de prisma de hormigón. Además, se seleccionaron para este estudio varios áridos volcánicos de diferentes partes del mundo (i.e., Azores, Brasil, Canadá, Islas Canarias y Hawaianas, Islandia, Japón, Mozambique, Nueva Zelanda, Noruega, Turquía). Los resultados obtenidos contribuyen a evaluar la reactividad alcalina potencial de estos áridos y permiten comprender mejor los diferentes comportamientos de los distintos áridos volcánicos estudiados.
format Article in Journal/Newspaper
author Medeiros, S.
Fernandes, I.
Fournier, B.
Nunes, J.C.
Santos-Silva, A.
Ramos, V.
Soares, D.
author_facet Medeiros, S.
Fernandes, I.
Fournier, B.
Nunes, J.C.
Santos-Silva, A.
Ramos, V.
Soares, D.
author_sort Medeiros, S.
title Alkali-silica reaction in volcanic rocks: a worldwide comparative approach
title_short Alkali-silica reaction in volcanic rocks: a worldwide comparative approach
title_full Alkali-silica reaction in volcanic rocks: a worldwide comparative approach
title_fullStr Alkali-silica reaction in volcanic rocks: a worldwide comparative approach
title_full_unstemmed Alkali-silica reaction in volcanic rocks: a worldwide comparative approach
title_sort alkali-silica reaction in volcanic rocks: a worldwide comparative approach
publisher Consejo Superior de Investigaciones Científicas
publishDate 2022
url https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2940
https://doi.org/10.3989/mc.2022.16221
long_lat ENVELOPE(-61.417,-61.417,-64.367,-64.367)
ENVELOPE(-12.333,-12.333,-71.333,-71.333)
ENVELOPE(-58.767,-58.767,-69.200,-69.200)
ENVELOPE(-56.948,-56.948,-63.398,-63.398)
geographic Barra
Canada
New Zealand
Noruega
Norway
Prisma
Rocas
geographic_facet Barra
Canada
New Zealand
Noruega
Norway
Prisma
Rocas
genre Iceland
Islandia
genre_facet Iceland
Islandia
op_source Materiales de Construcción; Vol. 72 No. 346 (2022); e278
Materiales de Construcción; Vol. 72 Núm. 346 (2022); e278
1988-3226
0465-2746
10.3989/mc.2022.v72.i346
op_relation https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2940/3789
https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2940/3790
https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2940/3791
Korkanç, M.; Tugrul, A. (2004) Evaluation of selected basalts from Niğde, Turkey, as source of concrete aggregate. Eng. Geol. 75 [3-4], 291-307. https://doi.org/10.1016/j.enggeo.2004.06.015
Shayan, A.; Quick, G.W. (1988) An alkali-reactive basalt from Queensland, Australia. Int. J. Cem. Comp. Lightw. Conc. 10 [4], 209-214. https://doi.org/10.1016/0262-5075(88)90050-4
Šťastná, A.; Nekvasilová, J.C.; Přikryl, R.; Šachlova, Š. (2019) Microscopic examination of alkali-reactive volcanic rocks from the Bohemian Massif (Czech Republic). 3rd International Conference on Sustainable Construction Materials and Technologies (SCMT 2013), Kyoto, Japan, 10.
Ólafsson, H. (1992) Alkali-silica reactions - Icelandic experience. In: The alkali silica reaction in concrete, ed. R. N. Swamy, 208-222. ISBN 0-203-03663-8.
Reis, M.O.; Silva, H.S.; Silva, A.S. (1996) Ocorrência de reacções alcalis inerte em Portugal. Estudos de Casos. Betão Estrutural 1996, LNEC, Lisboa: pp 14 (in Portuguese).
