Novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system

The problem of load distribution between hydraulic units of hydroelectric power plants (HPPs) is an urgent task due to the nonlinearity of the characteristics of the hydraulic turbine and the individual characteristics of power units, the operating conditions of which are often different. It is nece...

Full description

Bibliographic Details
Main Authors: Yu. V. Kazantsev, D. V. Kornilovich, A. I. Khalyasmaa, A. A. Arkhipov, A. V. Miklukhin, L. Yu. Sergievichev, M. V. Tsuran, Ю. В. Казанцев, Д. В. Корнилович, А. И. Хальясмаа, А. А. Архипов, А. В. Миклухин, Л. Ю. Сергиевичев, М. В. Цуран
Other Authors: Выражаем особую благодарность ПАО «Русгидро» за содействие в сборе исходной информации и помощь в интеграции разработанного алгоритма в действующую на станции систему ГРАРМ для проведения натурных испытаний. Данная работа была профинансирована Новосибирским государственным техническим университетом путем предоставления гранта на проведение исследовательских работ.
Format: Article in Journal/Newspaper
Language:Russian
Published: Международный издательский дом научной периодики "Спейс 2024
Subjects:
Online Access:https://www.isjaee.com/jour/article/view/2389
https://doi.org/10.15518/isjaee.2024.03.012-027
id ftjisjaee:oai:oai.alternative.elpub.ru:article/2389
record_format openpolar
institution Open Polar
collection Alternative Energy and Ecology (ISJAEE)
op_collection_id ftjisjaee
language Russian
topic стационарная устойчивость гидрогенератора
hydroelectric power plants
automatic generation control
water flow optimization
active and reactive power control
steady-state stability of hydroelectric generator
гидроэлектростанции
автоматический контроль генерации
оптимизация потока воды
регулирование активной и реактивной мощности
spellingShingle стационарная устойчивость гидрогенератора
hydroelectric power plants
automatic generation control
water flow optimization
active and reactive power control
steady-state stability of hydroelectric generator
гидроэлектростанции
автоматический контроль генерации
оптимизация потока воды
регулирование активной и реактивной мощности
Yu. V. Kazantsev
D. V. Kornilovich
A. I. Khalyasmaa
A. A. Arkhipov
A. V. Miklukhin
L. Yu. Sergievichev
M. V. Tsuran
Ю. В. Казанцев
Д. В. Корнилович
А. И. Хальясмаа
А. А. Архипов
А. В. Миклухин
Л. Ю. Сергиевичев
М. В. Цуран
Novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system
topic_facet стационарная устойчивость гидрогенератора
hydroelectric power plants
automatic generation control
water flow optimization
active and reactive power control
steady-state stability of hydroelectric generator
гидроэлектростанции
автоматический контроль генерации
оптимизация потока воды
регулирование активной и реактивной мощности
description The problem of load distribution between hydraulic units of hydroelectric power plants (HPPs) is an urgent task due to the nonlinearity of the characteristics of the hydraulic turbine and the individual characteristics of power units, the operating conditions of which are often different. It is necessary to take into account the most advanced optimization methods that take into account the nonlinearity of the turbine characteristics. Methods must also take into account strict restrictions on the operating conditions of power equipment when searching for the extremum of the objective function, specified in the form of equalities and inequalities. When solving the above optimization problem, restrictions are imposed on the computing power of automated process control systems (APCS), which must operate in real time. To solve the optimization problem, the interior point method was analyzed and the Lagrange multiplier method was modified so that it could minimize the turbine flow rate and active energy losses in the windings of electric generators and transformers. The article presents the results of modeling the developed optimization algorithms and the results of full-scale testing of an automatic production control system using the described algorithms. All tests performed showed a fairly high efficiency of the proposed optimization methods under real operating conditions. Проблема распределения нагрузки между гидроагрегатами гидроэлектростанций (ГЭС) является актуальной задачей из-за нелинейности характеристик гидротурбины и индивидуальных особенностей энергоблоков, условия эксплуатации которых зачастую различны. Необходимо брать во внимание самые передовые методы оптимизации, учитывающие нелинейность характеристики турбины. Методы также должны учитывать строгие ограничения на условия эксплуатации энергетического оборудования при поиске экстремума целевой функции, указанной в форме равенств и неравенств. При решении вышеупомянутой задачи оптимизации накладываются ограничения на вычислительные мощности ...
author2 Выражаем особую благодарность ПАО «Русгидро» за содействие в сборе исходной информации и помощь в интеграции разработанного алгоритма в действующую на станции систему ГРАРМ для проведения натурных испытаний. Данная работа была профинансирована Новосибирским государственным техническим университетом путем предоставления гранта на проведение исследовательских работ.
