Texture features of multi-year fresh ice in the Transcription bay, East Antarctica, in the period of summer melting

The paper presents new data on the texture and density of a unique natural object – perennial fresh landfast ice in the Gulf of Transcription (East Antarctica), obtained in January 2020. The main purpose of the work was a planned (scheduled) inspection of the landing site selected for the 63rd seaso...

Full description

Bibliographic Details
Main Authors: V. Kharitonov V., V. Borodkin A., В. Харитонов В., В. Бородкин А.
Other Authors: This work was carried out within the framework of 64 and 65 Russian Antarctic Expedition (RAE) The authors express their gratitude to the head of the RAE A V Klepikov for providing logistics and Sergey Kashin of the AARI for his assistance in field work., Работа выполнена в рамках 64-й и 65-й РАЭ. Авторы выражают благодарность руководству РАЭ в лице А. В. Клепикова за обеспечение логистики и сотруднику ААНИИ С В Кашину за помощь при проведении полевых работ.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2022
Subjects:
Rae
Online Access:https://ice-snow.igras.ru/jour/article/view/986
https://doi.org/10.31857/S2076673422020132
id ftjias:oai:oai.ice.elpub.ru:article/986
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic perennial ice;Antarctica;ice core;density;air inclusions;congelation ice;infiltration ice;ice formation
многолетний лёд;Антарктида;керн;плотность;воздушные включения;конжеляционный и инфильтрационный лёд;формирование льда
spellingShingle perennial ice;Antarctica;ice core;density;air inclusions;congelation ice;infiltration ice;ice formation
многолетний лёд;Антарктида;керн;плотность;воздушные включения;конжеляционный и инфильтрационный лёд;формирование льда
V. Kharitonov V.
V. Borodkin A.
В. Харитонов В.
В. Бородкин А.
Texture features of multi-year fresh ice in the Transcription bay, East Antarctica, in the period of summer melting
topic_facet perennial ice;Antarctica;ice core;density;air inclusions;congelation ice;infiltration ice;ice formation
многолетний лёд;Антарктида;керн;плотность;воздушные включения;конжеляционный и инфильтрационный лёд;формирование льда
description The paper presents new data on the texture and density of a unique natural object – perennial fresh landfast ice in the Gulf of Transcription (East Antarctica), obtained in January 2020. The main purpose of the work was a planned (scheduled) inspection of the landing site selected for the 63rd season of the Russian Antarctic Expedition (RAE), investigation of the ice core sampling and analysis of its texture, including measuring the ice density. The thickness of the ice cover at the core sampling site was 3.02 m. In the long-standing (perennial) fast ice, the new ice is formed mainly from below as a natural growing of the congelation ice. From above a new ice is formed in smaller volumes, and it is either the infiltration ice in spring or freezing of melt water on the surface in autumn. Infiltration ice does not contribute much to the old fast ice, remaining a seasonal phenomenon. The reasons for that are insufficient snow accumulation in winter and the lack of salt water in the subglacial layer. In the upper layer of ice, its density is minimal and amounts to 680–720 kg/m3, increasing with depth and approaching its maximum at the lower edge – 917 kg/m3. The average density of ice is 875 kg/m3. The effect of primary air inclusions (bubbles) on the density of ice which contains large crystals of tens of centimeters in size is approximately the same for the whole ice thickness. Significant changes in the density of ice are caused by secondary inclusions which are formed during the freezing of melt water in the runoff and riverbed flows. It is shown how a crack in the ice, probably thermal, is further transformed under the influence of temperature and melt water runoff into a sinusoidal channel. This is rather common phenomenon associated with the thermal physics of the ice cover, the melting–freezing processes, and surface tension. The period of the sinusoid increases linearly with depth (the coefficient of determination R2 = 0.99). Thus, the new data obtained allows expanding the present-day scientific notions on ...
author2 This work was carried out within the framework of 64 and 65 Russian Antarctic Expedition (RAE) The authors express their gratitude to the head of the RAE A V Klepikov for providing logistics and Sergey Kashin of the AARI for his assistance in field work.
