The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone

Limestone is one of the most frequent building stones used in monuments in Egypt from ancient Egyptian times and salt weathering is one of the main threats to these monuments. During this work, cylindrical limestone samples (2 cm diameter and approx. 4 cm length) from Mokattam group, one of the most...

Full description

Bibliographic Details
Published in:GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
Main Authors: Aly, N., Gomez–Heras, M., Hamed, A., Álvarez de Buergo, M., Soliman, F.
Format: Article in Journal/Newspaper
Language:English
Published: Consejo Superior de Investigaciones Científicas 2015
Subjects:
Online Access:https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682
https://doi.org/10.3989/mc.2015.00514
id ftjmdc:oai:materialesdeconstruccion.revistas.csic.es:article/1682
record_format openpolar
institution Open Polar
collection Materiales de Construcción (E-Journal)
op_collection_id ftjmdc
language English
topic Stone decay
Salt weathering
Limestone
Durability
Deterioro de la piedra
Deterioro por sales
Caliza
Durabilidad
spellingShingle Stone decay
Salt weathering
Limestone
Durability
Deterioro de la piedra
Deterioro por sales
Caliza
Durabilidad
Aly, N.
Gomez–Heras, M.
Hamed, A.
Álvarez de Buergo, M.
Soliman, F.
The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone
topic_facet Stone decay
Salt weathering
Limestone
Durability
Deterioro de la piedra
Deterioro por sales
Caliza
Durabilidad
description Limestone is one of the most frequent building stones used in monuments in Egypt from ancient Egyptian times and salt weathering is one of the main threats to these monuments. During this work, cylindrical limestone samples (2 cm diameter and approx. 4 cm length) from Mokattam group, one of the most frequent materials in historic Cairo, were subjected, in a purpose-made simulation chamber, to laboratory salt weathering tests with a 10% weight NaCl solution at different temperatures (20, 30, 40 °C). During each test, temperature was kept constant and salt solutions flowed continuously imbibing samples by capillary rise resembling the way they get into building stone in many real cases. Air temperature, relative humidity inside the simulation chamber and also samples weight were digitally monitored and recorded. Results show the influence of temperature and the ratio between imbibitions and evaporation on the dynamics of salt crystallization in the samples. Los monumentos egipcios se construyeron frecuentemente con caliza desde la antigüedad y uno de sus principales agentes de deterioro son las sales. Por ejemplo, en la zona histórica de El Cairo son frecuentes las calizas del grupo Mokattam. Cilindros (2 cm de diámetro y aproximadamente 4 cm de altura) de esta caliza se sometieron a ensayos de deterioro por sales en una cámara experimental específicamente diseñada. Se utilizó una solución salina (10% en peso de NaCl) a diferentes temperaturas (20 °C, 30 °C, 40 °C) que se mantuvieron constantes en cada ensayo. La solución fluía constantemente embebiendo las muestras por capilaridad, simulando lo que ocurre en casos reales. La temperatura del aire, humedad relativa en la cámara y peso de las muestras se monitorizaron con sensores digitales. Los resultados muestran la influencia de la temperatura y del balance entre imbibición y evaporación en la dinámica de la cristalización de sales en las muestras.
format Article in Journal/Newspaper
author Aly, N.
Gomez–Heras, M.
Hamed, A.
Álvarez de Buergo, M.
Soliman, F.
author_facet Aly, N.
Gomez–Heras, M.
Hamed, A.
Álvarez de Buergo, M.
Soliman, F.
author_sort Aly, N.
