Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus)

Cold glaciers in the middle latitudes are considered unique archives of environmental and climate change. However, alpine ice cores are difficult to interpret, since dynamic changes can occur over very short distances. Detailed radar survey can be used to assess the effect of ice inflow from areas w...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: I. Lavrentiev I., S. Kutuzov S., V. Mikhalenko N., M. Sudakova S., A. Kozachek V., И. Лаврентьев И., С. Кутузов С., В. Михаленко Н., М. Судакова С., А. Козачек В.
Other Authors: Field studies were carried out with the support of the Russian science foundation, Grant № 17.17.01270, cartographic work was funded within the State assignment scientific theme (№ 0148.2019. 0004) and interpretation of an ice core drilling data was carried out within the framework of the Megagrant (Agreement № 075-15-2021-599 dated 06/08/2021). Authors are grateful to Patrick Ginot (IGE, Grenoble, France) for chemical analysis of 2017 shallow ice core., Полевые работы выполнены при поддержке Российского научного фонда, грант № 17-17-01270, картографические работы – в рамках темы Государственного задания № 0148– 2019-0004, а интерпретация данных кернового бурения проведена в рамках Мегагранта (соглашение № 075-15-2021-599 от 08.06.2021 г. ). Авторы выражают благодарность П. Жино (Институт наук о Земле, г. Гренобль, Франция) за химические анализы образцов снега и фирна из неглубокой скважины, пробуренной в 2017 г.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2022
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/977
https://doi.org/10.31857/S2076673422020123
id ftjias:oai:oai.ice.elpub.ru:article/977
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Elbrus;high frequency radar survey;snow accumulation;ice core
Эльбрус;высокочастотное радиозондирование;аккумуляция снега;ледниковый керн
spellingShingle Elbrus;high frequency radar survey;snow accumulation;ice core
Эльбрус;высокочастотное радиозондирование;аккумуляция снега;ледниковый керн
I. Lavrentiev I.
S. Kutuzov S.
V. Mikhalenko N.
M. Sudakova S.
A. Kozachek V.
И. Лаврентьев И.
С. Кутузов С.
В. Михаленко Н.
М. Судакова С.
А. Козачек В.
Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus)
topic_facet Elbrus;high frequency radar survey;snow accumulation;ice core
Эльбрус;высокочастотное радиозондирование;аккумуляция снега;ледниковый керн
description Cold glaciers in the middle latitudes are considered unique archives of environmental and climate change. However, alpine ice cores are difficult to interpret, since dynamic changes can occur over very short distances. Detailed radar survey can be used to assess the effect of ice inflow from areas with different conditions of snow accumulation on the surface compared to the drilling point on the isotopic and chemical record in the glacier core. The results of radar studies on the Western plateau of Elbrus (Central Caucasus), located at an altitude of 5100–5150 m above sea level, are presented. A high-frequency ground-based radar survey was carried out in the summer of 2017 to assess the spatial and temporal changes in snow accumulation in the upper (near the top area) part of Elbrus. The ZOND 12-e GPR (ground-penetrating radar, Radar Systems, Inc.) with 500 and 300 MHz shielded antennas was used. The receiving time window was set to 100 ns (500 MHz antenna) and 470 ns (300 MHz) to obtain reflection in the depth range of about 10 m and 50 m, respectively. The results of the GPR sounding are confirmed by data on the stratigraphy, density and chemical composition of the snow-firn thickness from a shallow (24 m) borehole. The density profile made it possible to identify peaks and corresponding ice crusts of 1–2 cm thick that formed during warm periods. The internal reflections, clearly visible on the radar profiles up to 50 m deep, are of isochronous origin and have been interpreted as the boundaries of annual and seasonal layers. Detailed maps of the distribution of snow accumulation covering the cold and warm seasons of 2015–2017 have been obtained. The average thickness of seasonal snow cover on the plateau during this period was equal to 2.07 m, with minimum and maximum values of 0.2 and 3.9 m, respectively. The average values of the water storage in seasonal horizons range from 754 to 1126 mm W.E., while the annual accumulation for the 2015/16 and 2016/17 balance years amounted to 2004 and 1874 mm W.E., ...
author2 Field studies were carried out with the support of the Russian science foundation, Grant № 17.17.01270, cartographic work was funded within the State assignment scientific theme (№ 0148.2019. 0004) and interpretation of an ice core drilling data was carried out within the framework of the Megagrant (Agreement № 075-15-2021-599 dated 06/08/2021). Authors are grateful to Patrick Ginot (IGE, Grenoble, France) for chemical analysis of 2017 shallow ice core.