format Article in Journal/Newspaper
author Yu. V. Kazantsev
D. V. Kornilovich
A. I. Khalyasmaa
A. A. Arkhipov
A. V. Miklukhin
L. Yu. Sergievichev
M. V. Tsuran
Ю. В. Казанцев
Д. В. Корнилович
А. И. Хальясмаа
А. А. Архипов
А. В. Миклухин
Л. Ю. Сергиевичев
М. В. Цуран
author_facet Yu. V. Kazantsev
D. V. Kornilovich
A. I. Khalyasmaa
A. A. Arkhipov
A. V. Miklukhin
L. Yu. Sergievichev
M. V. Tsuran
Ю. В. Казанцев
Д. В. Корнилович
А. И. Хальясмаа
А. А. Архипов
А. В. Миклухин
Л. Ю. Сергиевичев
М. В. Цуран
author_sort Yu. V. Kazantsev
title Novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system
title_short Novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system
title_full Novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system
title_fullStr Novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system
title_full_unstemmed Novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system
title_sort novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system
publisher Международный издательский дом научной периодики "Спейс
publishDate 2024
url https://www.isjaee.com/jour/article/view/2389
https://doi.org/10.15518/isjaee.2024.03.012-027
long_lat ENVELOPE(-62.597,-62.597,-64.529,-64.529)
geographic Lagrange
geographic_facet Lagrange
genre Arctic
genre_facet Arctic
op_source Alternative Energy and Ecology (ISJAEE); № 3 (2024); 12-27
Альтернативная энергетика и экология (ISJAEE); № 3 (2024); 12-27
1608-8298
op_relation https://www.isjaee.com/jour/article/view/2389/1936
T. Capurso, M. Stefanizzi, M. Torresi, and S. M. Camporeale. «Perspective of the role of hydrogen in the 21st century energy transition». Energy Convers. Manag., vol. 251, no. July 2021, p. 114898, 2022, doi:10.1016/j.enconman.2021.114898.
Calise, F., Cappiello, F.L., Cimmino, L., Dentice d’Accadia, M. & Vicidomini, M. (2023). Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells. Renewable Energy.
Henry, A., Mcstay, D., Rooney, D., Robertson, P. & Foley, A. M. (2023). Techno-economic analysis to identify the optimal conditions for green hydrogen production. Energy Conversion and Management.
Boscherini, M., Storione, A., Minelli, M., Miccio, F. & Doghieri, F. (2023). New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas. Energies.
Ibrayeva A. E. New Trends and Prospects of Hydrogen Energy in the World and in Kazakhstan. Russia & World: Sc. Dialogue. 2023; (3):71-87. (In Russ.) https://doi.org/10.53658/RW2023-3-3(9)-71-87.
X. Song, D. Liang, J. Song, G. Xu, Z. Deng and M. Niu. «Problems and Technology Development Trends of Hydrogen Production from Renewable Energy Power Electrolysis - A Review». 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 2021, pp. 3879-3882, doi:10.1109/EI252483.2021.9713350.
H. Bai, H. Chen and W. Shi. «Hydrogen Production by Renewable Energy and Future Trend in China». 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2), Chengdu, China, 2022, pp. 676-680, doi:10.1109/EI256261.2022.10116157.
M. Vadaszi, I. Szunyog and A. B. Szombati-Galyas. «The Role of Hydrogen Connected to the Existing Natural Gas Infrastructure in the Hungarian Energy Transition». 2023 19th International Conference on the European Energy Market (EEM), Lappeenranta, Finland, 2023, pp. 1-5, doi:10.1109/EEM58374.2023.10161884.
M. L. Imeni and M. S. Ghazizadeh. «Pave the Way for Hydrogen-Ready Smart Energy Hubs in Deep Renewable Energy System». 2023 8th International Conference on Technology and Energy Management (ICTEM), Mazandaran, Babol, Iran, Islamic Republic of, 2023, pp. 1-5, doi:10.1109/ICTEM56862.2023.10083890.
S. Li, Y. Si, L. Ma, N. Xin, Z. Wu and M. Gao. «Hydrogen Pricing Method Based on Geographical Distribution Characteristics of Renewable Energy Base». 2022 4th International Conference on Power and Energy Technology (ICPET), Beijing, China, 2022, pp. 671-676, doi:10.1109/ICPET55165.2022.9918305.