title The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone
title_short The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone
title_full The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone
title_fullStr The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone
title_full_unstemmed The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone
title_sort influence of temperature in a capillary imbibition salt weathering simulation test on mokattam limestone
publisher Consejo Superior de Investigaciones Científicas
publishDate 2015
url https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682
https://doi.org/10.3989/mc.2015.00514
genre Permafrost and Periglacial Processes
genre_facet Permafrost and Periglacial Processes
op_source Materiales de Construcción; Vol. 65 No. 317 (2015); e044
Materiales de Construcción; Vol. 65 Núm. 317 (2015); e044
1988-3226
0465-2746
10.3989/mc.2015.v65.i317
op_relation https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682/2046
https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682/2047
https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682/2048
Rodriguez, N.C.; Doehne, E. (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surface Processes and landforms. 24, 191–209. 3.0.CO;2-G" target="_blank">http://dx.doi.org/10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G
Benavente, D.; García del Cura, M.A.; Bernabeu, A.; Ordo-ez, S. (2001) Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng. Geol. 59 [3–4], 313–325. http://dx.doi.org/10.1016/S0013-7952(01)00020-5
McBride, E.F.; Picard, M.D. (2004) Origin of honeycombs and related weathering forms in Oligocene Macigno Sandstone, Tuscan Coast near Livorno, Italy. Earth Surface Processes and landforms. 29, 713–735. http://dx.doi.org/10.1002/esp.1065
Gomez-Heras, M.; Benavente, D.; Alvarez de Buergo, M.; Fort, R. (2004) Soluble salt minerals from pigeon droppings as potential contributors to the decay of stone based Cultural Heritage. Eur. J. Mineral. 16, 505–509. http://dx.doi.org/10.1127/0935-1221/2004/0016-0505
Scherer, G.W. (2004) Stress from crystallization of salt. Cem. Concr. Res. 34, 1613–1624. http://dx.doi.org/10.1016/j.cemconres.2003.12.034
Kamh, G.; Kallash, A.; Azzam, R. (2008) Factors controlling building susceptibility to earthquakes: 14-year recordings of Islamic archaeological sites in Old Cairo, Egypt: a case study. Environ. Geol. 56, 269–279. http://dx.doi.org/10.1007/s00254-007-1162-3
Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. (2003) Weathering damage on Pharaonic sandstone monuments in Luxor-Egypt. Build. Environ. 38, 1089–1103. http://dx.doi.org/10.1016/S0360-1323(03)00086-6
Smith, B.J.; Torok, A.; McAlister, J.J.; Megarry, Y. (2003) Observations on the factors influencing stability of building stones following contour scaling: a case study of oolitic limestones from Budapest, Hungary. Build. Environ. 38 [9–10], 1173–1183. http://dx.doi.org/10.1016/S0360-1323(03)00076-3
Huinink, H.P.; Pel, L.; Kopinga, K. (2004) Simulating the growth of tafoni. Earth Surface Processes and landforms. 29, 1225–1233. http://dx.doi.org/10.1002/esp.1087
Goudie, A.S. (1999) A comparison of the relative resistance of limestones to frost and salt weathering. Permafrost and Periglacial Processes. 10, 309–316. 3.0.CO;2-C" target="_blank">http://dx.doi.org/10.1002/(SICI)1099-1530(199910/12)10:4<309::AID-PPP330>3.0.CO;2-C
Benavente, D.; Cueto, N.; Martínez-Martínez, J.; García del Cura, M.A.; Ca-averas, J.C. (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 52, 215–224. http://dx.doi.org/10.1007/s00254-006-0475-y
Nicholson, D.T. (2001) Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surface Processes and Landforms. 26, 819–838. http://dx.doi.org/10.1002/esp.228
Chéné, G.; Bastian, G.; Brunjail, C.; Laurent, J.P. (1999) Accelerating weathering of tuffeau block submitted to wetting–drying cycles. Mater. Struct. 32 [221], 525–532. http://dx.doi.org/10.1007/BF02481637
Gomez-Heras, M.; Fort, R. (2007) Patterns of halite (NaCl) crystallisation in building stone conditioned by laboratory heating regimes. Environ. Geo. 52, 239–247. http://dx.doi.org/10.1007/s00254-006-0538-0
Scherer, G.W. (2000) Stress from crystallization of salt in pores. 9th International on Deterioration and Conservation of Stone, Venice, New York. Elsevier, 187–194. http://dx.doi.org/10.1016/B978-044450517-0/50100-8
Sawdy, A.; Heritage, A.; Pel, L. (2008) A review of salt transport in porous media, assessment methods and salt reduction treatments. SWBSS proceedings, 1–27. Ottosen LM et al. (Eds). Salt Weathering on Buildings and Stone Sculptures, Technical university of Denmark–Department of civil Engineering, Lyngby, Denmak. PMid:18224546
Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. (2003) Limestone weathering of historical monuments in Cairo, Egypt. In Siegesmund, S.; Weiss, T. & Vollbrecht, A. (edit.) Natural stone, weathering phenomena, conservation strategies and case studies, Geological Society, London, Special Publication. 205, 217–239.
Goudie, A.S. (1974) Further experimental investigation of rock weathering by salt and other mechanical processes. Zeitschrift fur Geomorphologie supplement band. 21, 1–12.
