Foresight for efficient use of water resources and the hydrogen market in kazakhstan

Kazakhstan is one of the countries in the world most affected by climate change and water shortages. The consequences include changes in precipitation patterns, more frequent extreme temperatures, and increased aridity. Most countries of the world associate water security with the importance of scie...

Full description

Bibliographic Details
Main Authors: A. Kurishbaev, M. Gabdullin, R. Amanzholova, T. Em, J. Sagin, D. Burlibayeva, K. Alikhanov, A. Serikkanov, D. Sarsekova, R. King, А. Куришбаев, М. Габдуллин, Р. Аманжолова, Т. Эм, Ж. Сагин, Д. Бурлибаева, К. Алиханов, А. Серикканов, Д. Сарсекова, Р. Кинг
Other Authors: Данная статья подготовлена в рамках проекта No. AP19679749 «Картографирование полезащитных лесных полос, их влияние на урожайность и водные ресурсы, перспективы расширения, с применением геопространственных технологий в Акмолинской области» грантового финансирования Министерства Науки и Высшего образования Республики Казахстан на 2023-2025 годы, а также при поддержке Школы Информационных Технологий и Инженерии (ШИТИ), Казахстанско-Британского Технического Университета (КБТУ).
Format: Article in Journal/Newspaper
Language:Russian
Published: Международный издательский дом научной периодики "Спейс 2024
Subjects:
Online Access:https://www.isjaee.com/jour/article/view/2375
https://doi.org/10.15518/isjaee.2024.01.179-207
id ftjisjaee:oai:oai.alternative.elpub.ru:article/2375
record_format openpolar
institution Open Polar
collection Alternative Energy and Ecology (ISJAEE)
op_collection_id ftjisjaee
language Russian
topic устойчивое развитие
foresight
water
hydrogen
Kazakhstan
floods
drought
sustainable development
вода
водород
Казахстан
наводнения
засухи
spellingShingle устойчивое развитие
foresight
water
hydrogen
Kazakhstan
floods
drought
sustainable development
вода
водород
Казахстан
наводнения
засухи
A. Kurishbaev
M. Gabdullin
R. Amanzholova
T. Em
J. Sagin
D. Burlibayeva
K. Alikhanov
A. Serikkanov
D. Sarsekova
R. King
А. Куришбаев
М. Габдуллин
Р. Аманжолова
Т. Эм
Ж. Сагин
Д. Бурлибаева
К. Алиханов
А. Серикканов
Д. Сарсекова
Р. Кинг
Foresight for efficient use of water resources and the hydrogen market in kazakhstan
topic_facet устойчивое развитие
foresight
water
hydrogen
Kazakhstan
floods
drought
sustainable development
вода
водород
Казахстан
наводнения
засухи
description Kazakhstan is one of the countries in the world most affected by climate change and water shortages. The consequences include changes in precipitation patterns, more frequent extreme temperatures, and increased aridity. Most countries of the world associate water security with the importance of scientific investments, foresight studies in adaptation programs to global climate change, man-made emergency events, an increase in the frequency and duration of floods, droughts and fires, population growth, agricultural intensity, industrialization leading to a decrease in water levels. groundwater. Soil moisture at the root level decreases, intensifying the processes of desertification and soil salinization. In this regard, the strategy of many countries is to increase investment in water-soil scientific research programs, direct cooperation with joint scientific and practical research of emergency security agencies and agriculture, and widespread involvement of the population in joint programs with research scientists. The presented review analyzes and proposes options for strengthening the sustainable development of Kazakhstan with more efficient use of water resources and the development of the domestic hydrogen market. In Kazakhstan, scenarios and regions for hydrogen production are being considered, including in Western Kazakhstan, the Mangystau region, using the water of the Caspian Lake. The alternative region is considered in this review involves the creation of hydrogen production facilities in Northern Kazakhstan, which will use part of the water from 16.5 cubic meters. km of water that annually flows into the Arctic Ocean from Kazakhstan through Russia. In addition, in Northern Kazakhstan there are capacities to produce electricity with big coal reserves. In cooperation with Russia, natural gas can be used, as well as Russian water resources, including those from the Arctic Ocean. Climate change and rising temperatures lead to rising ocean levels; coastal zones of the oceans and islands will go under water. ...
