Comparative analysis of the land survey using UAS and classical topography in road layout projects

Nowadays, the use of unmanned aerial vehicles (UAS) as a technologycal alternative to classical topographic surveys has experienced great progress in all areas of engineering. While being cost-effective, they allow a rapid and efficient generation of three main photogrammetric products: cloud points...

Full description

Bibliographic Details
Published in:Informes de la Construcción
Main Authors: Pérez, Juan Antonio, Rito Gonçalves, Gil, Montilla Galván, Jesus
Format: Article in Journal/Newspaper
Language:Spanish
Published: Consejo Superior de Investigaciones Científicas 2022
Subjects:
SfM
MVS
DTM
UAS
MDT
Online Access:https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122
https://doi.org/10.3989/ic.86273
id ftjidlc:oai:informesdeconstruccion.revistas.csic.es:article/6122
record_format openpolar
institution Open Polar
collection Informes de la Construcción (E-Journal)
op_collection_id ftjidlc
language Spanish
topic MDT UAS
SfM
MVS
break lines
vegetation
DTM
UAS
líneas de rotura
eliminación de ruido
precisión
MDT
spellingShingle MDT UAS
SfM
MVS
break lines
vegetation
DTM
UAS
líneas de rotura
eliminación de ruido
precisión
MDT
Pérez, Juan Antonio
Rito Gonçalves, Gil
Montilla Galván, Jesus
Comparative analysis of the land survey using UAS and classical topography in road layout projects
topic_facet MDT UAS
SfM
MVS
break lines
vegetation
DTM
UAS
líneas de rotura
eliminación de ruido
precisión
MDT
description Nowadays, the use of unmanned aerial vehicles (UAS) as a technologycal alternative to classical topographic surveys has experienced great progress in all areas of engineering. While being cost-effective, they allow a rapid and efficient generation of three main photogrammetric products: cloud points, digital terrain models and orthophotos. To evaluate the effectiveness of UAS in the field of civil engineering, a comparison between a classic topographic survey and an UAS survey is presented, with the assumption that both surveys will give the basic topographic data necessary to carry out a highway construction project. The experimental results reveal that the combined use of UAS data and classical topography provides a successful generation of the products. La incorporación de vehículos aéreos no tripulados (UAS) como alternativa a los levantamientos topográficos clásicos ha experimentado en estos últimos años un gran avance en todos los ámbitos de la ingeniería, dado que permiten una rápida y eficaz generación de diferentes productos fotogramétricos (nube de puntos, modelo digital del terreno, ortofotos), a la vez que favorecen una reducción de los costes. Para demostrar las posibilidades que nos ofrecen los UAS en el ámbito de la ingeniería civil, se presenta aquí un estudio en el que se comparan los resultados obtenidos entre un levantamiento topográfico clásico y otro efectuado con estos medios aéreos, que será la base topográfica que permita realizar el proyecto de construcción de una carretera. Los resultados experimentales revelan que el uso combinado de datos UAS y topografía clásica proporcionan una generación exitosa de los productos.
format Article in Journal/Newspaper
author Pérez, Juan Antonio
Rito Gonçalves, Gil
Montilla Galván, Jesus
author_facet Pérez, Juan Antonio
Rito Gonçalves, Gil
Montilla Galván, Jesus
author_sort Pérez, Juan Antonio
title Comparative analysis of the land survey using UAS and classical topography in road layout projects
title_short Comparative analysis of the land survey using UAS and classical topography in road layout projects
title_full Comparative analysis of the land survey using UAS and classical topography in road layout projects
title_fullStr Comparative analysis of the land survey using UAS and classical topography in road layout projects
title_full_unstemmed Comparative analysis of the land survey using UAS and classical topography in road layout projects
title_sort comparative analysis of the land survey using uas and classical topography in road layout projects
publisher Consejo Superior de Investigaciones Científicas
publishDate 2022
url https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122
https://doi.org/10.3989/ic.86273
genre The Cryosphere
genre_facet The Cryosphere
op_source Informes de la Construcción; Vol. 74 No. 565 (2022); e431
Informes de la Construcción; Vol. 74 Núm. 565 (2022); e431
1988-3234
0020-0883
10.3989/ic.2022.v74.i565
op_relation https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122/7582
https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122/7583
https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122/7584
Nex, F., Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied geomatics, 6(1): 1-15.