Madsen, L.; Rocco, C.; Falcone, D.; Locati, F.; Marfil, S. (2019) Alkali-silica reactivity of basaltic aggregates of Mesopotamia Argentina: case studies. Bull. Eng. Geol. Environ. 78, 5495-5509. https://doi.org/10.1007/s10064-019-01470-w
Fernandes. I.; Ribeiro, M.A.; Broekmans, M.A.T.M.; Sims, I. (2015) Petrographic Atlas. Characterisation of aggregates regarding potential reactivity to alkalis. RILEM 219-ACS AAR-1.2. RILEM TC 219-ACS Recommended Guidance AAR-1.2, for Use with the RILEM AAR-1.1 Petrographic Examination Method. RILEM Guideline, Springer, 196. ISBN 978-94-017-7383-6
Wakizaka, Y. (2000) Alkali-silica reactivity of Japanese rocks. Develop. Geo. Eng. 84, 293-303. https://doi.org/10.1016/S0165-1250(00)80024-3
Wigum, B.J.; Björnsdóttir, V.D.; Olafsson, H.; Iversen, K. (2007) Alkali-aggregate reaction in Iceland - New test methods, VGK-Hönnun Consulting Engineers, 74.
Marfil, S.; Locati, F.; Maiza, P.; Lescano, L. (2013) Basaltic rocks from Argentina used in concrete structures. In: Wu & Qi (eds). Global View of Engineering Geology and the Environment. 253-258. ISBN 978-1-138-00078-0. https://doi.org/10.1201/b15794-42
Munhoz, F.A.; Kihara, Y.; Ncotto, M.A. (2008) Effect of mineral admixtures on to the mitigation of alkali-silica reaction in concrete. 13th International Conference on Alkali-Aggregate Reaction in Concrete, 16-19 June, Norway, 9.
Katayama, T.; St John, D.A.; Futagawa, T. (1989) The petrographic comparison of rocks from Japan and New Zealand-Potential reactivity related to interstitial glass and silica minerals. In: Okada, K, Nishibayashi, S.; Kawamura, M. (editors), Proceedings of the 8th International Conference on Alkali-Aggregate Reaction (ICAAR). Kyoto, Japan, 537-542.
RILEM AAR-1.1 (2016) Detection of potential alkali-reactivity - Part 1: Petrographic examination method. In: Nixon, P.J., Sims, I. (editors): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures. RILEM State-of-the-art Report 17, 35-60. https://doi.org/10.1007/978-94-017-7252-5_3
Korkanç M.; Tuğrul, A. (2005) Evaluation of selected basalts from the point of alkali-silica reactivity. Cem. Concr. Res. 35 [3], 505-512. https://doi.org/10.1016/j.cemconres.2004.06.013
Lindgård, J.; Grelk, B.; Wigum, B.J.; Trägårdh, J.; Appelqvist, K.; Holt, E.; Ferreira, M.; Leivo, M. (2017) Nordic Europe. In: Sims, I. and Poole, A. (ed). Alkali-aggregate reaction in concrete: A World review. CRC Press/Balkema. Taylor & Francis Group, London, UK, 277-320.
Guðmundsson, G.; Ólafsson, H. (1996) Silica fume in concrete - 16 years of experience in Iceland, in: A. Shayan (ed.). Alkali-Aggregate Reaction in Concrete, Proceedings of the 10th International Conference, Melbourne, Australia, 1996, 562-569.
Guðmundsson, G.; Ólafsson, H. (1999) Alkali-silica reactions and silica fume, 20 years of experience in Iceland. Cem. Concr. Res. 29 [8], 1289-1297. https://doi.org/10.1016/S0008-8846(98)00239-7
ASTM C294 (2012). Standard descriptive nomenclature for constituents of concrete aggregates. Annual Book of ASTM Standards, The American Society for Testing and Materials, Philadelphia, USA, 11.
RILEM AAR-0 (2016) RILEM Recommended test method AAR-0. Outline guide to the use of RILEM methods in the assessment of the alkali-reactivity potential of aggregates. In: Nixon, P.J.; Sims, I. (eds): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures, RILEM State-of-the-Art Reports 17, Springer, 5-34. https://doi.org/10.1007/978-94-017-7252-5_2
Lindgård, J.; Nixon, P.J.; Borchers, I.; Schouenborg, B.; Wigum, B.J.; Haugen, M.; Akesson, U. (2010) The EU "PARTNER" Project - European standard tests to prevent alkali reactions in aggregates: final results and recommendations. Cem. Concr. Res. 40 [4], 611-635. https://doi.org/10.1016/j.cemconres.2009.09.004
ASTM C 1260 (2014) Standard test method for potential alkali reactivity of aggregates (mortar bar method). Annual Book of ASTM Standards, The American Society for Testing and Materials, Philadelphia, USA, 4.