A. M. Abomazid, N. A. El-Taweel and H. E. Z. Farag. «Optimal Energy Management of Hydrogen Energy Facility Using Integrated Battery Energy Storage and Solar Photovoltaic Systems» in IEEE Transactions on Sustainable Energy, vol. 13, no. 3, pp. 1457-1468, July 2022, doi:10.1109/TSTE.2022.3161891.
U. Bossel. «Does a Hydrogen Economy Make Sense?» in Proceedings of the IEEE, vol. 94, no. 10, pp. 1826-1837, Oct. 2006, doi:10.1109/JPROC.2006.883715.
G. Li, J. Chen, X. Zheng, C. Xiao and S. Zhou. «Research on Energy Management Strategy of Hydrogen Fuel Cell Vehicles». 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020, pp. 7604-7607, doi:10.1109/CAC51589.2020.9326669.
X. Zhao, Y. Yao, W. Liu, R. Jain and C. Zhao. «A Hydrogen Load Modeling Method for Integrated Hydrogen Energy System Planning». 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2023, pp. 1-5, doi:10.1109/ISGT51731.2023.10066443.
K. Nigim, J. McQueen and M. Persohn-Costa. «Operational modes of hydrogen energy storage in a micro grid system». 2015 IEEE Electrical Power and Energy Conference (EPEC), London, ON, Canada, 2015, pp. 473-477, doi:10.1109/EPEC.2015.7379997.
Alsalman A. et al. Users, planners, and governments perspectives: A public survey on autonomous vehicles future advancements. Transportation Engineering, 2021, Vol. 3. https://doi.org/10.1016/j.treng.2020.100044.
Orlov A. A., Nesterenko G. A., Nesterenko I. S. Overview of perspectives of hydrogen energy. Development of science and practice in a globally changing world under the conditions of risks: Proceedings of the IX International Scientific and Practical Conference, Moscow, 2022: 173-177. Available from: https://doi.org/10.34755/IROK.2022.96.53.039.
Mestnikov N. P., Davydov G. I., Al-Zakkar A. M. Hydrogen energy in North and Arctic. Textbook on the discipline «General Energy» and the elective «Fundamentals of Energy Saving and Resource Efficiency in the North». Yakutsk: NEFU Publishing House, 2022. [Electronic resource]. Available from: https://www.elibrary.ru/item.asp?id=48690434.
Malykh E. B., Plotnikov V. A. Hydrogen energy: assessment of development prospects. Natural Humanities Research. 2022; 41(3):216-220.
L. Wang, Z. Dou, Y. Fan and C. Shi. «Research Front and Trend Analysis of Hydrogen Based Integrated Energy System by CiteSpace». 2021 6th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2021, pp. 1466-1471, doi:10.1109/ICPRE52634.2021.9635422.
K. K. T. Thanapalan et al. «Progress in the development of renewable hydrogen vehicles, storage, infrastructure in the UK: Hydrogen Centre in its early years of operation». 2011 2nd International Conference on Intelligent Control and Information Processing, Harbin, China, 2011, pp. 738-742, doi:10.1109/ICICIP.2011.6008347.
Z. Xiao, Z. Zhang, Y. Yu and M. Ran. «Analysis of the Development Trend of China’s ElectricityHydrogen Energy Technology Research Based on Bibliometrics». 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE), Guangzhou, China, 2023, pp. 1511-1516, doi:10.1109/CEEPE58418.2023.10166348.
H. Li, W. Lv, H. Zhao and C. Chen. «A village integrated energy system operating in electricity market and hydrogen market». 2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE), Shenyang, China, 2023, pp. 1-6, doi:10.1109/ICCSIE55183.2023.10175270.
D. Nikolova and D. Stoilov. «Household Energy Efficiency, Diversification of Suppliers and Renewable Hydrogen Production – The Pillars of European Energy Independence». 2022 14th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 2022, pp. 1-3, doi:10.1109/BulEF56479.2022.10020199.
D. Zhai, J. Zhang, J. Shen and Y. Li. «Optimal Scheduling of Hydrogen Energy Storage IES with Dualfuel Cells». 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2022, pp. 960-966, doi:10.1109/ICPRE55555.2022.9960655.
J. Li and S. Obara. «Study on an energy supply system assuming a pipeline transportation of compressed hydrogen for distributed fuel cell in China». 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Xi’an, China, 2019, pp. 440-443, doi:10.1109/PEDG.2019.8807745.
Y. Fuyuan, T. Xueqin, X. Tong and W. Xinlei. «Adaptability Assessment of Hydrogen Energy Storage System Based on Proton Exchange Membrane Fuel Cell under the Scenarios of Peaking Shaving and Frequency Regulation». 2021 4th Asia Conference on Energy and Electrical Engineering (ACEEE), Bangkok, Thailand, 2021, pp. 84-90, doi:10.1109/ACEEE51855.2021.9575144.