Полевые работы выполнены при поддержке Российского научного фонда, грант № 17-17-01270, картографические работы – в рамках темы Государственного задания № 0148– 2019-0004, а интерпретация данных кернового бурения проведена в рамках Мегагранта (соглашение № 075-15-2021-599 от 08.06.2021 г. ). Авторы выражают благодарность П. Жино (Институт наук о Земле, г. Гренобль, Франция) за химические анализы образцов снега и фирна из неглубокой скважины, пробуренной в 2017 г.
format Article in Journal/Newspaper
author I. Lavrentiev I.
S. Kutuzov S.
V. Mikhalenko N.
M. Sudakova S.
A. Kozachek V.
И. Лаврентьев И.
С. Кутузов С.
В. Михаленко Н.
М. Судакова С.
А. Козачек В.
author_facet I. Lavrentiev I.
S. Kutuzov S.
V. Mikhalenko N.
M. Sudakova S.
A. Kozachek V.
И. Лаврентьев И.
С. Кутузов С.
В. Михаленко Н.
М. Судакова С.
А. Козачек В.
author_sort I. Lavrentiev I.
title Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus)
title_short Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus)
title_full Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus)
title_fullStr Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus)
title_full_unstemmed Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus)
title_sort spatial and temporal variability of snow accumulation on the western plateau of elbrus (central caucasus)
publisher IGRAS
publishDate 2022
url https://ice-snow.igras.ru/jour/article/view/977
https://doi.org/10.31857/S2076673422020123
genre Annals of Glaciology
ice core
The Cryosphere
genre_facet Annals of Glaciology
ice core
The Cryosphere
op_source Ice and Snow; Том 62, № 2 (2022); 165-178
Лёд и Снег; Том 62, № 2 (2022); 165-178
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/977/607
Navarro F., Eisen O. Ground-penetrating radar in glaciological applications // Remote Sensing of Glaciers / Еds : P Pellikka, W G Rees London: Taylor & Francis, 2009 P 195–229 doi: org/10.1201/b10155-12
Bohleber P., Sold L., Hardy D.R., Schwikowski M., Klenk P., Fischer A., Sirguey P., Cullen N.J., Potocki M., Hoffmann H., Mayewski P. Ground-pene-trating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field // The Cryosphere 2017 V 11 P 469–482 doi: org/10.5194/tc-11-469-2017
Мачерет Ю.Я. Радиозондирование ледников М : Научный мир, 2006 389 с
Fujita S., Mae S. Causes and nature of ice-sheet radioecho internal reflections estimated from the dielectric properties of ice // Annals of Glaciology 1994 № 20 P 80–86
Paren J.G., Robin G.d.Q. Internal reflections in polar ice sheets // Journ of Glaciology 1975 V 14 № 71 P 251–259
Богородский В., Бентли Ч., Гудмандсен П. Радиогляциология Л : Гидрометеоиздат, 1983 312 с
Eisen O., Nixdorf U., Keck L., Wagenback D. Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body // Tellus B: Chemical and Physical Meteorology 2003 V 55 № 5 P 1007–1017 doi: org/10.3402/tellusb.v55i5.16394
Machguth H., Eisen O., Paul F., Hoelzle M. Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers // Geophys Research Letters 2006 V 33 L13503 doi: org/10.1029/2006GL026576
Konrad H., Bohleber P., Wagenbach D., Vincent C., Eisen O. Determining the age distribution of Colle Gnifetti, Monte Rosa, Swiss Alps, by combining ice cores, ground-penetrating radar and a simple flow model // Journ of Glaciology 2013 V 59 № 213 P 179–189 doi: org/10.3189/2013JoG12J072