RILEM AAR-2 (2016) RILEM Recommended test method: AAR-2-Detection of potential alkali-reactivity-Accelerated mortar-bar test method for aggregates. In: Nixon, P.J.; Sims, I. (editors): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures, RILEM State-of-the-Art Reports 17, Springer, 61-77. https://doi.org/10.1007/978-94-017-7252-5_4
ASTM C 1293 (2020) Standard test method for determination of length change due to alkali silica reaction. Annual Book of ASTM Standards. The American Society for Testing and Materials, Philadelphia, USA, 6.
RILEM AAR-3 (2016) RILEM Recommended test method AAR-3. Detection of potential alkali-reactivity - 38ºC. Test method for aggregate combinations using concrete prisms. In: Nixon, P.J. and Sims, I. (eds): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures, RILEM State-of-the-Art Reports 17, Springer, 79-97, 2016. https://doi.org/10.1007/978-94-017-7252-5_5
RILEM AAR-4.1 (2016) RILEM Recommended test method: AAR-4.1-Detection of potential alkali-reactivity - 60 °C test method for aggregate combinations using concrete prisms. In: Nixon, PJ, Sims, I (editors): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures, RILEM State-of-the-Art Reports 17, Springer, 99-116. https://doi.org/10.1007/978-94-017-7252-5_6
Feng, X., Clark, B. (2012) Correlations between laboratory tests methods for potential alkali silica reactivity of aggregates. In: Drimalas, T.; Ideker, J.H.; Fournier, B. (eds.): Proceedings of the 14th International Conference on Alkali-Aggregate Reaction, Austin, USA, 9.
Gadea, J.; Soriano, J.; Martín, A.; Campos, P.L.; Rodríguez, A.; Junco, C.; Adán, I., Calderón, V. (2010) The alkali-aggregate reaction for various aggregates used in concrete. Mater. Construcc. 60 [299], 69-78. https://doi.org/10.3989/mc.2010.48708
Nixon, P., Fournier, B. (2017) Assessment, testing and specification. In: Sims, I. and Poole A. (ed.) Alkali-aggregate reaction in concrete: a world review (1st ed.). CRC Press Chapter 2, 33-61.
Ramos, V. (2013) Characterization of the potential reactivity to alkalis of Portuguese aggregates for concrete. PhD thesis, Faculty of Sciences of the University of Porto and University of Aveiro, Portugal, 417.
Ramos, V. Fernandes, I.; Santos Silva, A.; Soares, D.; Fournier, B.; Leal, S.; Noronha, F. (2016) Assessment of the potential reactivity of granitic rocks - Petrography and expansion tests. Cem. Concr. Res. (86), 63-77. https://doi.org/10.1016/j.cemconres.2016.05.001
Alaejos, P.; Lanza, V.; Bermúdez, M.A.; Velasco, A. (2014) Effectiveness of the accelerated mortar bar test to detect rapid reactive aggregates (including their pessimum content) and slowly reactive aggregates. Cem. Concr. Res. 58, 13-19. https://doi.org/10.1016/j.cemconres.2014.01.001
Shayan, A. (2007) Field evidence for inability of ASTM C 1260 limits to detect slowly reactive Australian aggregates. Aust. J. Civ. Eng. 3 [1], 13-26. https://doi.org/10.1080/14488353.2007.11463917
Shayan, A.; Morris, H. (2001) A comparison of RTA T363 and ASTM C 1260 accelerated mortar bar test methods for detecting reactive aggregates. Cem. Concr. Res. 31 [4], 655-663. https://doi.org/10.1016/S0008-8846(00)00491-9
Hooton, R.D.; Rogers, C.A. (1992) Development of the NBRI rapid mortar bar test leading to its use in North America. In: Poole, A.B. (ed). Proceedings of the 9th International Conference on Alkali-Aggregate Reaction, London, UK, 461-467.
Santos-Silva, A.; Braga-Reis, M.O. (2000) Avaliação da reactividade aos álcalis dos agregados para betão. Encontro Nacional de Betão Estrutural, Faculdade de Engenharia da Universidade do Porto, Portugal (in Portuguese), 23-32.