M. F. Smitkova, F. Janicek and F. Martins. «Hydrogen Economy: Brief Sumarization of Hydrogen Economy». 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 2022, pp. 1-5, doi:10.1109/ICECET55527.2022.9872907.
W. Pirom and A. Srisiriwat. «Electrical EnergyBased Hydrogen Production via PEM Water Electrolysis for Sustainable Energy». 2022 International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 2022, pp. 1-4, doi:10.1109/iEECON53204.2022.9741667.
S. Zhang, C. Wang, R. Chen, S. Li, L. Liu and H. Dai. «Optimization of System Configuration and Production Simulation for On-grid Green Hydrogen Projects». 2022 5th International Conference on Renewable Energy and Power Engineering (REPE), Beijing, China, 2022, pp. 397-401, doi:10.1109/REPE55559.2022.9948766.
B. Ma et al. «Development of Hydrogen Energy Storage Industry and Research Progress of Hydrogen Production Technology». 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 2021, pp. 1-6, doi:10.1109/CIEEC50170.2021.9510748.
Y. Song et al. «International Hydrogen Energy Policy Summary and Chinese Policy Analysis». 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 2020, pp. 3552-3557, doi:10.1109/EI250167.2020.9346615.
W. Chu and Y. Zhang. «The Efficiency and Economic Feasibility Study on Wind-Hydrogen System». 2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 2020, pp. 1198-1203, doi:10.1109/iSPEC50848.2020.9350988.
A. Ciancio and L. De Santoli. «Assessing the Levelized Cost of Hydrogen Production in a Renewable Hydrogen Community in South Italy». 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 2023, pp. 1-6, doi:10.1109/EEEIC/ICPSEurope57605.2023.10194654.
S. Zhang, N. Zhang, X. Zhang, Q. Shi, J. Lu and H. Dai. «Study on the Optimization of System Configuration of Green Hydrogen Projects». 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2022, pp. 1260-1263, doi:10.1109/ICPRE55555.2022.9960360.
J. Li and S. Obara. «Study on Hydrogen energy supply system with natural gas pipeline in China». 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, China, 2019, pp. 1-4, doi:10.1109/APPEEC45492.2019.8994477.
M. Shatnawi, N. A. Qaydi, N. Aljaberi and M. Aljaberi. «Hydrogen-Based Energy Storage Systems: A Review». 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 2018, pp. 697-700, doi:10.1109/ICRERA.2018.8566903.
O. V. Marchenko, S. V. Solomin. «Efficiencyof Hybrid Renewable Energy Systems in Russia». International Journal of Renewable Energy Research, vol. 7, pp. 1561-1569, 2017.
A. Mas’ud. «An Optimal Sizing Algorithm for a Hybrid Renewable Energy System». International Journal of Renewable Energy Research, vol. 7, pp. 1595-1602, 2017.
K. A. Kavadias, D. Apostolou, J. K. Kaldellis. Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network, Applied Energy, 2017.
Khalyasmaa, A.; Eroshenko, S.; Bramm, A.; Tran, D.C.; Chakravarthi, T. P.; Hariprakash, R. Strategic planning of renewable energy sources implementation following the country-wide goals of energy sector development. In Proceedings of the International Conference on Smart Technologies in Computing, Electrical and Electronics, Bengaluru, India, 9–10 October 2020; pp. 433-438.
Matrenin, P.; Safaraliev, M.; Dmitriev, S.; Kokin, S.; Eshchanov, B.; Rusina, A. Adaptive ensemble models for medium-term forecasting of water inflow when planning electricity generation under climate change. Energy Rep. 2022, 8, 439-447.
Mitrofanov, S.; Svetlichnaya, A.; Arestova, A.; Rusina, A. Development of a Software Module of Intra-Plant Optimization for Short-Term Forecasting of Hydropower Plant Operating Conditions. In Proceedings of the IEEE Ural-Siberian Smart Energy Conference (USSEC), Novosibirsk, Russia, 13-15 November 2021.
Юрченко С. В. Система группового регулирования активной мощности гидроагрегатов // Современная техника и технологии. 2017. № 3 [Электронный ресурс]. URL: https://technology.snauka.ru/2017/03/12947 (дата обращения: 28.11.2022).
D. Tiomo, R. Wamkeue. Dynamic Modeling and Analysis of a Micro Hydro Power Plant for Microgrid Applications // IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019.