author2 Данная статья подготовлена в рамках проекта No. AP19679749 «Картографирование полезащитных лесных полос, их влияние на урожайность и водные ресурсы, перспективы расширения, с применением геопространственных технологий в Акмолинской области» грантового финансирования Министерства Науки и Высшего образования Республики Казахстан на 2023-2025 годы, а также при поддержке Школы Информационных Технологий и Инженерии (ШИТИ), Казахстанско-Британского Технического Университета (КБТУ).
format Article in Journal/Newspaper
author A. Kurishbaev
M. Gabdullin
R. Amanzholova
T. Em
J. Sagin
D. Burlibayeva
K. Alikhanov
A. Serikkanov
D. Sarsekova
R. King
А. Куришбаев
М. Габдуллин
Р. Аманжолова
Т. Эм
Ж. Сагин
Д. Бурлибаева
К. Алиханов
А. Серикканов
Д. Сарсекова
Р. Кинг
author_facet A. Kurishbaev
M. Gabdullin
R. Amanzholova
T. Em
J. Sagin
D. Burlibayeva
K. Alikhanov
A. Serikkanov
D. Sarsekova
R. King
А. Куришбаев
М. Габдуллин
Р. Аманжолова
Т. Эм
Ж. Сагин
Д. Бурлибаева
К. Алиханов
А. Серикканов
Д. Сарсекова
Р. Кинг
author_sort A. Kurishbaev
title Foresight for efficient use of water resources and the hydrogen market in kazakhstan
title_short Foresight for efficient use of water resources and the hydrogen market in kazakhstan
title_full Foresight for efficient use of water resources and the hydrogen market in kazakhstan
title_fullStr Foresight for efficient use of water resources and the hydrogen market in kazakhstan
title_full_unstemmed Foresight for efficient use of water resources and the hydrogen market in kazakhstan
title_sort foresight for efficient use of water resources and the hydrogen market in kazakhstan
publisher Международный издательский дом научной периодики "Спейс
publishDate 2024
url https://www.isjaee.com/jour/article/view/2375
https://doi.org/10.15518/isjaee.2024.01.179-207
geographic Arctic
Arctic Ocean
geographic_facet Arctic
Arctic Ocean
genre Arctic
Arctic Ocean
Climate change
genre_facet Arctic
Arctic Ocean
Climate change
op_source Alternative Energy and Ecology (ISJAEE); № 1 (2024); 179-207
Альтернативная энергетика и экология (ISJAEE); № 1 (2024); 179-207
1608-8298
op_relation https://www.isjaee.com/jour/article/view/2375/1928
. UNECE, GIZ Germany, 2023, Зеленая Центральная Азия: усиление регионального диалога по климату, окружающей среде и безопасности, https://unece.org/sites/default/files/2023-06/6_1_Milow_RUS.pdf
. Проект Тысячелетия, 2023. Глобальная задача 2. Как обеспечить каждому достаточное количество чистой воды без конфликтов? https://www.millennium-project.org/challenge-2/
. Hassani, A., Azapagic, A. & Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communication 12, 6663 (2021). https://doi.org/10.1038/s41467-021-26907-3
. Глобальный Институт Водной Безопасности, Саскатчеванский Бассейн, КанадаСША, https://water.usask.ca/about/index.php#top, https://www.cerc.gc.ca/news_room-salle_de_presse/spotlight-pleins_feux/wheater_saskatchewan-eng.aspx, https://www.redriverbasincommission.org/
. Единая геоинформационная база данных моделирования чрезвычайных ситуаций США-Канады FEMA HAZUS https://www.fema.gov/floodmaps/products-tools/hazus, https://www.usehazus.com/canadianhug/
. US FEMA, 2023, expenses estimations, https://www.smartcitiesdive.com/news/fema-climate-billiondollar-weather-disaster-resilience/685250/
. Накопление дренажных паводковых вод по технологиям искусственного восполнения подземных вод Канады-США, Flood-MAR, https://floodmar.org/, https://inowas.webspace.tu-dresden.de/, https://teresa.webspace.tu-dresden.de/
. США, стимулирование населения, фермеров использовать больше технологии FloodMAR с финансированием грантами и льготными кредитами, https://water.ca.gov/Work-With-Us/GrantsAnd-Loans
. Perrone, 2016, Benefits and Economic Costs of Managed Aquifer Recharge in California, https://escholarship.org/uc/item/7sb7440w
. Ross, A. Benefits and Costs of Managed Aquifer Recharge: Further Evidence. Water 2022, 14, 3257. https://doi.org/10.3390/w14203257