Santos-Silva, A.; Fernandes, I.; Soares, D.; Custódio, J.; Bettencourt Ribeiro, A., Ramos, V.; Medeiros, S. (2016) Portuguese experience in ASR aggregate assessment. In: IBRACON Eds., Proceedings of the 13th International Conference on Alkali-Aggregate Reactivity in Concrete, São Paulo, Brazil, 10.
CSA A23.2-25A (2014) Test method for detection of alkali-silica reactive aggregate by accelerated expansion of mortar bars. Canadian Standards Association, Mississauga, Ontario, Canada, 425-433.
EN 197-1 (2011) Cement. Composition specifications and conformity criteria for common cements. Brussels: European Committee for Standardization (CEN), 38.
CSA A23.2-14A (2014) Potential expansivity of aggregates; procedure for length change due to alkali-aggregate reaction in concrete prisms. Canadian Standards Association, Mississauga, Ontario, Canada, 246-256.
Medeiros, S.; Katayama, T.; Zanon, V.; Fernandes, I.; Silva, A.S.; Nunes, J.C.; Miranda, V.; Soares, D. (2012) Assessment of the potential alkali-reactivity of volcanic aggregates from Azores Islands. In: Drimalas, T.; Ideker, J.H. and Fournier, B. (eds.). Proceedings of the 12th International Conference on Alkali-Aggregate Reactivity in Concrete, Austin, Texas, USA, 10.
CSA A23.2-27A (2014) Test methods and standard practices for concrete - Standard practice to identify degree of alkali-reactivity of aggregates and to identify measures to avoid deleterious expansion in concrete. Canadian Standards Association, Mississauga, Ontario, Canada, 439-451.
ASTM C 1778 (2020) Standard guide for reducing the risk of deleterious alkali-aggregate reaction in concrete. The American Society for Testing and Materials, Philadelphia, USA, 11
Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P.; Bellieni, G.; Dudek, A.; Efremova, S.; Keller, J.; Lameyre, J.; Sabine, P.A.; Schmid, R.; Sørensen, H.; Wooley, A.R. (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences, Subcomission on the Systematics of Igneous Rocks. In: Le Maitre, R.W. (ed). Cambridge University Press, 236. https://doi.org/10.1017/CBO9780511535581
Falikman, V.R.; Rozentahl, N.K. (2017) Russian Federation. In: Sims I and Poole A (ed) Alkali-aggregate reaction in concrete: A world review. CRC Press/Balkema. Taylor & Francis Group, London, UK, 433-466.
Medeiros, S.; Fernandes, I.; Fournier, B.; Nunes, J.C.; Ramos, V. (2020) Hawaiian and Azorean volcanic aggregates: a preliminary study of the potential alkali silica reaction. Bull. Eng. Geol. Environ. 80, 8949-8960. https://doi.org/10.1007/s10064-019-01702-z
Menéndez, E.; García-Roves, R.; Aldea, B.; Puerto, E.; Recino, H. (2021) Study of the alkali-silica reaction rate of Spanish aggregates. Proposal of a classification based in accelerated mortar bars tests and petrographic parameters. Mater. Construcc. 71 [344], e263. https://doi.org/10.3989/mc.2021.13421
Wigum, B.J. (2012) Assessment and development of performance tests for alkali aggregate reaction in Iceland. In: Drimalas, T.; Ideker, J.H.; Fournier, B. (eds.). Proceedings, 14th International Conference on Alkali-Aggregate Reactions in Concrete, Austin, Texas, 10.