Kazantsev Y. V., Glazyrin G. V., Khalyasmaa A. I., Shayk S. M., Kuparev M. A. Advanced Algorithms in Automatic Generation Control of Hydroelectric Power Plants. Mathematics. 2022; 10(24):4809. https://doi.org/10.3390/math10244809
Mo, W. K.; Chen, Y. P.; Chen, H. Y.; Liu, Y.; Zhang, Y.; Hou, J.; Gao, Q.; Li, C. Analysis and Measures of Ultralow-Frequency Oscillations in a Large-Scale Hydropower Transmission System. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1077-1085.
Cutululis, N. A.; Farahmand, H.; Jaehnert, S.; Detlefsen, N.; Byriel, I.P.; Sørensen, P. E. Hydropower flexibility and transmission expansion to support integration of offshore wind. In Offshore Wind Farms: Technologies, Design and Operation, 1st ed.; Ng, C., Ran, L., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 495-523.
Farahmand, H.; Jaehnert, S.; Aigner, T.; Huertes-Hernando, D. Nordic hydropower flexibility and transmission expansion to support integration of North European wind power. Wind Energy 2015, 18, 1075-1103.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.15518/isjaee.2024.03.012-02710.1016/j.enconman.2021.11489810.1109/EI252483.2021.971335010.1109/EI256261.2022.1011615710.1109/EEM58374.2023.1016188410.1109/ICTEM56862.2023.1008389010.1109/ICPET55165.2022.991830510.1109/TSTE.2022.31618911
_version_ 1802639169548189696
spelling ftjisjaee:oai:oai.alternative.elpub.ru:article/2389 2024-06-23T07:48:49+00:00 Novel technologies for optimization of hydroelectric power plants with hydrogen energy storage system Исследование алгоритмов распределения реактивной мощности для оптимизации потерь мощности на гидроэлектростанциях Yu. V. Kazantsev D. V. Kornilovich A. I. Khalyasmaa A. A. Arkhipov A. V. Miklukhin L. Yu. Sergievichev M. V. Tsuran Ю. В. Казанцев Д. В. Корнилович А. И. Хальясмаа А. А. Архипов А. В. Миклухин Л. Ю. Сергиевичев М. В. Цуран Выражаем особую благодарность ПАО «Русгидро» за содействие в сборе исходной информации и помощь в интеграции разработанного алгоритма в действующую на станции систему ГРАРМ для проведения натурных испытаний. Данная работа была профинансирована Новосибирским государственным техническим университетом путем предоставления гранта на проведение исследовательских работ. 2024-06-04 application/pdf https://www.isjaee.com/jour/article/view/2389 https://doi.org/10.15518/isjaee.2024.03.012-027 rus rus Международный издательский дом научной периодики "Спейс https://www.isjaee.com/jour/article/view/2389/1936 T. Capurso, M. Stefanizzi, M. Torresi, and S. M. Camporeale. «Perspective of the role of hydrogen in the 21st century energy transition». Energy Convers. Manag., vol. 251, no. July 2021, p. 114898, 2022, doi:10.1016/j.enconman.2021.114898. Calise, F., Cappiello, F.L., Cimmino, L., Dentice d’Accadia, M. & Vicidomini, M. (2023). Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells. Renewable Energy. Henry, A., Mcstay, D., Rooney, D., Robertson, P. & Foley, A. M. (2023). Techno-economic analysis to identify the optimal conditions for green hydrogen production. Energy Conversion and Management. Boscherini, M., Storione, A., Minelli, M., Miccio, F. & Doghieri, F. (2023). New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas. Energies. Ibrayeva A. E. New Trends and Prospects of Hydrogen Energy in the World and in Kazakhstan. Russia & World: Sc. Dialogue. 2023; (3):71-87. (In Russ.) https://doi.org/10.53658/RW2023-3-3(9)-71-87. X. Song, D. Liang, J. Song, G. Xu, Z. Deng and M. Niu. «Problems and Technology Development Trends of Hydrogen Production from Renewable Energy Power Electrolysis - A Review». 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 2021, pp. 3879-3882, doi:10.1109/EI252483.2021.9713350. H. Bai, H. Chen and W. Shi. «Hydrogen Production by Renewable Energy and Future Trend in China». 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2), Chengdu, China, 2022, pp. 676-680, doi:10.1109/EI256261.2022.10116157. M. Vadaszi, I. Szunyog and A. B. Szombati-Galyas. «The Role of Hydrogen Connected to the Existing Natural Gas Infrastructure in the Hungarian Energy Transition». 2023 19th International Conference on the European Energy Market (EEM), Lappeenranta, Finland, 2023, pp. 1-5, doi:10.1109/EEM58374.2023.10161884. M. L. Imeni and M. S. Ghazizadeh. «Pave the Way for Hydrogen-Ready Smart Energy Hubs in Deep Renewable Energy System». 