. Richard G. Niswonger, Eric D. Morway, Enrique Triana, Justin L. Huntington, 2017, Managed aquifer recharge through off-season irrigation in agricultural regions, Water Resources Research Volume 53, Issue 8 p. 6970-6992
. База данных моделирования программы Министерств С/Х Канады-США SWAT мониторинга состояния почв и водных ресурсов с моделированием качества и количества поверхностных и грунтовых вод и прогнозирования воздействия на окружающую среду землепользования, с методами управления земельными ресурсами и изменением климата, https://data.nal.usda.gov/dataset/swat-soil-and-waterassessment-tool, https://www.weg.uoguelph.ca/wegmodel-development/
. Garcia, X. (2023). Using the Soil and Water Assessment Tool (SWAT) to quantify the economic value of ecosystem services. – River, 2, 173-185. https://doi.org/10.1002/rvr2.47GARCIA%7C185
. Xia Vivian Zhou, Christopher D. Clark, Sujithkumar Surendran Nair, Shawn A. Hawkins, Dayton M. Lambert, Environmental and economic analysis of using SWAT to simulate the effects of switchgrass production on water quality in an impaired watershed, Agricultural Water Management, Volume 160, 2015, ISSN 0378-3774, https://doi.org/10.1016/j.agwat.2015.06.018
. Программы Канады-США Министерств СХ по научным программам повышения лесистости, обязанности землепользователей обеспечению посадок и содержанию леса вдоль всех водоемов на глубину ширины водоема, мест накопления снегопаводков https://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/epw10940/$FILE/Shelterbelts_Design_and_Guidelines.pdf
. Agroforestry economic benefits, https://regenfarmer.com/economic-benefits-ofagroforestry/#:~:text=Research%20show%20that%20over%20a,type%20of%20agroforestry%20system%20 implemented.
. Agroforestry design software, https://regenfarmer.com/agroforestry-planning-software/
. Водородный проект Казахстана, 2023, https://hyrasia.energy/, https://invest.gov.kz/ru/mediacenter/press-releases/kazakhstan-obespechit-evrosoyuzzelenym-vodorodom/, https://eenergy.media/news/27563, https://tengrinews.kz/kazakhstan_news/opresnitelnyiyzavod-zelenyiy-vodorod-tokaev-obsudil-516115/
. Derwent Innovations Index on Web of Science, 2023, https://clarivate.com/products/scientific-andacademic-research/research-discovery-and-workflowsolutions/webofscience-platform/derwent-innovationsindex-on-web-of-science/
. International Patent Classification (IPC), 2023, https://www.wipo.int/classifications/ipc/en/
. Ishaq H., Dincer I., Crawford C. A review on hydrogen production and utilization: challenges and opportunities. Int. J Hydrogen Energy, 2022;47(62):26238e64
. Kaiwen L., Bin Y., Tao Z. Economic analysis of hydrogen production from steam reforming process: a literature review. Energy Sources B Energy Econ Plann 2018; 13(2):109e15.
. Hohn K. L., Lin Y. C. Catalytic partial oxidation of methanol and ethanol for hydrogen generation. ChemSusChem: Chemistry & Sustainability Energy & Materials 2009; 2(10):927e40.
. Rabenstein G., Hacker V. Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: a thermodynamic analysis. J Power Sources, 2008; 185(2):1293e304.
. Rafelt J. S., Clark J. H. Recent advances in the partial oxidation of organic molecules using heterogeneous catalysis. – Catal Today, 2000; 57(1e2):33e44.
. Vousoughi P., Eyvazi M. Hydrogen production: overview of technology options and membrane in autothermal reforming including partial oxidation and steam reforming. Int. J. of Membrane Science and Technology, 2015; 2(1):56e67.
. Shaofeng G., Zexue D., Xuhong M. Research progress of ammonia decomposition catalysts for hydrogen generation. – Acta Pet Sin, 2022; 38(6):1506.
. Afif A. et al. Ammonia-fed fuel cells: a comprehensive review. Renew Sustain Energy Rev, 2016; 60:822e35.
. Wijayanta A. T. et al. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. Int. J Hydrogen Energy, 2019; 44(29):15026e44.