Работа выполнена в рамках 64-й и 65-й РАЭ. Авторы выражают благодарность руководству РАЭ в лице А. В. Клепикова за обеспечение логистики и сотруднику ААНИИ С В Кашину за помощь при проведении полевых работ.
format Article in Journal/Newspaper
author V. Kharitonov V.
V. Borodkin A.
В. Харитонов В.
В. Бородкин А.
author_facet V. Kharitonov V.
V. Borodkin A.
В. Харитонов В.
В. Бородкин А.
author_sort V. Kharitonov V.
title Texture features of multi-year fresh ice in the Transcription bay, East Antarctica, in the period of summer melting
title_short Texture features of multi-year fresh ice in the Transcription bay, East Antarctica, in the period of summer melting
title_full Texture features of multi-year fresh ice in the Transcription bay, East Antarctica, in the period of summer melting
title_fullStr Texture features of multi-year fresh ice in the Transcription bay, East Antarctica, in the period of summer melting
title_full_unstemmed Texture features of multi-year fresh ice in the Transcription bay, East Antarctica, in the period of summer melting
title_sort texture features of multi-year fresh ice in the transcription bay, east antarctica, in the period of summer melting
publisher IGRAS
publishDate 2022
url https://ice-snow.igras.ru/jour/article/view/986
https://doi.org/10.31857/S2076673422020132
long_lat ENVELOPE(-45.689,-45.689,-60.733,-60.733)
ENVELOPE(-44.600,-44.600,-60.750,-60.750)
geographic Antarctic
East Antarctica
The Landing
Rae
geographic_facet Antarctic
East Antarctica
The Landing
Rae
genre Antarc*
Antarctic
Antarctic and Alpine Research
Antarctica
Arctic
East Antarctica
ice core
Антарктида
genre_facet Antarc*
Antarctic
Antarctic and Alpine Research
Antarctica
Arctic
East Antarctica
ice core
Антарктида
op_source Ice and Snow; Том 62, № 2 (2022); 275-286
Лёд и Снег; Том 62, № 2 (2022); 275-286
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/986/616
Reimnitz E., Eicken H., Martin T. Multiyear Fast Ice along the Taymyr Peninsula, Siberia // Arctic 1995 V 48 № 4 P 359–367
Tang S., Qin D., Ren J., Kang J., Li Z. Structure, salinity and isotopic composition of multi-year landfast sea ice in Nella Fjord, Antarctica // Cold Regions Science and Technology 2007 V 49 P 170–177 doi:10.1016/J.COLDREGIONS.2007.03.005
Pope S., Copland L., Mueller D. Loss of Multiyear Landfast Sea Ice from Yelverton Bay, Ellesmere Island, Nunavut, Canada // Arctic, Antarctic, and Alpine Research 2012 V 44 № 2 P 210–221 doi:10.1657/1938-4246-44.2.210
Massom R.A., Giles A.B., Fricker H.A., Warner R.C., Legresy B., Hyland G., Young N., Fraser A.D. Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: another factor in ice sheet stability? // Journ of Geophys Research 2010 V 115 C12027 http://dx.doi.org/10.1029/2009JC006083
Ackley S.F., Hibler W.D., Kugzruk F., Kovacs A., Weeks W.F. Thickness and roughness variations of Arctic multi-year sea ice // Ocean '74 IEEE Intern Conf on Engineering in the Ocean Environment 1974 V 1 P 109–117 doi:10.1109/OCEANS.1974.1161374
Johnston M. Seasonal changes in the properties of firstyear, second-year and multi-year ice // Cold Regions Science and Technology 2017 V 141 P 36–53 http://dx.doi.org/10.1016/j.coldregions.2017.05.006
Johnston M. Thickness and freeboard statistics of Arctic Multi-year Ice in late summer: Three, recent drilling campaigns // Cold Regions Science and Technology 2019 V 158 P 30–51 https://doi.org/10.1016/j.coldregions.2018.10.016
Timco G.W., Weeks W.F. A review of the engineering properties of sea ice // Cold Regions Science and Technology 2010 V 60 P 107–129 doi:10.1016/j.coldregions.2009.10.003
Ashton G.D. River and lake ice thickening, thinning, and snow ice formation // Cold Regions Science and Technology 2011 V 68 P 3–19 doi:10.1016/j.coldregions.2011.05.004
Gow A.J. Orientation textures in ice sheets of quietly frozen lakes // Journ of Crystal Growth 1986 V 74 P 247–258 doi:10.1016/0022-0248(86)90114-4
Короткевич Е.С. Полярные пустыни Л : Гидрометеоиздат, 1972 420 c Доступно на: http://www.geolmarshrut.ru/biblioteka/catalog.php?ELEMENT_ID=3170 (accessed 11 12 2020)
Клоков В.Д., Кауп Э.Б., Хендель Д., Цират Р. Химический состав и экологическая характеристика озёрных вод оазиса Бангера // Информ бюл САЭ 1960 № 111 С 91–104
Атлас океанов. Антарктика СПб : Главное управление навигации и океанографии МО РФ, 2005 300 с.