2023 8th International Conference on Technology and Energy Management (ICTEM), Mazandaran, Babol, Iran, Islamic Republic of, 2023, pp. 1-5, doi:10.1109/ICTEM56862.2023.10083890. S. Li, Y. Si, L. Ma, N. Xin, Z. Wu and M. Gao. «Hydrogen Pricing Method Based on Geographical Distribution Characteristics of Renewable Energy Base». 2022 4th International Conference on Power and Energy Technology (ICPET), Beijing, China, 2022, pp. 671-676, doi:10.1109/ICPET55165.2022.9918305. A. M. Abomazid, N. A. El-Taweel and H. E. Z. Farag. «Optimal Energy Management of Hydrogen Energy Facility Using Integrated Battery Energy Storage and Solar Photovoltaic Systems» in IEEE Transactions on Sustainable Energy, vol. 13, no. 3, pp. 1457-1468, July 2022, doi:10.1109/TSTE.2022.3161891. U. Bossel. «Does a Hydrogen Economy Make Sense?» in Proceedings of the IEEE, vol. 94, no. 10, pp. 1826-1837, Oct. 2006, doi:10.1109/JPROC.2006.883715. G. Li, J. Chen, X. Zheng, C. Xiao and S. Zhou. «Research on Energy Management Strategy of Hydrogen Fuel Cell Vehicles». 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020, pp. 7604-7607, doi:10.1109/CAC51589.2020.9326669. X. Zhao, Y. Yao, W. Liu, R. Jain and C. Zhao. «A Hydrogen Load Modeling Method for Integrated Hydrogen Energy System Planning». 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 2023, pp. 1-5, doi:10.1109/ISGT51731.2023.10066443. K. Nigim, J. McQueen and M. Persohn-Costa. «Operational modes of hydrogen energy storage in a micro grid system». 2015 IEEE Electrical Power and Energy Conference (EPEC), London, ON, Canada, 2015, pp. 473-477, doi:10.1109/EPEC.2015.7379997. Alsalman A. et al. Users, planners, and governments perspectives: A public survey on autonomous vehicles future advancements. Transportation Engineering, 2021, Vol. 3. https://doi.org/10.1016/j.treng.2020.100044. Orlov A. A., Nesterenko G. A., Nesterenko I. S. Overview of perspectives of hydrogen energy. Development of science and practice in a globally changing world under the conditions of risks: Proceedings of the IX International Scientific and Practical Conference, Moscow, 2022: 173-177. Available from: https://doi.org/10.34755/IROK.2022.96.53.039. Mestnikov N. P., Davydov G. I., Al-Zakkar A. M. Hydrogen energy in North and Arctic. Textbook on the discipline «General Energy» and the elective «Fundamentals of Energy Saving and Resource Efficiency in the North». Yakutsk: NEFU Publishing House, 2022. [Electronic resource]. Available from: https://www.elibrary.ru/item.asp?id=48690434. Malykh E. B., Plotnikov V. A. Hydrogen energy: assessment of development prospects. Natural Humanities Research. 2022; 41(3):216-220. L. Wang, Z. Dou, Y. Fan and C. Shi. «Research Front and Trend Analysis of Hydrogen Based Integrated Energy System by CiteSpace». 2021 6th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2021, pp. 1466-1471, doi:10.1109/ICPRE52634.2021.9635422. K. K. T. Thanapalan et al. «Progress in the development of renewable hydrogen vehicles, storage, infrastructure in the UK: Hydrogen Centre in its early years of operation». 2011 2nd International Conference on Intelligent Control and Information Processing, Harbin, China, 2011, pp. 738-742, doi:10.1109/ICICIP.2011.6008347. Z. Xiao, Z. Zhang, Y. Yu and M. Ran. «Analysis of the Development Trend of China’s ElectricityHydrogen Energy Technology Research Based on Bibliometrics». 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE), Guangzhou, China, 2023, pp. 1511-1516, doi:10.1109/CEEPE58418.2023.10166348. H. Li, W. Lv, H. Zhao and C. Chen. «A village integrated energy system operating in electricity market and hydrogen market». 2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE), Shenyang, China, 2023, pp. 1-6, doi:10.1109/ICCSIE55183.2023.10175270. D. Nikolova and D. Stoilov. «Household Energy Efficiency, Diversification of Suppliers and Renewable Hydrogen Production – The Pillars of European Energy Independence». 2022 14th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 2022, pp. 1-3, doi:10.1109/BulEF56479.2022.10020199. D. Zhai, J. Zhang, J. Shen and Y. Li. «Optimal Scheduling of Hydrogen Energy Storage IES with Dualfuel Cells». 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2022, pp. 960-966, doi:10.1109/ICPRE55555.2022.9960655. J. Li and S. Obara. «Study on an energy supply system assuming a pipeline transportation of compressed hydrogen for distributed fuel cell in China». 