Trujillo, M.M., Darrah, M., Speransky, K., DeRoos, B., Wathen, M. (2016). Optimized flight path for 3D mapping of an area with structures using a multirotor. In 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 7-10: 905-910. Arlington (USA): IEEE.
Chaudhry, M.H., Ahmad, A., Gulzar, Q. (2020). A comparative study of modern UAV platform for topographic mapping. In IOP Conference Series: Earth and Environmental Science, 540(1): 012019. IOP Publishing.
Kraaijenbrink, P.D.A., Shea, J.M., Pellicciotti, F., Jong, S.M. de Immerzeel, W.W. (2016). Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sensing of Environment, 186: 581-595.
Rossini, M., Di Mauro, B., Garzonio, R., Baccolo, G., Cavallini, G., Mattavelli, M., Colombo, R. (2018). Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry. Geomorphology, 304: 159-172.
Chang, K.J., Tseng, C.W., Tseng, C.M., Liao, T.C., Yang, C.J. (2020). Application of Unmanned Aerial Vehicle (UAV)-Acquired Topography for Quantifying Typhoon-Driven Landslide Volume and Its Potential Topographic Impact on Rivers in Mountainous Catchments. Applied Sciences, 10(17):6102.
Yuan, X., Qiao, G., Li, Y., Li, H., Xu, R. (2020). Modelling of Glacier and Ice Sheet Micro-Topography Based on Unmanned Aerial Vehicle Data, Antarctica. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43: 919-923.
Cunliffe, A.M., Tanski, G., Radosavljevic, B., Palmer, W.F., Sachs, T., Lantuit, H., Myers-Smith, I.H. (2019). Rapid retreat of permafrost coastline observed with aerial drone photogrammetry. The Cryosphere, 13: 1513-1528.
Turner, I.L., Harley, M.D., Drummond, C.D. (2016). UAVs for coastal surveying. Coastal Engineering, 114: 19-24.
Gonçalves, G.R., Pérez, J. A., Duarte, J. (2018). Accuracy and effectiveness of low cost UASs and open source photogrammetric software for foredunes mapping. International Journal of Remote Sensing, 39(15-16): 5059-5077.
Tatum, M. C., Liu, J. (2017). Unmanned aircraft system applications in construction. Procedia Engineering, 196: 167-175.
Coetzee, G. L. (2018). Smart Construction Monitoring of Dams with UAVS-Neckartal dam Water Project Phase 1. Smart Dams and Reservoirs: Proceedings of the 20th Biennial Conference of the British Dam, 13-15:445-456. Swanse (ICE Publishing). . (13) Sreenath, S., Malik, H., Husnu, N., Kalaichelavan, K. (2020). Assessment and Use of Unmanned Aerial Vehicle for Civil Structural Health Monitoring. Procedia Computer Science, 170: 656-663.
Colomina, I., Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 79-97.
Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P., Zarzycki, H. (2016). Drones and possibilities of their using. Journal of Civil Environmental Engineering, 6(3): 1-7.
Kerle, N., Nex, F., Gerke, M., Duarte, D., Vetrivel, A. (2020). UAV-Based Structural Damage Mapping: A Review. ISPRS International Journal of Geo-Information, 9(1): 14.
Pena-Villasenin, S., Gil-Docampo, M., & Ortiz-Sanz, J. (2020). Desktop vs cloud computing software for 3D measurement of building façades: The monastery of San Martín Pinario. Measurement, 149: 106984.
Rangel, J.M.G., Gonçalves, G.R., Pérez, J.A. (2018). The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. International Journal of Remote Sensing, 39(21): 7154-7171.
Pérez, J.A., Gonçalves, G.R., Rangel, J.M.G., Ortega, P.F. (2019). Accuracy and effectiveness of orthophotos obtained from low cost UASs video imagery for traffic accident scenes documentation. Advances in Engineering Software, 132: 47-54.