. Keipi T., Tolvanen H., Konttinen J. Economic analysis of hydrogen production by methane thermal decomposition: comparison to competing technologies. Energy Conversion and Management, 2018; 159:264e73.
. Ursu´ a A. et al. Integration of commercial alkaline water electrolysis with renewable energies: limitations and improvements. Int. J Hydrogen Energy, 2016; 41(30):12852e61
. Rashid M. et al. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J Eng Adv Technol, 2015; 4(3):80e93.
. Dulta K. et al. Biohydrogen production and its bioeconomic impact: a review. Waste Disposal & Sustainable Energy, 2022; 4(3):219e30.
. Rathi, B., Kumar, P., Rangasamy, G., Rajendran, S. A critical review on Biohydrogen generation from biomass, International Journal of Hydrogen Energy, Volume 52, Part C, 2024, Pages 115-138, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.10.182
. Ananthi, V., Ramesh, U., Balaji, P., Kumar, P., Govarthanan, M., Arun, A. A review on the impact of various factors on biohydrogen production, International Journal of Hydrogen Energy, Volume 52, Part C, 2024, Pages 33-45, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.08.046.
. Tao J. et al. Technologies integration towards bio-fuels production: a state-of-the-art review. Applications in Energy and Combustion Science 2022:100070.
. Song H. et al. Recent development of biomass gasification for H2 rich gas production. Applications in Energy and Combustion Science, 2022; 10:100059.
. Garcia G. et al. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy 2021; 217:119384
. Wang S., Faravelli T., Yang H. Special issue of thermo- chemical conversion of biomass. Applications in Energy and Combustion Science, 2022; 11:1e3.
. Liu L. et al. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: a review. Appl Catal B Environ, 2019; 250:250e72.
. Budhraja N., Pal A., Mishra R. Plasma reforming for hydrogen production: pathways, reactors and storage. Int. J Hydrogen Energy, 2023; 48(7):2467e82.
. Shi C. et al. A review of different catalytic systems for dry reforming of methane: conventional catalysis-alone and plasma-catalytic system. J CO2 Util, 2021; 46:101462
. Fan L., Tu Z., Chan SH. Recent development of hydrogen and fuel cell technologies: a review. Energy Rep, 2021; 7:8421e46.
. Президент Байден подписал законпрограмму «Региональные центры чистого водорода» (H2Hubs) до десяти проектов водородных хабов имеют право на федеральное финансирование на сумму до 1,25 миллиарда долларов каждый, https://www.whitecase.com/insight-alert/hydrogen-hubprojects-awarded-7-billion-us-department-energy
. China’s Hydrogen Strategy – Present & Future State. – URL: https://www.asiaperspective.com/chinahydrogen-energy/
. R. R. Esily, Y. Chi, D. M. Ibrahiem, Y. Chen Hydrogen strategy in decarbonization era: Egypt as a case study Int. J. Hydrogen Energy (2022)
. W. Cheng, S. Lee How green are the national hydrogen strategies? Sustainability, 14 (3) (2022), p. 1930
. H. Aly Royal dream: city branding and Saudi Arabia’s NEOM Middle East-Topics & Arguments, 12 (2019), pp. 99-109
. Кирюшин В. И. Начало освоения целинных земель, Уроки Целины, 2015, https://histrf.ru/read/articles/nachalo-osvoieniia-tsielinnykh-ziemiel-event [50]. Межгосударственная комиссия по устойчивому развитию. Деградация земель, 2001, http://www.mkurca.org/temy/degradaciya_zemel/
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_doi https://doi.org/10.15518/isjaee.2024.01.179-20710.3390/w1420325710.1002/rvr2.47GARCIA|18510.1016/j.agwat.2015.06.01810.1016/j.ijhydene.2022.10.18210.1016/j.ijhydene.2022.08.046
_version_ 1802004657283792896