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Xi’an, China, 2019, pp. 440-443, doi:10.1109/PEDG.2019.8807745. Y. Fuyuan, T. Xueqin, X. Tong and W. Xinlei. «Adaptability Assessment of Hydrogen Energy Storage System Based on Proton Exchange Membrane Fuel Cell under the Scenarios of Peaking Shaving and Frequency Regulation». 2021 4th Asia Conference on Energy and Electrical Engineering (ACEEE), Bangkok, Thailand, 2021, pp. 84-90, doi:10.1109/ACEEE51855.2021.9575144. M. F. Smitkova, F. Janicek and F. Martins. «Hydrogen Economy: Brief Sumarization of Hydrogen Economy». 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 2022, pp. 1-5, doi:10.1109/ICECET55527.2022.9872907. W. Pirom and A. Srisiriwat. «Electrical EnergyBased Hydrogen Production via PEM Water Electrolysis for Sustainable Energy». 2022 International Electrical Engineering Congress (iEECON), Khon Kaen, Thailand, 2022, pp. 1-4, doi:10.1109/iEECON53204.2022.9741667. S. Zhang, C. Wang, R. Chen, S. Li, L. Liu and H. Dai. «Optimization of System Configuration and Production Simulation for On-grid Green Hydrogen Projects». 2022 5th International Conference on Renewable Energy and Power Engineering (REPE), Beijing, China, 2022, pp. 397-401, doi:10.1109/REPE55559.2022.9948766. B. Ma et al. «Development of Hydrogen Energy Storage Industry and Research Progress of Hydrogen Production Technology». 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 2021, pp. 1-6, doi:10.1109/CIEEC50170.2021.9510748. Y. Song et al. «International Hydrogen Energy Policy Summary and Chinese Policy Analysis». 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), Wuhan, China, 2020, pp. 3552-3557, doi:10.1109/EI250167.2020.9346615. W. Chu and Y. Zhang. «The Efficiency and Economic Feasibility Study on Wind-Hydrogen System». 2020 IEEE Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 2020, pp. 1198-1203, doi:10.1109/iSPEC50848.2020.9350988. A. Ciancio and L. De Santoli. «Assessing the Levelized Cost of Hydrogen Production in a Renewable Hydrogen Community in South Italy». 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 2023, pp. 1-6, doi:10.1109/EEEIC/ICPSEurope57605.2023.10194654. S. Zhang, N. Zhang, X. Zhang, Q. Shi, J. Lu and H. Dai. «Study on the Optimization of System Configuration of Green Hydrogen Projects». 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 2022, pp. 1260-1263, doi:10.1109/ICPRE55555.2022.9960360. J. Li and S. Obara. «Study on Hydrogen energy supply system with natural gas pipeline in China». 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, China, 2019, pp. 1-4, doi:10.1109/APPEEC45492.2019.8994477. M. Shatnawi, N. A. Qaydi, N. Aljaberi and M. Aljaberi. «Hydrogen-Based Energy Storage Systems: A Review». 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 2018, pp. 697-700, doi:10.1109/ICRERA.2018.8566903. O. V. Marchenko, S. V. Solomin. «Efficiencyof Hybrid Renewable Energy Systems in Russia». International Journal of Renewable Energy Research, vol. 7, pp. 1561-1569, 2017. A. Mas’ud. «An Optimal Sizing Algorithm for a Hybrid Renewable Energy System». International Journal of Renewable Energy Research, vol. 7, pp. 1595-1602, 2017. K. A. Kavadias, D. Apostolou, J. K. Kaldellis. Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network, Applied Energy, 2017. Khalyasmaa, A.; Eroshenko, S.; Bramm, A.; Tran, D.C.; Chakravarthi, T. P.; Hariprakash, R. Strategic planning of renewable energy sources implementation following the country-wide goals of energy sector development. In Proceedings of the International Conference on Smart Technologies in Computing, Electrical and Electronics, Bengaluru, India, 9–10 October 2020; pp. 433-438. Matrenin, P.; Safaraliev, M.; Dmitriev, S.; Kokin, S.; Eshchanov, B.; Rusina, A. Adaptive ensemble models for medium-term forecasting of water inflow when planning electricity generation under climate change. Energy Rep. 2022, 8, 439-447. Mitrofanov, S.; Svetlichnaya, A.; Arestova, A.; Rusina, A. Development of a Software Module of Intra-Plant Optimization for Short-Term Forecasting of Hydropower Plant Operating Conditions. In Proceedings of the IEEE Ural-Siberian Smart Energy Conference (USSEC), Novosibirsk, Russia, 13-15 November 2021. Юрченко С. В. Система группового регулирования активной мощности гидроагрегатов // Современная техника и технологии. 