op_rights Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/mc.2022.16221
https://doi.org/10.3989/mc.2022.v72.i346
https://doi.org/10.1016/j.enggeo.2004.06.015
https://doi.org/10.1016/0262-5075(88)90050-4
https://doi.org/10.1007/s10064-019-01470-w
https://doi.org/10.1016/S0165-125
container_title Space Science Reviews
container_volume 211
container_issue 1-4
container_start_page 485
op_container_end_page 500
_version_ 1766041874169069568
spelling ftjmdc:oai:materialesdeconstruccion.revistas.csic.es:article/2940 2023-05-15T16:51:47+02:00 Alkali-silica reaction in volcanic rocks: a worldwide comparative approach Reacción álcali-silice en rocas volcánicas: un enfoque comparativo mundial Medeiros, S. Fernandes, I. Fournier, B. Nunes, J.C. Santos-Silva, A. Ramos, V. Soares, D. 2022-05-09 text/html application/pdf text/xml https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2940 https://doi.org/10.3989/mc.2022.16221 eng eng Consejo Superior de Investigaciones Científicas https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2940/3789 https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2940/3790 https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/2940/3791 Korkanç, M.; Tugrul, A. (2004) Evaluation of selected basalts from Niğde, Turkey, as source of concrete aggregate. Eng. Geol. 75 [3-4], 291-307. https://doi.org/10.1016/j.enggeo.2004.06.015 Shayan, A.; Quick, G.W. (1988) An alkali-reactive basalt from Queensland, Australia. Int. J. Cem. Comp. Lightw. Conc. 10 [4], 209-214. https://doi.org/10.1016/0262-5075(88)90050-4 Šťastná, A.; Nekvasilová, J.C.; Přikryl, R.; Šachlova, Š. (2019) Microscopic examination of alkali-reactive volcanic rocks from the Bohemian Massif (Czech Republic). 3rd International Conference on Sustainable Construction Materials and Technologies (SCMT 2013), Kyoto, Japan, 10. Ólafsson, H. (1992) Alkali-silica reactions - Icelandic experience. In: The alkali silica reaction in concrete, ed. R. N. Swamy, 208-222. ISBN 0-203-03663-8. Reis, M.O.; Silva, H.S.; Silva, A.S. (1996) Ocorrência de reacções alcalis inerte em Portugal. Estudos de Casos. Betão Estrutural 1996, LNEC, Lisboa: pp 14 (in Portuguese). Madsen, L.; Rocco, C.; Falcone, D.; Locati, F.; Marfil, S. (2019) Alkali-silica reactivity of basaltic aggregates of Mesopotamia Argentina: case studies. Bull. Eng. Geol. Environ. 78, 5495-5509. https://doi.org/10.1007/s10064-019-01470-w Fernandes. I.; Ribeiro, M.A.; Broekmans, M.A.T.M.; Sims, I. (2015) Petrographic Atlas. Characterisation of aggregates regarding potential reactivity to alkalis. RILEM 219-ACS AAR-1.2. RILEM TC 219-ACS Recommended Guidance AAR-1.2, for Use with the RILEM AAR-1.1 Petrographic Examination Method. RILEM Guideline, Springer, 196. ISBN 978-94-017-7383-6 Wakizaka, Y. (2000) Alkali-silica reactivity of Japanese rocks. Develop. Geo. Eng. 84, 293-303. https://doi.org/10.1016/S0165-1250(00)80024-3 Wigum, B.J.; Björnsdóttir, V.D.; Olafsson, H.; Iversen, K. (2007) Alkali-aggregate reaction in Iceland - New test methods, VGK-Hönnun Consulting Engineers, 74. Marfil, S.; Locati, F.; Maiza, P.; Lescano, L. (2013) Basaltic rocks from Argentina used in concrete structures. In: Wu & Qi (eds). Global View of Engineering Geology and the Environment. 253-258. ISBN 978-1-138-00078-0. https://doi.org/10.1201/b15794-42 Munhoz, F.A.; Kihara, Y.; Ncotto, M.A. (2008) Effect of mineral admixtures on to the mitigation of alkali-silica reaction in concrete. 