Sperling, C.H.B.; Cooke, R.U. (1985) Laboratory simulation of rock weathering by salt crystallization and hydration processes in hot- arid environments. Earth Surface Processes and Landforms. 10 [6], 541–555. http://dx.doi.org/10.1002/esp.3290100603
Grossi, C.M.; Esbert, R.M. (1994) Las sales solubles en el deterioro de rocas monumentales; revisión bibliográfica. Mater. Construc. 44, 15–30. http://dx.doi.org/10.3989/mc.1994.v44.i235.579
Goudie, A. S.; Viles, H. A. (1997) Salt Weathering Hazards. John Wiley, Chichester.
Benavente, D.; García del Cura, M.A.; Ordo-ez, S. (2003) Salt influence on evaporation from porous building rocks. Construc. Build. Mat. 17, 113–122. http://dx.doi.org/10.1016/S0950-0618(02)00100-9
Hamed, A.; Aly, N.; Gomez-Heras, M.; Álvarez de Buergo, M. (submitted) New experimental method to study the combined effect of temperature and salt weathering. In Prikryl R et al. (Eds.). Geological Society Special Publication, Sustainability of traditional construction materials in modern Geol. Soc. Publishing House, Bath, series Special Publication.
Mac Adam, D.L. (1985) Colour Measurement–Theme and Variations, Second Revised Edition, Springer-Verlag.
Prasad, K.M.; Raheem, S.; Vijayalekshmi, P.; Kamala Sastri, C. (1996) Basic aspects and applications of tristimulus colorimetry–Review–Talanta. 1187–1206.
Commission Internationale de l'Eclairage (CIE), (1986) Colorimetry, 2nd edition. Publication CIE 15.2. Bureau central de la CIE, Paris, France, 83.
ASTM (2000) E313–00 Standard practice for calculating yellowness and whiteness indices from instrumentally measure color coordinates. ASTM, West Conshohocken, Pennsylvania.
Benavente, D.; Martínez-Verdú, F.; Bernabeu, A.; Viquiera, V.; Fort, R.; García del Cura, M.A.; Illueca, C.; Ordó-ez, S. (2003) Influence of surface roughness on colour changes in building stones. Color Research and Application. 28/5, 343–351. http://dx.doi.org/10.1002/col.10178
DIN (2010) EN ISO42887 Geometrical Product Specifications (GPS) - Surface texture: Profile method-Terms, definitions and surface texture parameters.
Folk, R.L. (1962) Classification of carbonate rocks- a symposium, American Association of Petroleum Geologists, Tulsa, Memoir. 62–84.
Scolle, P.A.; Scolle, D.S.U. (2003) A color guide to petrography of carbonate rocks, grains, textures, porosity, diagenesis. American Association of Petroleum Geologiests, Tulsa, Memoir. 77, 394–406.
https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682
doi:10.3989/mc.2015.00514
op_rights Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/mc.2015.00514
https://doi.org/10.3989/mc.2015.v65.i317
https://doi.org/10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G
https://doi.org/10.1016/S0013-7952(01)00020-5
https://doi.org/10.1002/esp.1065
https://
container_title GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY
container_volume 7
container_issue 3
container_start_page 65
op_container_end_page 86
_version_ 1766167247835889664
spelling ftjmdc:oai:materialesdeconstruccion.revistas.csic.es:article/1682 2023-05-15T17:58:34+02:00 The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone La influencia de la temperatura en un ensayo simulado de deterioro por sales mediante absorción capilar en la caliza de mokattam Aly, N. Gomez–Heras, M. Hamed, A. Álvarez de Buergo, M. Soliman, F. 2015-03-30 text/html application/pdf text/xml https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682 https://doi.org/10.3989/mc.2015.00514 eng eng Consejo Superior de Investigaciones Científicas https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682/2046 https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682/2047 https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682/2048 Rodriguez, N.C.; Doehne, E. (1999) Salt weathering: influence of evaporation rate, supersaturation and crystallization pattern. Earth Surface Processes and landforms. 24, 191–209. 3.0.CO;2-G" target="_blank">http://dx.doi.org/10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G Benavente, D.; García del Cura, M.A.; Bernabeu, A.; Ordo-ez, S. (2001) Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng. Geol. 59 [3–4], 313–325. http://dx.doi.org/10.1016/S0013-7952(01)00020-5 McBride, E.F.; Picard, M.D. (2004) Origin of honeycombs and related weathering forms in Oligocene Macigno Sandstone, Tuscan Coast near Livorno, Italy. Earth Surface Processes and landforms. 