2017. № 3 [Электронный ресурс]. URL: https://technology.snauka.ru/2017/03/12947 (дата обращения: 28.11.2022). D. Tiomo, R. Wamkeue. Dynamic Modeling and Analysis of a Micro Hydro Power Plant for Microgrid Applications // IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019. Kazantsev Y. V., Glazyrin G. V., Khalyasmaa A. I., Shayk S. M., Kuparev M. A. Advanced Algorithms in Automatic Generation Control of Hydroelectric Power Plants. Mathematics. 2022; 10(24):4809. https://doi.org/10.3390/math10244809 Mo, W. K.; Chen, Y. P.; Chen, H. Y.; Liu, Y.; Zhang, Y.; Hou, J.; Gao, Q.; Li, C. Analysis and Measures of Ultralow-Frequency Oscillations in a Large-Scale Hydropower Transmission System. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1077-1085. Cutululis, N. A.; Farahmand, H.; Jaehnert, S.; Detlefsen, N.; Byriel, I.P.; Sørensen, P. E. Hydropower flexibility and transmission expansion to support integration of offshore wind. In Offshore Wind Farms: Technologies, Design and Operation, 1st ed.; Ng, C., Ran, L., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 495-523. Farahmand, H.; Jaehnert, S.; Aigner, T.; Huertes-Hernando, D. Nordic hydropower flexibility and transmission expansion to support integration of North European wind power. Wind Energy 2015, 18, 1075-1103. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Alternative Energy and Ecology (ISJAEE); № 3 (2024); 12-27 Альтернативная энергетика и экология (ISJAEE); № 3 (2024); 12-27 1608-8298 стационарная устойчивость гидрогенератора hydroelectric power plants automatic generation control water flow optimization active and reactive power control steady-state stability of hydroelectric generator гидроэлектростанции автоматический контроль генерации оптимизация потока воды регулирование активной и реактивной мощности info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjisjaee https://doi.org/10.15518/isjaee.2024.03.012-02710.1016/j.enconman.2021.11489810.1109/EI252483.2021.971335010.1109/EI256261.2022.1011615710.1109/EEM58374.2023.1016188410.1109/ICTEM56862.2023.1008389010.1109/ICPET55165.2022.991830510.1109/TSTE.2022.31618911 2024-06-05T23:30:14Z The problem of load distribution between hydraulic units of hydroelectric power plants (HPPs) is an urgent task due to the nonlinearity of the characteristics of the hydraulic turbine and the individual characteristics of power units, the operating conditions of which are often different. It is necessary to take into account the most advanced optimization methods that take into account the nonlinearity of the turbine characteristics. Methods must also take into account strict restrictions on the operating conditions of power equipment when searching for the extremum of the objective function, specified in the form of equalities and inequalities. When solving the above optimization problem, restrictions are imposed on the computing power of automated process control systems (APCS), which must operate in real time. To solve the optimization problem, the interior point method was analyzed and the Lagrange multiplier method was modified so that it could minimize the turbine flow rate and active energy losses in the windings of electric generators and transformers. The article presents the results of modeling the developed optimization algorithms and the results of full-scale testing of an automatic production control system using the described algorithms. All tests performed showed a fairly high efficiency of the proposed optimization methods under real operating conditions. Проблема распределения нагрузки между гидроагрегатами гидроэлектростанций (ГЭС) является актуальной задачей из-за нелинейности характеристик гидротурбины и индивидуальных особенностей энергоблоков, условия эксплуатации которых зачастую различны. Необходимо брать во внимание самые передовые методы оптимизации, учитывающие нелинейность характеристики турбины. Методы также должны учитывать строгие ограничения на условия эксплуатации энергетического оборудования при поиске экстремума целевой функции, указанной в форме равенств и неравенств. При решении вышеупомянутой задачи оптимизации накладываются ограничения на вычислительные мощности ... Article in Journal/Newspaper Arctic Alternative Energy and Ecology (ISJAEE) Lagrange ENVELOPE(-62.597,-62.597,-64.529,-64.529)