Sold L., Huss M., Eichler A., Schwikowski M., Hoelzle M. Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier // The Cryosphere 2015 V 9 P 1075–1087 doi: org/10.5194/tc-9-1075-2015
Pälli A., Kohler J.C., Isaksson E., Moore J.C., Pinglot J.F., Pohjola V.A., Samuelsson H. Spatial and temporal variability of snow accumulation using ground penetrating radar and ice cores on a Svalbard glacier // Journ of Glaciology 2002 V 48 № 162 P 417–424
Sylvestre T., Copland L., Demuth M., Sharp M. Spatial patterns of snow accumulation across Belcher Glacier, Devon Ice Cap, Nunavut, Canada // Journ of Glaciology 2013 V 59 № 217 P 874–882 doi: org/10.3189/2013JoG12J227
Eisen O., Frezzotti M., Genthon C., Isaksson E., Magand O., van den Broeke M.R., Dixon D.A., Ekaykin A., Holmlund P., Kameda T., Karlof L., Kaspari S., Lipenkov V.Y., Oerter H., Takahashi S., Vaughan D.G. Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica // Reviews of Geophysics 2008 V 46 № 2 RG2001 39 P doi: org/10.1029/2006RG000218.
Kruetzmann N.C., Rack W., McDonald A.J., George S.E. Snow accumulation and compaction derived from GPR data near Ross Island, Antarctica // The Cryosphere 2011 V 5 P 391–404 doi: org/10.5194/.tc-5-391-2011
Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Торопов П.А., Абрамов А.А., Полюхов А.А. Гляциологические исследования института географии РАН на Эльбрусе в 2017 г // Лёд и Снег 2017 Т 57 № 3 С 292 doi: org/10.15356/2076-6734-20173-292
Ледники и климат Эльбруса / Отв ред В Н Михаленко М .-СПб : Нестор-История, 2020 372 с
Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Кунахович М.Г., Томпсон Л.Г. Исследования западного ледникового плато Эльбруса: результаты и перспективы // МГИ 2005 Вып 99 С 185–190
Kutuzov S., Shahgedanova M., Mikhalenko V., Ginot P., Lavrentiev I., Kemp S. High-resolution provenance of desert dust deposited on Mt Elbrus, Caucasus in 2009–2012 using snow pit and firn core records // The Cryosphere 2013 V 7 № 5 P 1481–1498 doi: org/10.5194/tc-7-1481-2013
Кутузов С.C., Михаленко В.Н., Шахгеданова M., Жино П., Козачек А.В., Лаврентьев И.И., Кудерина Т.М., Попов Г.В. Пути дальнего переноса пыли на ледники Кавказа и химический состав снега на Западном плато Эльбруса // Лёд и Снег 2014 № 3 (127) С 5–15 doi: org/10.15356/2076-6734-2014-3-5-15
Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere 2015 V 9 P 2253–2270 doi: org/10.5194/tc-9-2253-2015
Kozachek A., Mikhalenko V., Masson­Delmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus ice cores // Climat of the Past 2017 V 13 P 473–489 doi: org/10.5194/cp-13-473-2017
Лаврентьев И.И., Михаленко В.Н., Кутузов С.С. Толщина льда и подлёдный рельеф Западного ледникового плато Эльбруса // Лёд и Снег 2010 № 2 (110) С 12–18
Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume changes of Elbrus glaciers from 1997 to 2017 // Frontiers in Earth Science 2019 V 7 № 153 P 1–16 doi: org/.10.3389/feart.2019.00153
Forte E., Dossi M., Colucci R.R., Pipan M. A new fast methodology to estimate the density of frozen materials by means of common offset GPR data // Journ of Applied Geophysics 2013 V 99 P 135–145 doi: org/10.1016/j.jappgeo.2013.08.013.