https://ice-snow.igras.ru/jour/article/view/986
doi:10.31857/S2076673422020132
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.31857/S2076673422020132
https://doi.org/10.1016/J.COLDREGIONS.2007.03.005
https://doi.org/10.1657/1938-4246-44.2.210
https://doi.org/10.1109/OCEANS.1974.1161374
https://doi.org/10.1016/j.coldregions.2017.05.006
https://doi.org
_version_ 1766199405256376320
spelling ftjias:oai:oai.ice.elpub.ru:article/986 2023-05-15T13:44:15+02:00 Texture features of multi-year fresh ice in the Transcription bay, East Antarctica, in the period of summer melting Особенности текстуры многолетнего пресного льда в заливе Транскрипция (Восточная Антарктида) в период летнего таяния V. Kharitonov V. V. Borodkin A. В. Харитонов В. В. Бородкин А. This work was carried out within the framework of 64 and 65 Russian Antarctic Expedition (RAE) The authors express their gratitude to the head of the RAE A V Klepikov for providing logistics and Sergey Kashin of the AARI for his assistance in field work. Работа выполнена в рамках 64-й и 65-й РАЭ. Авторы выражают благодарность руководству РАЭ в лице А. В. Клепикова за обеспечение логистики и сотруднику ААНИИ С В Кашину за помощь при проведении полевых работ. 2022-05-30 application/pdf https://ice-snow.igras.ru/jour/article/view/986 https://doi.org/10.31857/S2076673422020132 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/986/616 Reimnitz E., Eicken H., Martin T. Multiyear Fast Ice along the Taymyr Peninsula, Siberia // Arctic 1995 V 48 № 4 P 359–367 Tang S., Qin D., Ren J., Kang J., Li Z. Structure, salinity and isotopic composition of multi-year landfast sea ice in Nella Fjord, Antarctica // Cold Regions Science and Technology 2007 V 49 P 170–177 doi:10.1016/J.COLDREGIONS.2007.03.005 Pope S., Copland L., Mueller D. Loss of Multiyear Landfast Sea Ice from Yelverton Bay, Ellesmere Island, Nunavut, Canada // Arctic, Antarctic, and Alpine Research 2012 V 44 № 2 P 210–221 doi:10.1657/1938-4246-44.2.210 Massom R.A., Giles A.B., Fricker H.A., Warner R.C., Legresy B., Hyland G., Young N., Fraser A.D. Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: another factor in ice sheet stability? // Journ of Geophys Research 2010 V 115 C12027 http://dx.doi.org/10.1029/2009JC006083 Ackley S.F., Hibler W.D., Kugzruk F., Kovacs A., Weeks W.F. Thickness and roughness variations of Arctic multi-year sea ice // Ocean '74 IEEE Intern Conf on Engineering in the Ocean Environment 1974 V 1 P 109–117 doi:10.1109/OCEANS.1974.1161374 Johnston M. Seasonal changes in the properties of firstyear, second-year and multi-year ice // Cold Regions Science and Technology 2017 V 141 P 36–53 http://dx.doi.org/10.1016/j.coldregions.2017.05.006 Johnston M. Thickness and freeboard statistics of Arctic Multi-year Ice in late summer: Three, recent drilling campaigns // Cold Regions Science and Technology 2019 V 158 P 30–51 https://doi.org/10.1016/j.coldregions.2018.10.016 Timco G.W., Weeks W.F. A review of the engineering properties of sea ice // Cold Regions Science and Technology 2010 V 60 P 107–129 doi:10.1016/j.coldregions.2009.10.003 Ashton G.D. River and lake ice thickening, thinning, and snow ice formation // Cold Regions Science and Technology 2011 V 68 P 3–19 doi:10.1016/j.coldregions.2011.05.004 Gow A.J. Orientation textures in ice sheets of quietly frozen lakes // Journ of Crystal Growth 1986 V 74 P 247–258 doi:10.1016/0022-0248(86)90114-4 Короткевич Е.