Hugenholtz, C., Brown, O., Walker, J., Barchyn, T., Nesbit, P., Kucharczyk, M., Myshak, S. (2016). Spatial accuracy of UAV-derived orthoimagery and topography: Comparing photogrammetric models processed with direct geo-referencing and ground control points. Geomatica, 70(1): 21-30.
Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P. (2017). Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry. Journal of Surveying Engineering, 143(2): 04016025.
Popescu, G., Iordan, D., Păunescu, V. (2016). The resultant positional accuracy for the orthophotos obtained with Unmanned Aerial Vehicles (UAVs). Agriculture and Agricultural Science Procedia, 10: 458-464.
Pérez, Juan Antonio, Gil Rito Gonçalves, and María Cristina Charro. (2019). On the positional accuracy and maximum allowable scale of UAV-derived photogrammetric products for archaeological site documentation. Geocarto International, 34(6): 575-585.
Ferrer-González, E., Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P. (2020). UAV Photogrammetry Accuracy Assessment for Corridor Mapping Based on the Number and Distribution of Ground Control Points. Remote Sensing, 12(15): 2447.
Ackermann, F. (1966). On the theoretical accuracy of planimetric block triangulation. Photogrammetria, 21(5): 145-170.
Smith, M.W., Carrivick, J.L., Quincey, D.J. (2016). Structure from motion photogrammetry in physical geography. Progress in Physical Geography, 40(2): 247-275.
Pikelj, K., Ružić, I., James, M. R., Ilic, S. (2018). Structure-from-Motion (SfM)monitoring of nourished gravel beaches in Croatia. In Coasts, Marine Structures and Breakwaters 2017: Realising the Potential (pp. 561-564). ICE Publishing.
Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., Rosette, J. (2019). Structure from motion photogrammetry in forestry: A review. Current Forestry Reports, 5(3): 155-168.
James, M. R., Robson, S., d’Oleire-Oltmanns, S., Niethammer, U. (2017). Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, 280: 51-66.
Mayer, C., Pereira, L. G., Kersten, T. P. (2018). A comprehensive workflow to process UAV images for the efficient production of accurate Geo-Information. In IX National Conference on Cartography and Geodesy. Amadora (CNCG2018).
Gindraux, S., Boesch, R., Farinotti, D. (2017). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sensing, 9(2): 186.
USGS (2017). Unmanned Aircraft Systems Data Post-Processing. United States Geological Survey. UAS Federal Users Workshop 2017. https://uas.usgs.gov/nupo/pdf/PhotoScanProcessingDSLRMar2017.pdf.
James, M. R. (2017). SfM-MVS PhotoScan image processing exercise. IAVCEI 2017 UAS workshop: Lancaster University. James, Mike. (2017). SfM-MVS PhotoScan image processing exercise. https://www.researchgate.net/publication/320407992_SfM-MVS_PhotoScan_image_processing_exercise.
Agisoft, L. L. C. (2018). Agisoft metashape user manual, Professional edition, Version 1.5. Agisoft LLC, St. Petersburg, Russia. https://www.agisoft.com/pdf/metashape-pro_1_6_en.pdf.
Nadal-Romero, E., Revuelto, J., Errea, P., López-Moreno, J.I. (2015). The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees). Soil, 1(2):561.
Anders, N., Valente, J., Masselink, R., Keesstra, S. (2019). Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones, 3(3): 61.
Montilla Galván, J. (2020). Tratamiento y Depurado de Nubes de Puntos obtenidas mediante Fotogrametría Aérea (UAV/drones) aplicadas a Ingeniería Civil. Algoritmos de Filtrado y Geometrías Convergentes (TFM no publicado), Cáceres, Universidad de Extremadura.
American Society for Photogrammetry and Remote Sensing (ASPRS). (2015). New ASPRS positional accuracy standards for digital geospatial data released. Photogrammetric Engineering and Remote Sensing, 81(4): 227-253. https://www.asprs.org/wp-content/uploads/2015/01/PERS_March2015_Highlight.pdf.