Кульницкий Л.М., Гофман П.А., Токарев М.Ю. Математическая обработка данных георадиолокации и система RADEXPRO // Разведка и охрана недр 2001 № 3 С 6–11
Котляков В.М., Мачерет Ю.Я., Сосновский А.В., Глазовский А.Ф. Скорость распространения радиоволн в сухом и влажном снежном покрове // Лёд и Снег 2017 Т 57 № 1 С 45–56 doi: org/10 15356/2076-6734-2017-1-45-56
Looyenga H. Dielectric constants of heterogeneous mixture // Physica 1965 V 31 № 3 P 401–406
Kovacs A., Gow A.J., Morey R.M. A reassessment of the in-situ dielectric constant of polar firn Hanover, N H, 1993 22 p
Tiuri M., Sihvola A., Nyfors E., Hallikaiken M. The complex dielectric constant of snow at microwave frequencies // IEEE Journ of Oceanic Engineering 1984 V 9 № 5 P 377–382 doi: org/10.1109/.JOE.1984.1145645
Gusmeroli A., Wolken G., Arendt A. Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska // Annals of Glaciology 2014 V 55 № 67 Р 78–88 doi: org/10.3189/2014AoG67A029
Лаврентьев И.И., Кутузов С.С., Глазовский А.Ф., Мачерет Ю.Я., Осокин Н.И., Сосновский А.В., Чернов Р.А., Черняков Г.А. Толщина снежного покрова на леднике Восточный Грёнфьорд (Шпицберген) по данным радарных измерений и стандартных снегомерных съёмок // Лёд и Снег 2018 Т 58 № 1 С 5–20 doi: org/10.15356/2076-6734-2018-1-5-20
Lapazaran J.J., Otero J., Martin­Español A., Navarro F.J. On the errors involved in ice-thickness estimates I: ground-penetrating radar measurement errors // Journ of Glaciology 2016 V 62 P 1008–1020 doi:10.1017/jog.2016 93.
https://ice-snow.igras.ru/jour/article/view/977
doi:10.31857/S2076673422020123
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.31857/S2076673422020123
https://doi.org/10.5194/tc-11-469-2017
https://doi.org/10.3402/tellusb.v55i5.16394
https://doi.org/10.1029/2006GL026576
https://doi.org/10.3189/2013JoG12J072
https://doi.org/10.5194/tc-9-1075-2015
htt
container_title Journal of Geophysical Research: Atmospheres
container_volume 108
container_issue D6
_version_ 1766003656690237440
spelling ftjias:oai:oai.ice.elpub.ru:article/977 2023-05-15T13:29:50+02:00 Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus) Пространственно-временнáя изменчивость снегонакопления на Западном плато Эльбруса (Центральный Кавказ) I. Lavrentiev I. S. Kutuzov S. V. Mikhalenko N. M. Sudakova S. A. Kozachek V. И. Лаврентьев И. С. Кутузов С. В. Михаленко Н. М. Судакова С. А. Козачек В. Field studies were carried out with the support of the Russian science foundation, Grant № 17.17.01270, cartographic work was funded within the State assignment scientific theme (№ 0148.2019. 0004) and interpretation of an ice core drilling data was carried out within the framework of the Megagrant (Agreement № 075-15-2021-599 dated 06/08/2021). Authors are grateful to Patrick Ginot (IGE, Grenoble, France) for chemical analysis of 2017 shallow ice core. Полевые работы выполнены при поддержке Российского научного фонда, грант № 17-17-01270, картографические работы – в рамках темы Государственного задания № 0148– 2019-0004, а интерпретация данных кернового бурения проведена в рамках Мегагранта (соглашение № 075-15-2021-599 от 08.06.2021 г. ). Авторы выражают благодарность П. Жино (Институт наук о Земле, г. Гренобль, Франция) за химические анализы образцов снега и фирна из неглубокой скважины, пробуренной в 2017 г. 2022-05-30 application/pdf