29, 713–735. http://dx.doi.org/10.1002/esp.1065 Gomez-Heras, M.; Benavente, D.; Alvarez de Buergo, M.; Fort, R. (2004) Soluble salt minerals from pigeon droppings as potential contributors to the decay of stone based Cultural Heritage. Eur. J. Mineral. 16, 505–509. http://dx.doi.org/10.1127/0935-1221/2004/0016-0505 Scherer, G.W. (2004) Stress from crystallization of salt. Cem. Concr. Res. 34, 1613–1624. http://dx.doi.org/10.1016/j.cemconres.2003.12.034 Kamh, G.; Kallash, A.; Azzam, R. (2008) Factors controlling building susceptibility to earthquakes: 14-year recordings of Islamic archaeological sites in Old Cairo, Egypt: a case study. Environ. Geol. 56, 269–279. http://dx.doi.org/10.1007/s00254-007-1162-3 Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. (2003) Weathering damage on Pharaonic sandstone monuments in Luxor-Egypt. Build. Environ. 38, 1089–1103. http://dx.doi.org/10.1016/S0360-1323(03)00086-6 Smith, B.J.; Torok, A.; McAlister, J.J.; Megarry, Y. (2003) Observations on the factors influencing stability of building stones following contour scaling: a case study of oolitic limestones from Budapest, Hungary. Build. Environ. 38 [9–10], 1173–1183. http://dx.doi.org/10.1016/S0360-1323(03)00076-3 Huinink, H.P.; Pel, L.; Kopinga, K. (2004) Simulating the growth of tafoni. Earth Surface Processes and landforms. 29, 1225–1233. http://dx.doi.org/10.1002/esp.1087 Goudie, A.S. (1999) A comparison of the relative resistance of limestones to frost and salt weathering. Permafrost and Periglacial Processes. 10, 309–316. 3.0.CO;2-C" target="_blank">http://dx.doi.org/10.1002/(SICI)1099-1530(199910/12)10:4<309::AID-PPP330>3.0.CO;2-C Benavente, D.; Cueto, N.; Martínez-Martínez, J.; García del Cura, M.A.; Ca-averas, J.C. (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 52, 215–224. http://dx.doi.org/10.1007/s00254-006-0475-y Nicholson, D.T. (2001) Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surface Processes and Landforms. 26, 819–838. http://dx.doi.org/10.1002/esp.228 Chéné, G.; Bastian, G.; Brunjail, C.; Laurent, J.P. (1999) Accelerating weathering of tuffeau block submitted to wetting–drying cycles. Mater. Struct. 32 [221], 525–532. http://dx.doi.org/10.1007/BF02481637 Gomez-Heras, M.; Fort, R. (2007) Patterns of halite (NaCl) crystallisation in building stone conditioned by laboratory heating regimes. Environ. Geo. 52, 239–247. http://dx.doi.org/10.1007/s00254-006-0538-0 Scherer, G.W. (2000) Stress from crystallization of salt in pores. 9th International on Deterioration and Conservation of Stone, Venice, New York. Elsevier, 187–194. http://dx.doi.org/10.1016/B978-044450517-0/50100-8 Sawdy, A.; Heritage, A.; Pel, L. (2008) A review of salt transport in porous media, assessment methods and salt reduction treatments. SWBSS proceedings, 1–27. Ottosen LM et al. (Eds). Salt Weathering on Buildings and Stone Sculptures, Technical university of Denmark–Department of civil Engineering, Lyngby, Denmak. PMid:18224546 Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. (2003) Limestone weathering of historical monuments in Cairo, Egypt. In Siegesmund, S.; Weiss, T. & Vollbrecht, A. (edit.) Natural stone, weathering phenomena, conservation strategies and case studies, Geological Society, London, Special Publication. 205, 217–239. Goudie, A.S. (1974) Further experimental investigation of rock weathering by salt and other mechanical processes. Zeitschrift fur Geomorphologie supplement band. 21, 1–12. Sperling, C.H.B.; Cooke, R.U. (1985) Laboratory simulation of rock weathering by salt crystallization and hydration processes in hot- arid environments. Earth Surface Processes and Landforms. 10 [6], 541–555. http://dx.doi.org/10.1002/esp.3290100603 Grossi, C.M.; Esbert, R.M. (1994) Las sales solubles en el deterioro de rocas monumentales; revisión bibliográfica. Mater. Construc. 44, 15–30. http://dx.doi.org/10.3989/mc.1994.v44.i235.579 Goudie, A. S.; Viles, H. A. (1997) Salt Weathering Hazards. John Wiley, Chichester. Benavente, D.; García del Cura, M.A.; Ordo-ez, S. (2003) Salt influence on evaporation from porous building rocks. Construc. Build. Mat. 17, 113–122. http://dx.doi.org/10.1016/S0950-0618(02)00100-9 Hamed, A.; Aly, N.; Gomez-Heras, M.; Álvarez de Buergo, M. (submitted) New experimental method to study the combined effect of temperature and salt weathering. In Prikryl R et al. (Eds.). Geological Society Special Publication, Sustainability of traditional construction materials in modern Geol. Soc. Publishing House, Bath, series Special Publication. Mac Adam, D.L. (1985) Colour Measurement–Theme and Variations, Second Revised Edition, Springer-Verlag. Prasad, K.M.; Raheem, S.; Vijayalekshmi, P.; Kamala Sastri, C. (1996) Basic aspects and applications of tristimulus colorimetry–Review–Talanta. 