Brunier, G., Fleury, J., Anthony, E. J., Gardel, A., Dussouillez, P. (2016). Close-range airborne Structure-from-Motion Photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach. Geomorphology, 261: 76-88.
Kraaijenbrink, P.D.A., Shea, J.M., Pellicciotti, F., de Jong, S.M., Immerzeel, W.W. (2016). Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sensing of Environment, 186: 581-595
https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122
doi:10.3989/ic.86273
op_rights Derechos de autor 2022 Consejo Superior de Investigaciones Científicas (CSIC)
https://creativecommons.org/licenses/by/4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3989/ic.86273
https://doi.org/10.3989/ic.2022.v74.i565
container_title Informes de la Construcción
container_volume 74
container_issue 565
container_start_page e431
_version_ 1766216809432743936
spelling ftjidlc:oai:informesdeconstruccion.revistas.csic.es:article/6122 2023-05-15T18:32:36+02:00 Comparative analysis of the land survey using UAS and classical topography in road layout projects Análisis comparativo del levantamiento del terreno mediante UAS y topografía clásica en proyectos de trazado de carreteras Pérez, Juan Antonio Rito Gonçalves, Gil Montilla Galván, Jesus 2022-03-25 text/html application/pdf text/xml https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122 https://doi.org/10.3989/ic.86273 spa spa Consejo Superior de Investigaciones Científicas https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122/7582 https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122/7583 https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122/7584 Nex, F., Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied geomatics, 6(1): 1-15. Trujillo, M.M., Darrah, M., Speransky, K., DeRoos, B., Wathen, M. (2016). Optimized flight path for 3D mapping of an area with structures using a multirotor. In 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 7-10: 905-910. Arlington (USA): IEEE. Chaudhry, M.H., Ahmad, A., Gulzar, Q. (2020). A comparative study of modern UAV platform for topographic mapping. In IOP Conference Series: Earth and Environmental Science, 540(1): 012019. IOP Publishing. Kraaijenbrink, P.D.A., Shea, J.M., Pellicciotti, F., Jong, S.M. de Immerzeel, W.W. (2016). Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sensing of Environment, 186: 581-595. Rossini, M., Di Mauro, B., Garzonio, R., Baccolo, G., Cavallini, G., Mattavelli, M., Colombo, R. (2018). Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry. Geomorphology, 304: 159-172. Chang, K.J., Tseng, C.W., Tseng, C.M., Liao, T.C., Yang, C.J. (2020). Application of Unmanned Aerial Vehicle (UAV)-Acquired Topography for Quantifying Typhoon-Driven Landslide Volume and Its Potential Topographic Impact on Rivers in Mountainous Catchments. Applied Sciences, 10(17):6102. Yuan, X., Qiao, G., Li, Y., Li, H., Xu, R. (2020). Modelling of Glacier and Ice Sheet Micro-Topography Based on Unmanned Aerial Vehicle Data, Antarctica. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43: 919-923. Cunliffe, A.M., Tanski, G., Radosavljevic, B., Palmer, W.F., Sachs, T., Lantuit, H., Myers-Smith, I.H. (2019). Rapid retreat of permafrost coastline observed with aerial drone photogrammetry. The Cryosphere, 13: 1513-1528. Turner, I.L., Harley, M.D., Drummond, C.D. (2016). UAVs for coastal surveying. Coastal Engineering, 114: 19-24. Gonçalves, G.R., Pérez, J. A., Duarte, J. (2018). Accuracy and effectiveness of low cost UASs and open source photogrammetric software for foredunes mapping. International Journal of Remote Sensing, 39(15-16): 5059-5077. Tatum, M. C., Liu, J. (2017). Unmanned aircraft system applications in construction. Procedia Engineering, 196: 167-175. Coetzee, G. L. (2018). Smart Construction Monitoring of Dams with UAVS-Neckartal dam Water Project Phase 1. Smart Dams and Reservoirs: Proceedings of the 20th Biennial Conference of the British Dam, 13-15:445-456. Swanse (ICE