13th International Conference on Alkali-Aggregate Reaction in Concrete, 16-19 June, Norway, 9. Katayama, T.; St John, D.A.; Futagawa, T. (1989) The petrographic comparison of rocks from Japan and New Zealand-Potential reactivity related to interstitial glass and silica minerals. In: Okada, K, Nishibayashi, S.; Kawamura, M. (editors), Proceedings of the 8th International Conference on Alkali-Aggregate Reaction (ICAAR). Kyoto, Japan, 537-542. RILEM AAR-1.1 (2016) Detection of potential alkali-reactivity - Part 1: Petrographic examination method. In: Nixon, P.J., Sims, I. (editors): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures. RILEM State-of-the-art Report 17, 35-60. https://doi.org/10.1007/978-94-017-7252-5_3 Korkanç M.; Tuğrul, A. (2005) Evaluation of selected basalts from the point of alkali-silica reactivity. Cem. Concr. Res. 35 [3], 505-512. https://doi.org/10.1016/j.cemconres.2004.06.013 Lindgård, J.; Grelk, B.; Wigum, B.J.; Trägårdh, J.; Appelqvist, K.; Holt, E.; Ferreira, M.; Leivo, M. (2017) Nordic Europe. In: Sims, I. and Poole, A. (ed). Alkali-aggregate reaction in concrete: A World review. CRC Press/Balkema. Taylor & Francis Group, London, UK, 277-320. Guðmundsson, G.; Ólafsson, H. (1996) Silica fume in concrete - 16 years of experience in Iceland, in: A. Shayan (ed.). Alkali-Aggregate Reaction in Concrete, Proceedings of the 10th International Conference, Melbourne, Australia, 1996, 562-569. Guðmundsson, G.; Ólafsson, H. (1999) Alkali-silica reactions and silica fume, 20 years of experience in Iceland. Cem. Concr. Res. 29 [8], 1289-1297. https://doi.org/10.1016/S0008-8846(98)00239-7 ASTM C294 (2012). Standard descriptive nomenclature for constituents of concrete aggregates. Annual Book of ASTM Standards, The American Society for Testing and Materials, Philadelphia, USA, 11. RILEM AAR-0 (2016) RILEM Recommended test method AAR-0. Outline guide to the use of RILEM methods in the assessment of the alkali-reactivity potential of aggregates. In: Nixon, P.J.; Sims, I. (eds): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures, RILEM State-of-the-Art Reports 17, Springer, 5-34. https://doi.org/10.1007/978-94-017-7252-5_2 Lindgård, J.; Nixon, P.J.; Borchers, I.; Schouenborg, B.; Wigum, B.J.; Haugen, M.; Akesson, U. (2010) The EU "PARTNER" Project - European standard tests to prevent alkali reactions in aggregates: final results and recommendations. Cem. Concr. Res. 40 [4], 611-635. https://doi.org/10.1016/j.cemconres.2009.09.004 ASTM C 1260 (2014) Standard test method for potential alkali reactivity of aggregates (mortar bar method). Annual Book of ASTM Standards, The American Society for Testing and Materials, Philadelphia, USA, 4. RILEM AAR-2 (2016) RILEM Recommended test method: AAR-2-Detection of potential alkali-reactivity-Accelerated mortar-bar test method for aggregates. In: Nixon, P.J.; Sims, I. (editors): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures, RILEM State-of-the-Art Reports 17, Springer, 61-77. https://doi.org/10.1007/978-94-017-7252-5_4 ASTM C 1293 (2020) Standard test method for determination of length change due to alkali silica reaction. Annual Book of ASTM Standards. The American Society for Testing and Materials, Philadelphia, USA, 6. RILEM AAR-3 (2016) RILEM Recommended test method AAR-3. Detection of potential alkali-reactivity - 38ºC. Test method for aggregate combinations using concrete prisms. In: Nixon, P.J. and Sims, I. (eds): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures, RILEM State-of-the-Art Reports 17, Springer, 79-97, 2016. https://doi.org/10.1007/978-94-017-7252-5_5 RILEM AAR-4.1 (2016) RILEM Recommended test method: AAR-4.1-Detection of potential alkali-reactivity - 60 °C test method for aggregate combinations using concrete prisms. In: Nixon, PJ, Sims, I (editors): RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures, RILEM State-of-the-Art Reports 17, Springer, 99-116. https://doi.org/10.1007/978-94-017-7252-5_6 Feng, X., Clark, B. (2012) Correlations between laboratory tests methods for potential alkali silica reactivity of aggregates. In: Drimalas, T.; Ideker, J.H.; Fournier, B. (eds.): Proceedings of the 14th International Conference on Alkali-Aggregate Reaction, Austin, USA, 9. Gadea, J.; Soriano, J.; Martín, A.; Campos, P.L.; Rodríguez, A.; Junco, C.; Adán, I., Calderón, V. (2010) The alkali-aggregate reaction for various aggregates used in concrete. Mater. Construcc. 