1187–1206. Commission Internationale de l'Eclairage (CIE), (1986) Colorimetry, 2nd edition. Publication CIE 15.2. Bureau central de la CIE, Paris, France, 83. ASTM (2000) E313–00 Standard practice for calculating yellowness and whiteness indices from instrumentally measure color coordinates. ASTM, West Conshohocken, Pennsylvania. Benavente, D.; Martínez-Verdú, F.; Bernabeu, A.; Viquiera, V.; Fort, R.; García del Cura, M.A.; Illueca, C.; Ordó-ez, S. (2003) Influence of surface roughness on colour changes in building stones. Color Research and Application. 28/5, 343–351. http://dx.doi.org/10.1002/col.10178 DIN (2010) EN ISO42887 Geometrical Product Specifications (GPS) - Surface texture: Profile method-Terms, definitions and surface texture parameters. Folk, R.L. (1962) Classification of carbonate rocks- a symposium, American Association of Petroleum Geologists, Tulsa, Memoir. 62–84. Scolle, P.A.; Scolle, D.S.U. (2003) A color guide to petrography of carbonate rocks, grains, textures, porosity, diagenesis. American Association of Petroleum Geologiests, Tulsa, Memoir. 77, 394–406. https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1682 doi:10.3989/mc.2015.00514 Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Materiales de Construcción; Vol. 65 No. 317 (2015); e044 Materiales de Construcción; Vol. 65 Núm. 317 (2015); e044 1988-3226 0465-2746 10.3989/mc.2015.v65.i317 Stone decay Salt weathering Limestone Durability Deterioro de la piedra Deterioro por sales Caliza Durabilidad info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed article Artículo revisado por pares 2015 ftjmdc https://doi.org/10.3989/mc.2015.00514 https://doi.org/10.3989/mc.2015.v65.i317 https://doi.org/10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G https://doi.org/10.1016/S0013-7952(01)00020-5 https://doi.org/10.1002/esp.1065 https:// 2022-02-21T11:29:09Z Limestone is one of the most frequent building stones used in monuments in Egypt from ancient Egyptian times and salt weathering is one of the main threats to these monuments. During this work, cylindrical limestone samples (2 cm diameter and approx. 4 cm length) from Mokattam group, one of the most frequent materials in historic Cairo, were subjected, in a purpose-made simulation chamber, to laboratory salt weathering tests with a 10% weight NaCl solution at different temperatures (20, 30, 40 °C). During each test, temperature was kept constant and salt solutions flowed continuously imbibing samples by capillary rise resembling the way they get into building stone in many real cases. Air temperature, relative humidity inside the simulation chamber and also samples weight were digitally monitored and recorded. Results show the influence of temperature and the ratio between imbibitions and evaporation on the dynamics of salt crystallization in the samples. Los monumentos egipcios se construyeron frecuentemente con caliza desde la antigüedad y uno de sus principales agentes de deterioro son las sales. Por ejemplo, en la zona histórica de El Cairo son frecuentes las calizas del grupo Mokattam. Cilindros (2 cm de diámetro y aproximadamente 4 cm de altura) de esta caliza se sometieron a ensayos de deterioro por sales en una cámara experimental específicamente diseñada. Se utilizó una solución salina (10% en peso de NaCl) a diferentes temperaturas (20 °C, 30 °C, 40 °C) que se mantuvieron constantes en cada ensayo. La solución fluía constantemente embebiendo las muestras por capilaridad, simulando lo que ocurre en casos reales. La temperatura del aire, humedad relativa en la cámara y peso de las muestras se monitorizaron con sensores digitales. Los resultados muestran la influencia de la temperatura y del balance entre imbibición y evaporación en la dinámica de la cristalización de sales en las muestras. Article in Journal/Newspaper Permafrost and Periglacial Processes Materiales de Construcción (E-Journal) GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY 7 3 65 86