spelling ftjisjaee:oai:oai.alternative.elpub.ru:article/2375 2024-06-16T07:37:56+00:00 Foresight for efficient use of water resources and the hydrogen market in kazakhstan Возможности эффективного использования водных ресурсов и водородного рынка в Казахстане A. Kurishbaev M. Gabdullin R. Amanzholova T. Em J. Sagin D. Burlibayeva K. Alikhanov A. Serikkanov D. Sarsekova R. King А. Куришбаев М. Габдуллин Р. Аманжолова Т. Эм Ж. Сагин Д. Бурлибаева К. Алиханов А. Серикканов Д. Сарсекова Р. Кинг Данная статья подготовлена в рамках проекта No. AP19679749 «Картографирование полезащитных лесных полос, их влияние на урожайность и водные ресурсы, перспективы расширения, с применением геопространственных технологий в Акмолинской области» грантового финансирования Министерства Науки и Высшего образования Республики Казахстан на 2023-2025 годы, а также при поддержке Школы Информационных Технологий и Инженерии (ШИТИ), Казахстанско-Британского Технического Университета (КБТУ). 2024-05-21 application/pdf https://www.isjaee.com/jour/article/view/2375 https://doi.org/10.15518/isjaee.2024.01.179-207 rus rus Международный издательский дом научной периодики "Спейс https://www.isjaee.com/jour/article/view/2375/1928 . UNECE, GIZ Germany, 2023, Зеленая Центральная Азия: усиление регионального диалога по климату, окружающей среде и безопасности, https://unece.org/sites/default/files/2023-06/6_1_Milow_RUS.pdf . Проект Тысячелетия, 2023. Глобальная задача 2. Как обеспечить каждому достаточное количество чистой воды без конфликтов? https://www.millennium-project.org/challenge-2/ . Hassani, A., Azapagic, A. & Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communication 12, 6663 (2021). https://doi.org/10.1038/s41467-021-26907-3 . Глобальный Институт Водной Безопасности, Саскатчеванский Бассейн, КанадаСША, https://water.usask.ca/about/index.php#top, https://www.cerc.gc.ca/news_room-salle_de_presse/spotlight-pleins_feux/wheater_saskatchewan-eng.aspx, https://www.redriverbasincommission.org/ . Единая геоинформационная база данных моделирования чрезвычайных ситуаций США-Канады FEMA HAZUS https://www.fema.gov/floodmaps/products-tools/hazus, https://www.usehazus.com/canadianhug/ . US FEMA, 2023, expenses estimations, https://www.smartcitiesdive.com/news/fema-climate-billiondollar-weather-disaster-resilience/685250/ . Накопление дренажных паводковых вод по технологиям искусственного восполнения подземных вод Канады-США, Flood-MAR, https://floodmar.org/, https://inowas.webspace.tu-dresden.de/, https://teresa.webspace.tu-dresden.de/ . США, стимулирование населения, фермеров использовать больше технологии FloodMAR с финансированием грантами и льготными кредитами, https://water.ca.gov/Work-With-Us/GrantsAnd-Loans . Perrone, 2016, Benefits and Economic Costs of Managed Aquifer Recharge in California, https://escholarship.org/uc/item/7sb7440w . Ross, A. Benefits and Costs of Managed Aquifer Recharge: Further Evidence. Water 2022, 14, 3257. https://doi.org/10.3390/w14203257 . Richard G. Niswonger, Eric D. Morway, Enrique Triana, Justin L. Huntington, 2017, Managed aquifer recharge through off-season irrigation in agricultural regions, Water Resources Research Volume 53, Issue 8 p. 6970-6992 . База данных моделирования программы Министерств С/Х Канады-США SWAT мониторинга состояния почв и водных ресурсов с моделированием качества и количества поверхностных и грунтовых вод и прогнозирования воздействия на окружающую среду землепользования, с методами управления земельными ресурсами и изменением климата, https://data.nal.usda.gov/dataset/swat-soil-and-waterassessment-tool, https://www.weg.uoguelph.ca/wegmodel-development/ . Garcia, X. (2023). Using the Soil and Water Assessment Tool (SWAT) to quantify the economic value of ecosystem services. – River, 2, 173-185. https://doi.org/10.1002/rvr2.47GARCIA%7C185 . Xia Vivian Zhou, Christopher D. Clark, Sujithkumar Surendran Nair, Shawn A. Hawkins, Dayton M. Lambert, Environmental and economic analysis of using SWAT to simulate the effects of switchgrass production on water quality in an impaired watershed, Agricultural Water Management, Volume 160, 2015, ISSN 0378-3774, https://doi.org/10.1016/j.agwat.2015.06.018 . Программы Канады-США Министерств СХ по научным программам повышения лесистости, обязанности землепользователей обеспечению посадок и содержанию леса вдоль всех водоемов на глубину ширины водоема, мест накопления снегопаводков https://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/epw10940/$FILE/Shelterbelts_Design_and_Guidelines.pdf . Agroforestry economic benefits, https://regenfarmer.com/economic-benefits-ofagroforestry/#:~:text=Research%20show%20that%20over%20a,type%20of%20agroforestry%20system%20 implemented. . Agroforestry