https://ice-snow.igras.ru/jour/article/view/977 https://doi.org/10.31857/S2076673422020123 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/977/607 Navarro F., Eisen O. Ground-penetrating radar in glaciological applications // Remote Sensing of Glaciers / Еds : P Pellikka, W G Rees London: Taylor & Francis, 2009 P 195–229 doi: org/10.1201/b10155-12 Bohleber P., Sold L., Hardy D.R., Schwikowski M., Klenk P., Fischer A., Sirguey P., Cullen N.J., Potocki M., Hoffmann H., Mayewski P. Ground-pene-trating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field // The Cryosphere 2017 V 11 P 469–482 doi: org/10.5194/tc-11-469-2017 Мачерет Ю.Я. Радиозондирование ледников М : Научный мир, 2006 389 с Fujita S., Mae S. Causes and nature of ice-sheet radioecho internal reflections estimated from the dielectric properties of ice // Annals of Glaciology 1994 № 20 P 80–86 Paren J.G., Robin G.d.Q. Internal reflections in polar ice sheets // Journ of Glaciology 1975 V 14 № 71 P 251–259 Богородский В., Бентли Ч., Гудмандсен П. Радиогляциология Л : Гидрометеоиздат, 1983 312 с Eisen O., Nixdorf U., Keck L., Wagenback D. Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body // Tellus B: Chemical and Physical Meteorology 2003 V 55 № 5 P 1007–1017 doi: org/10.3402/tellusb.v55i5.16394 Machguth H., Eisen O., Paul F., Hoelzle M. Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers // Geophys Research Letters 2006 V 33 L13503 doi: org/10.1029/2006GL026576 Konrad H., Bohleber P., Wagenbach D., Vincent C., Eisen O. Determining the age distribution of Colle Gnifetti, Monte Rosa, Swiss Alps, by combining ice cores, ground-penetrating radar and a simple flow model // Journ of Glaciology 2013 V 59 № 213 P 179–189 doi: org/10.3189/2013JoG12J072 Sold L., Huss M., Eichler A., Schwikowski M., Hoelzle M. Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier // The Cryosphere 2015 V 9 P 1075–1087 doi: org/10.5194/tc-9-1075-2015 Pälli A., Kohler J.C., Isaksson E., Moore J.C., Pinglot J.F., Pohjola V.A., Samuelsson H. Spatial and temporal variability of snow accumulation using ground penetrating radar and ice cores on a Svalbard glacier // Journ of Glaciology 2002 V 48 № 162 P 417–424 Sylvestre T., Copland L., Demuth M., Sharp M. Spatial patterns of snow accumulation across Belcher Glacier, Devon Ice Cap, Nunavut, Canada // Journ of Glaciology 2013 V 59 № 217 P 874–882 doi: org/10.3189/2013JoG12J227 Eisen O., Frezzotti M., Genthon C., Isaksson E., Magand O., van den Broeke M.R., Dixon D.A., Ekaykin A., Holmlund P., Kameda T., Karlof L., Kaspari S., Lipenkov V.Y., Oerter H., Takahashi S., Vaughan D.G. Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica // Reviews of Geophysics 2008 V 46 № 2 RG2001 39 P doi: org/10.1029/2006RG000218. Kruetzmann N.C., Rack W., McDonald A.J., George S.E. Snow accumulation and compaction derived from GPR data near Ross Island, Antarctica // The Cryosphere 2011 V 5 P 391–404 doi: org/10.5194/.tc-5-391-2011 Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Торопов П.А., Абрамов А.А., Полюхов А.А. Гляциологические исследования института географии РАН на Эльбрусе в 2017 г // Лёд и Снег 2017 Т 57 № 3 С 292 doi: org/10.15356/2076-6734-20173-292 Ледники и климат Эльбруса / Отв ред В Н Михаленко М .-СПб : Нестор-История, 2020 372 с Михаленко В.Н., Кутузов С.