60 [299], 69-78. https://doi.org/10.3989/mc.2010.48708 Nixon, P., Fournier, B. (2017) Assessment, testing and specification. In: Sims, I. and Poole A. (ed.) Alkali-aggregate reaction in concrete: a world review (1st ed.). CRC Press Chapter 2, 33-61. Ramos, V. (2013) Characterization of the potential reactivity to alkalis of Portuguese aggregates for concrete. PhD thesis, Faculty of Sciences of the University of Porto and University of Aveiro, Portugal, 417. Ramos, V. Fernandes, I.; Santos Silva, A.; Soares, D.; Fournier, B.; Leal, S.; Noronha, F. (2016) Assessment of the potential reactivity of granitic rocks - Petrography and expansion tests. Cem. Concr. Res. (86), 63-77. https://doi.org/10.1016/j.cemconres.2016.05.001 Alaejos, P.; Lanza, V.; Bermúdez, M.A.; Velasco, A. (2014) Effectiveness of the accelerated mortar bar test to detect rapid reactive aggregates (including their pessimum content) and slowly reactive aggregates. Cem. Concr. Res. 58, 13-19. https://doi.org/10.1016/j.cemconres.2014.01.001 Shayan, A. (2007) Field evidence for inability of ASTM C 1260 limits to detect slowly reactive Australian aggregates. Aust. J. Civ. Eng. 3 [1], 13-26. https://doi.org/10.1080/14488353.2007.11463917 Shayan, A.; Morris, H. (2001) A comparison of RTA T363 and ASTM C 1260 accelerated mortar bar test methods for detecting reactive aggregates. Cem. Concr. Res. 31 [4], 655-663. https://doi.org/10.1016/S0008-8846(00)00491-9 Hooton, R.D.; Rogers, C.A. (1992) Development of the NBRI rapid mortar bar test leading to its use in North America. In: Poole, A.B. (ed). Proceedings of the 9th International Conference on Alkali-Aggregate Reaction, London, UK, 461-467. Santos-Silva, A.; Braga-Reis, M.O. (2000) Avaliação da reactividade aos álcalis dos agregados para betão. Encontro Nacional de Betão Estrutural, Faculdade de Engenharia da Universidade do Porto, Portugal (in Portuguese), 23-32. Santos-Silva, A.; Fernandes, I.; Soares, D.; Custódio, J.; Bettencourt Ribeiro, A., Ramos, V.; Medeiros, S. (2016) Portuguese experience in ASR aggregate assessment. In: IBRACON Eds., Proceedings of the 13th International Conference on Alkali-Aggregate Reactivity in Concrete, São Paulo, Brazil, 10. CSA A23.2-25A (2014) Test method for detection of alkali-silica reactive aggregate by accelerated expansion of mortar bars. Canadian Standards Association, Mississauga, Ontario, Canada, 425-433. EN 197-1 (2011) Cement. Composition specifications and conformity criteria for common cements. Brussels: European Committee for Standardization (CEN), 38. CSA A23.2-14A (2014) Potential expansivity of aggregates; procedure for length change due to alkali-aggregate reaction in concrete prisms. Canadian Standards Association, Mississauga, Ontario, Canada, 246-256. Medeiros, S.; Katayama, T.; Zanon, V.; Fernandes, I.; Silva, A.S.; Nunes, J.C.; Miranda, V.; Soares, D. (2012) Assessment of the potential alkali-reactivity of volcanic aggregates from Azores Islands. In: Drimalas, T.; Ideker, J.H. and Fournier, B. (eds.). Proceedings of the 12th International Conference on Alkali-Aggregate Reactivity in Concrete, Austin, Texas, USA, 10. CSA A23.2-27A (2014) Test methods and standard practices for concrete - Standard practice to identify degree of alkali-reactivity of aggregates and to identify measures to avoid deleterious expansion in concrete. Canadian Standards Association, Mississauga, Ontario, Canada, 439-451. ASTM C 1778 (2020) Standard guide for reducing the risk of deleterious alkali-aggregate reaction in concrete. The American Society for Testing and Materials, Philadelphia, USA, 11 Le Maitre, R.W.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P.; Bellieni, G.; Dudek, A.; Efremova, S.; Keller, J.; Lameyre, J.; Sabine, P.A.; Schmid, R.; Sørensen, H.; Wooley, A.R. (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences, Subcomission on the Systematics of Igneous Rocks. In: Le Maitre, R.W. (ed). Cambridge University Press, 236. https://doi.org/10.1017/CBO9780511535581 Falikman, V.R.; Rozentahl, N.K. (2017) Russian Federation. In: Sims I and Poole A (ed) Alkali-aggregate reaction in concrete: A world review. CRC Press/Balkema. Taylor & Francis Group, London, UK, 433-466. Medeiros, S.; Fernandes, I.; Fournier, B.; Nunes, J.C.; Ramos, V. (2020) Hawaiian and Azorean volcanic aggregates: a preliminary study of the potential alkali silica reaction. Bull. Eng. Geol. Environ. 