С. Полярные пустыни Л : Гидрометеоиздат, 1972 420 c Доступно на: http://www.geolmarshrut.ru/biblioteka/catalog.php?ELEMENT_ID=3170 (accessed 11 12 2020) Клоков В.Д., Кауп Э.Б., Хендель Д., Цират Р. Химический состав и экологическая характеристика озёрных вод оазиса Бангера // Информ бюл САЭ 1960 № 111 С 91–104 Атлас океанов. Антарктика СПб : Главное управление навигации и океанографии МО РФ, 2005 300 с. https://ice-snow.igras.ru/jour/article/view/986 doi:10.31857/S2076673422020132 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 62, № 2 (2022); 275-286 Лёд и Снег; Том 62, № 2 (2022); 275-286 2412-3765 2076-6734 perennial ice;Antarctica;ice core;density;air inclusions;congelation ice;infiltration ice;ice formation многолетний лёд;Антарктида;керн;плотность;воздушные включения;конжеляционный и инфильтрационный лёд;формирование льда info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjias https://doi.org/10.31857/S2076673422020132 https://doi.org/10.1016/J.COLDREGIONS.2007.03.005 https://doi.org/10.1657/1938-4246-44.2.210 https://doi.org/10.1109/OCEANS.1974.1161374 https://doi.org/10.1016/j.coldregions.2017.05.006 https://doi.org 2022-12-20T13:30:26Z The paper presents new data on the texture and density of a unique natural object – perennial fresh landfast ice in the Gulf of Transcription (East Antarctica), obtained in January 2020. The main purpose of the work was a planned (scheduled) inspection of the landing site selected for the 63rd season of the Russian Antarctic Expedition (RAE), investigation of the ice core sampling and analysis of its texture, including measuring the ice density. The thickness of the ice cover at the core sampling site was 3.02 m. In the long-standing (perennial) fast ice, the new ice is formed mainly from below as a natural growing of the congelation ice. From above a new ice is formed in smaller volumes, and it is either the infiltration ice in spring or freezing of melt water on the surface in autumn. Infiltration ice does not contribute much to the old fast ice, remaining a seasonal phenomenon. The reasons for that are insufficient snow accumulation in winter and the lack of salt water in the subglacial layer. In the upper layer of ice, its density is minimal and amounts to 680–720 kg/m3, increasing with depth and approaching its maximum at the lower edge – 917 kg/m3. The average density of ice is 875 kg/m3. The effect of primary air inclusions (bubbles) on the density of ice which contains large crystals of tens of centimeters in size is approximately the same for the whole ice thickness. Significant changes in the density of ice are caused by secondary inclusions which are formed during the freezing of melt water in the runoff and riverbed flows. It is shown how a crack in the ice, probably thermal, is further transformed under the influence of temperature and melt water runoff into a sinusoidal channel. This is rather common phenomenon associated with the thermal physics of the ice cover, the melting–freezing processes, and surface tension. The period of the sinusoid increases linearly with depth (the coefficient of determination R2 = 0.99). Thus, the new data obtained allows expanding the present-day scientific notions on ... Article in Journal/Newspaper Antarc* Antarctic Antarctic and Alpine Research Antarctica Arctic East Antarctica ice core Антарктида Ice and Snow (E-Journal) Antarctic East Antarctica The Landing ENVELOPE(-45.689,-45.689,-60.733,-60.733) Rae ENVELOPE(-44.600,-44.600,-60.750,-60.750)