design software, https://regenfarmer.com/agroforestry-planning-software/ . Водородный проект Казахстана, 2023, https://hyrasia.energy/, https://invest.gov.kz/ru/mediacenter/press-releases/kazakhstan-obespechit-evrosoyuzzelenym-vodorodom/, https://eenergy.media/news/27563, https://tengrinews.kz/kazakhstan_news/opresnitelnyiyzavod-zelenyiy-vodorod-tokaev-obsudil-516115/ . Derwent Innovations Index on Web of Science, 2023, https://clarivate.com/products/scientific-andacademic-research/research-discovery-and-workflowsolutions/webofscience-platform/derwent-innovationsindex-on-web-of-science/ . International Patent Classification (IPC), 2023, https://www.wipo.int/classifications/ipc/en/ . Ishaq H., Dincer I., Crawford C. A review on hydrogen production and utilization: challenges and opportunities. Int. J Hydrogen Energy, 2022;47(62):26238e64 . Kaiwen L., Bin Y., Tao Z. Economic analysis of hydrogen production from steam reforming process: a literature review. Energy Sources B Energy Econ Plann 2018; 13(2):109e15. . Hohn K. L., Lin Y. C. Catalytic partial oxidation of methanol and ethanol for hydrogen generation. ChemSusChem: Chemistry & Sustainability Energy & Materials 2009; 2(10):927e40. . Rabenstein G., Hacker V. Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: a thermodynamic analysis. J Power Sources, 2008; 185(2):1293e304. . Rafelt J. S., Clark J. H. Recent advances in the partial oxidation of organic molecules using heterogeneous catalysis. – Catal Today, 2000; 57(1e2):33e44. . Vousoughi P., Eyvazi M. Hydrogen production: overview of technology options and membrane in autothermal reforming including partial oxidation and steam reforming. Int. J. of Membrane Science and Technology, 2015; 2(1):56e67. . Shaofeng G., Zexue D., Xuhong M. Research progress of ammonia decomposition catalysts for hydrogen generation. – Acta Pet Sin, 2022; 38(6):1506. . Afif A. et al. Ammonia-fed fuel cells: a comprehensive review. Renew Sustain Energy Rev, 2016; 60:822e35. . Wijayanta A. T. et al. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: comparison review. Int. J Hydrogen Energy, 2019; 44(29):15026e44. . Keipi T., Tolvanen H., Konttinen J. Economic analysis of hydrogen production by methane thermal decomposition: comparison to competing technologies. Energy Conversion and Management, 2018; 159:264e73. . Ursu´ a A. et al. Integration of commercial alkaline water electrolysis with renewable energies: limitations and improvements. Int. J Hydrogen Energy, 2016; 41(30):12852e61 . Rashid M. et al. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J Eng Adv Technol, 2015; 4(3):80e93. . Dulta K. et al. Biohydrogen production and its bioeconomic impact: a review. Waste Disposal & Sustainable Energy, 2022; 4(3):219e30. . Rathi, B., Kumar, P., Rangasamy, G., Rajendran, S. A critical review on Biohydrogen generation from biomass, International Journal of Hydrogen Energy, Volume 52, Part C, 2024, Pages 115-138, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.10.182 . Ananthi, V., Ramesh, U., Balaji, P., Kumar, P., Govarthanan, M., Arun, A. A review on the impact of various factors on biohydrogen production, International Journal of Hydrogen Energy, Volume 52, Part C, 2024, Pages 33-45, ISSN 0360-3199, https://doi.org/10.1016/j.ijhydene.2022.08.046. . Tao J. et al. Technologies integration towards bio-fuels production: a state-of-the-art review. Applications in Energy and Combustion Science 2022:100070. . Song H. et al. Recent development of biomass gasification for H2 rich gas production. Applications in Energy and Combustion Science, 2022; 10:100059. . Garcia G. et al. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy 2021; 217:119384 . Wang S., Faravelli T., Yang H. Special issue of thermo- chemical conversion of biomass. Applications in Energy and Combustion Science, 2022; 11:1e3. . Liu L. et al. Reforming of tar from biomass gasification in a hybrid catalysis-plasma system: a review. Appl Catal B Environ, 2019; 250:250e72. . Budhraja N., Pal A., Mishra R. Plasma reforming for hydrogen production: pathways, reactors and storage. Int. J Hydrogen Energy, 2023; 48(7):2467e82. . Shi C. et al. A review of different catalytic systems for dry reforming of methane: conventional catalysis-alone and plasma-catalytic system. J CO2 Util, 2021; 46:101462 . Fan L., Tu Z., Chan SH. Recent development of hydrogen and fuel cell technologies: a review. Energy Rep, 2021; 7:8421e46. . Президент Байден подписал законпрограмму «Региональные центры чистого водорода» (H2Hubs) до десяти проектов водородных хабов имеют право на федеральное финансирование на сумму до 1,25 миллиарда долларов каждый, https://www.whitecase.com/insight-alert/hydrogen-hubprojects-awarded-7-billion-us-department-energy . China’s Hydrogen Strategy – Present & Future State. – URL: https://www.asiaperspective.com/chinahydrogen-energy/ . R. R. Esily, Y. Chi, D. M. Ibrahiem, Y. Chen Hydrogen strategy in decarbonization era: Egypt as a case study Int. J. Hydrogen Energy (2022) . W. Cheng, S. Lee How green are the national hydrogen strategies? Sustainability, 14 (3) (2022), p. 1930 . H. Aly Royal dream: city branding and Saudi Arabia’s NEOM Middle East-Topics & Arguments, 12 (2019), pp. 99-109 . Кирюшин В. И. Начало освоения целинных земель, Уроки Целины, 2015, https://histrf.ru/read/articles/nachalo-osvoieniia-tsielinnykh-ziemiel-event [50]. Межгосударственная комиссия по устойчивому развитию. Деградация земель, 2001, http://www.mkurca.org/temy/degradaciya_zemel/ Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой автороские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Alternative Energy and Ecology (ISJAEE); № 1 (2024); 179-207 Альтернативная энергетика и экология (ISJAEE); № 1 (2024); 179-207 1608-8298 устойчивое развитие foresight water hydrogen Kazakhstan floods drought sustainable development вода водород Казахстан наводнения засухи info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2024 ftjisjaee https://doi.org/10.15518/isjaee.2024.01.179-20710.3390/w1420325710.1002/rvr2.47GARCIA|18510.1016/j.agwat.2015.06.01810.1016/j.ijhydene.2022.10.18210.1016/j.ijhydene.2022.08.046 2024-05-22T23:30:25Z Kazakhstan is one of the countries in the world most affected by climate change and water shortages. The consequences include changes in precipitation patterns, more frequent extreme temperatures, and increased aridity. Most countries of the world associate water security with the importance of scientific investments, foresight studies in adaptation programs to global climate change, man-made emergency events, an increase in the frequency and duration of floods, droughts and fires, population growth, agricultural intensity, industrialization leading to a decrease in water levels. groundwater. Soil moisture at the root level decreases, intensifying the processes of desertification and soil salinization. In this regard, the strategy of many countries is to increase investment in water-soil scientific research programs, direct cooperation with joint scientific and practical research of emergency security agencies and agriculture, and widespread involvement of the population in joint programs with research scientists. The presented review analyzes and proposes options for strengthening the sustainable development of Kazakhstan with more efficient use of water resources and the development of the domestic hydrogen market. In Kazakhstan, scenarios and regions for hydrogen production are being considered, including in Western Kazakhstan, the Mangystau region, using the water of the Caspian Lake. The alternative region is considered in this review involves the creation of hydrogen production facilities in Northern Kazakhstan, which will use part of the water from 16.5 cubic meters. km of water that annually flows into the Arctic Ocean from Kazakhstan through Russia. In addition, in Northern Kazakhstan there are capacities to produce electricity with big coal reserves. In cooperation with Russia, natural gas can be used, as well as Russian water resources, including those from the Arctic Ocean. Climate change and rising temperatures lead to rising ocean levels; coastal zones of the oceans and islands will go under water. ... Article in Journal/Newspaper Arctic Arctic Ocean Climate change Alternative Energy and Ecology (ISJAEE) Arctic Arctic Ocean