80, 8949-8960. https://doi.org/10.1007/s10064-019-01702-z Menéndez, E.; García-Roves, R.; Aldea, B.; Puerto, E.; Recino, H. (2021) Study of the alkali-silica reaction rate of Spanish aggregates. Proposal of a classification based in accelerated mortar bars tests and petrographic parameters. Mater. Construcc. 71 [344], e263. https://doi.org/10.3989/mc.2021.13421 Wigum, B.J. (2012) Assessment and development of performance tests for alkali aggregate reaction in Iceland. In: Drimalas, T.; Ideker, J.H.; Fournier, B. (eds.). Proceedings, 14th International Conference on Alkali-Aggregate Reactions in Concrete, Austin, Texas, 10. Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Materiales de Construcción; Vol. 72 No. 346 (2022); e278 Materiales de Construcción; Vol. 72 Núm. 346 (2022); e278 1988-3226 0465-2746 10.3989/mc.2022.v72.i346 Alkali-Silica reaction Petrography Accelerated expansion tests Volcanic aggregates Reacción álcali-sílice Petrografía Ensayos de expansión acelerada Áridos volcánicos info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2022 ftjmdc https://doi.org/10.3989/mc.2022.16221 https://doi.org/10.3989/mc.2022.v72.i346 https://doi.org/10.1016/j.enggeo.2004.06.015 https://doi.org/10.1016/0262-5075(88)90050-4 https://doi.org/10.1007/s10064-019-01470-w https://doi.org/10.1016/S0165-125 2022-06-28T23:40:29Z The potential alkali-silica reactivity (ASR) of volcanic aggregates, especially basalts, remains a source of debate in the scientific community. When evaluating the potentially deleterious character of this type of aggregate, different laboratory testing methods may produce contradictory data; this is particularly evident when using the accelerated mortar bar test (AMBT). In order to better understand such discrepancies, this study applied several methods of characterizing potential aggregate alkali reactivity, including the accelerated mortar bar test (AMBT), petrographic characterization, and the concrete prism test (CPT). Moreover, this study assessed volcanic aggregate samples from sites around the world, including the Azores, Brazil, Canada, the Canary and Hawaiian Islands, Iceland, Japan, Mozambique, New Zealand, Norway, and Turkey. The results obtained contribute to accurately assessing the potential alkali reactivity of volcanic aggregates and enhance the understanding of their different behaviours. La reactividad potencial álcali-sílice (RAS) de los áridos volcánicos, especialmente basaltos, sigue siendo una fuente de debate en la comunidad científica. Se puede obtener información contradictoria dependiendo de los métodos de ensayo utilizados en el laboratorio para evaluar el carácter potencialmente perjudicial de tales áridos, especialmente en el caso del ensayo acelerado de barra de mortero. Para comprender mejor esta discrepancia, se realizaron una serie de ensayos: caracterización petrográfica, ensayo acelerado de barra de mortero y de prisma de hormigón. Además, se seleccionaron para este estudio varios áridos volcánicos de diferentes partes del mundo (i.e., Azores, Brasil, Canadá, Islas Canarias y Hawaianas, Islandia, Japón, Mozambique, Nueva Zelanda, Noruega, Turquía). Los resultados obtenidos contribuyen a evaluar la reactividad alcalina potencial de estos áridos y permiten comprender mejor los diferentes comportamientos de los distintos áridos volcánicos estudiados. Article in Journal/Newspaper Iceland Islandia Materiales de Construcción (E-Journal) Barra ENVELOPE(-61.417,-61.417,-64.367,-64.367) Canada New Zealand Noruega ENVELOPE(-12.333,-12.333,-71.333,-71.333) Norway Prisma ENVELOPE(-58.767,-58.767,-69.200,-69.200) Rocas ENVELOPE(-56.948,-56.948,-63.398,-63.398) Space Science Reviews 211 1-4 485 500