Publishing). . (13) Sreenath, S., Malik, H., Husnu, N., Kalaichelavan, K. (2020). Assessment and Use of Unmanned Aerial Vehicle for Civil Structural Health Monitoring. Procedia Computer Science, 170: 656-663. Colomina, I., Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 79-97. Kardasz, P., Doskocz, J., Hejduk, M., Wiejkut, P., Zarzycki, H. (2016). Drones and possibilities of their using. Journal of Civil Environmental Engineering, 6(3): 1-7. Kerle, N., Nex, F., Gerke, M., Duarte, D., Vetrivel, A. (2020). UAV-Based Structural Damage Mapping: A Review. ISPRS International Journal of Geo-Information, 9(1): 14. Pena-Villasenin, S., Gil-Docampo, M., & Ortiz-Sanz, J. (2020). Desktop vs cloud computing software for 3D measurement of building façades: The monastery of San Martín Pinario. Measurement, 149: 106984. Rangel, J.M.G., Gonçalves, G.R., Pérez, J.A. (2018). The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. International Journal of Remote Sensing, 39(21): 7154-7171. Pérez, J.A., Gonçalves, G.R., Rangel, J.M.G., Ortega, P.F. (2019). Accuracy and effectiveness of orthophotos obtained from low cost UASs video imagery for traffic accident scenes documentation. Advances in Engineering Software, 132: 47-54. Hugenholtz, C., Brown, O., Walker, J., Barchyn, T., Nesbit, P., Kucharczyk, M., Myshak, S. (2016). Spatial accuracy of UAV-derived orthoimagery and topography: Comparing photogrammetric models processed with direct geo-referencing and ground control points. Geomatica, 70(1): 21-30. Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P. (2017). Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry. Journal of Surveying Engineering, 143(2): 04016025. Popescu, G., Iordan, D., Păunescu, V. (2016). The resultant positional accuracy for the orthophotos obtained with Unmanned Aerial Vehicles (UAVs). Agriculture and Agricultural Science Procedia, 10: 458-464. Pérez, Juan Antonio, Gil Rito Gonçalves, and María Cristina Charro. (2019). On the positional accuracy and maximum allowable scale of UAV-derived photogrammetric products for archaeological site documentation. Geocarto International, 34(6): 575-585. Ferrer-González, E., Agüera-Vega, F., Carvajal-Ramírez, F., Martínez-Carricondo, P. (2020). UAV Photogrammetry Accuracy Assessment for Corridor Mapping Based on the Number and Distribution of Ground Control Points. Remote Sensing, 12(15): 2447. Ackermann, F. (1966). On the theoretical accuracy of planimetric block triangulation. Photogrammetria, 21(5): 145-170. Smith, M.W., Carrivick, J.L., Quincey, D.J. (2016). Structure from motion photogrammetry in physical geography. Progress in Physical Geography, 40(2): 247-275. Pikelj, K., Ružić, I., James, M. R., Ilic, S. (2018). Structure-from-Motion (SfM)monitoring of nourished gravel beaches in Croatia. In Coasts, Marine Structures and Breakwaters 2017: Realising the Potential (pp. 561-564). ICE Publishing. Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., Rosette, J. (2019). Structure from motion photogrammetry in forestry: A review. Current Forestry Reports, 5(3): 155-168. James, M. R., Robson, S., d’Oleire-Oltmanns, S., Niethammer, U. (2017). Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology, 280: 51-66. Mayer, C., Pereira, L. G., Kersten, T. P. (2018). A comprehensive workflow to process UAV images for the efficient production of accurate Geo-Information. In IX National Conference on Cartography and Geodesy. Amadora (CNCG2018). Gindraux, S., Boesch, R., Farinotti, D. (2017). Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sensing, 9(2): 186. USGS (2017). Unmanned Aircraft Systems Data Post-Processing. United States Geological Survey. UAS Federal Users Workshop 2017. https://uas.usgs.gov/nupo/pdf/PhotoScanProcessingDSLRMar2017.pdf. James, M. R. (2017). SfM-MVS PhotoScan image processing exercise. IAVCEI 2017 UAS workshop: Lancaster University. James, Mike. (2017). SfM-MVS PhotoScan image processing exercise. https://www.researchgate.net/publication/320407992_SfM-MVS_PhotoScan_image_processing_exercise. Agisoft, L. L. C. (2018). Agisoft metashape user manual, Professional edition, Version 1.5. Agisoft LLC, St. Petersburg, Russia. https://www.agisoft.com/pdf/metashape-pro_1_6_en.pdf. Nadal-Romero, E., Revuelto, J., Errea, P., López-Moreno, J.I. (2015). The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees). Soil, 1(2):561. Anders, N., Valente, J., Masselink, R., Keesstra, S. (2019). Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones, 3(3): 61. Montilla Galván, J. (2020). Tratamiento y Depurado de Nubes de Puntos obtenidas mediante Fotogrametría Aérea (UAV/drones) aplicadas a Ingeniería Civil. Algoritmos de Filtrado y Geometrías Convergentes (TFM no publicado), Cáceres, Universidad de Extremadura. American Society for Photogrammetry and Remote Sensing (ASPRS). (2015). New ASPRS positional accuracy standards for digital geospatial data released. Photogrammetric Engineering and Remote Sensing, 81(4): 227-253. https://www.asprs.org/wp-content/uploads/2015/01/PERS_March2015_Highlight.pdf. Brunier, G., Fleury, J., Anthony, E. J., Gardel, A., Dussouillez, P. (2016). Close-range airborne Structure-from-Motion Photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach. Geomorphology, 261: 76-88. Kraaijenbrink, P.D.A., Shea, J.M., Pellicciotti, F., de Jong, S.M., Immerzeel, W.W. (2016). Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sensing of Environment, 186: 581-595 https://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6122 doi:10.3989/ic.86273 Derechos de autor 2022 Consejo Superior de Investigaciones Científicas (CSIC) https://creativecommons.org/licenses/by/4.0 CC-BY Informes de la Construcción; Vol. 74 No. 565 (2022); e431 Informes de la Construcción; Vol. 74 Núm. 565 (2022); e431 1988-3234 0020-0883 10.3989/ic.2022.v74.i565 MDT UAS SfM MVS break lines vegetation DTM UAS líneas de rotura eliminación de ruido precisión MDT info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer reviewed article Artículo revisado por pares 2022 ftjidlc https://doi.org/10.3989/ic.86273 https://doi.org/10.3989/ic.2022.v74.i565 2022-05-25T18:36:48Z Nowadays, the use of unmanned aerial vehicles (UAS) as a technologycal alternative to classical topographic surveys has experienced great progress in all areas of engineering. While being cost-effective, they allow a rapid and efficient generation of three main photogrammetric products: cloud points, digital terrain models and orthophotos. To evaluate the effectiveness of UAS in the field of civil engineering, a comparison between a classic topographic survey and an UAS survey is presented, with the assumption that both surveys will give the basic topographic data necessary to carry out a highway construction project. The experimental results reveal that the combined use of UAS data and classical topography provides a successful generation of the products. La incorporación de vehículos aéreos no tripulados (UAS) como alternativa a los levantamientos topográficos clásicos ha experimentado en estos últimos años un gran avance en todos los ámbitos de la ingeniería, dado que permiten una rápida y eficaz generación de diferentes productos fotogramétricos (nube de puntos, modelo digital del terreno, ortofotos), a la vez que favorecen una reducción de los costes. Para demostrar las posibilidades que nos ofrecen los UAS en el ámbito de la ingeniería civil, se presenta aquí un estudio en el que se comparan los resultados obtenidos entre un levantamiento topográfico clásico y otro efectuado con estos medios aéreos, que será la base topográfica que permita realizar el proyecto de construcción de una carretera. Los resultados experimentales revelan que el uso combinado de datos UAS y topografía clásica proporcionan una generación exitosa de los productos. Article in Journal/Newspaper The Cryosphere Informes de la Construcción (E-Journal) Informes de la Construcción 74 565 e431