С., Лаврентьев И.И., Кунахович М.Г., Томпсон Л.Г. Исследования западного ледникового плато Эльбруса: результаты и перспективы // МГИ 2005 Вып 99 С 185–190 Kutuzov S., Shahgedanova M., Mikhalenko V., Ginot P., Lavrentiev I., Kemp S. High-resolution provenance of desert dust deposited on Mt Elbrus, Caucasus in 2009–2012 using snow pit and firn core records // The Cryosphere 2013 V 7 № 5 P 1481–1498 doi: org/10.5194/tc-7-1481-2013 Кутузов С.C., Михаленко В.Н., Шахгеданова M., Жино П., Козачек А.В., Лаврентьев И.И., Кудерина Т.М., Попов Г.В. Пути дальнего переноса пыли на ледники Кавказа и химический состав снега на Западном плато Эльбруса // Лёд и Снег 2014 № 3 (127) С 5–15 doi: org/10.15356/2076-6734-2014-3-5-15 Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere 2015 V 9 P 2253–2270 doi: org/10.5194/tc-9-2253-2015 Kozachek A., Mikhalenko V., Masson­Delmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus ice cores // Climat of the Past 2017 V 13 P 473–489 doi: org/10.5194/cp-13-473-2017 Лаврентьев И.И., Михаленко В.Н., Кутузов С.С. Толщина льда и подлёдный рельеф Западного ледникового плато Эльбруса // Лёд и Снег 2010 № 2 (110) С 12–18 Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume changes of Elbrus glaciers from 1997 to 2017 // Frontiers in Earth Science 2019 V 7 № 153 P 1–16 doi: org/.10.3389/feart.2019.00153 Forte E., Dossi M., Colucci R.R., Pipan M. A new fast methodology to estimate the density of frozen materials by means of common offset GPR data // Journ of Applied Geophysics 2013 V 99 P 135–145 doi: org/10.1016/j.jappgeo.2013.08.013. Кульницкий Л.М., Гофман П.А., Токарев М.Ю. Математическая обработка данных георадиолокации и система RADEXPRO // Разведка и охрана недр 2001 № 3 С 6–11 Котляков В.М., Мачерет Ю.Я., Сосновский А.В., Глазовский А.Ф. Скорость распространения радиоволн в сухом и влажном снежном покрове // Лёд и Снег 2017 Т 57 № 1 С 45–56 doi: org/10 15356/2076-6734-2017-1-45-56 Looyenga H. Dielectric constants of heterogeneous mixture // Physica 1965 V 31 № 3 P 401–406 Kovacs A., Gow A.J., Morey R.M. A reassessment of the in-situ dielectric constant of polar firn Hanover, N H, 1993 22 p Tiuri M., Sihvola A., Nyfors E., Hallikaiken M. The complex dielectric constant of snow at microwave frequencies // IEEE Journ of Oceanic Engineering 1984 V 9 № 5 P 377–382 doi: org/10.1109/.JOE.1984.1145645 Gusmeroli A., Wolken G., Arendt A. Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska // Annals of Glaciology 2014 V 55 № 67 Р 78–88 doi: org/10.3189/2014AoG67A029 Лаврентьев И.И., Кутузов С.С., Глазовский А.Ф., Мачерет Ю.Я., Осокин Н.И., Сосновский А.В., Чернов Р.А., Черняков Г.А. Толщина снежного покрова на леднике Восточный Грёнфьорд (Шпицберген) по данным радарных измерений и стандартных снегомерных съёмок // Лёд и Снег 2018 Т 58 № 1 С 5–20 doi: org/10.15356/2076-6734-2018-1-5-20 Lapazaran J.J., Otero J., Martin­Español A., Navarro F.J. On the errors involved in ice-thickness estimates I: ground-penetrating radar measurement errors // Journ of Glaciology 2016 V 62 P 1008–1020 doi:10.1017/jog.2016 93. https://ice-snow.igras.ru/jour/article/view/977 doi:10.31857/S2076673422020123 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 62, № 2 (2022); 165-178 Лёд и Снег; Том 62, № 2 (2022); 165-178 2412-3765 2076-6734 Elbrus;high frequency radar survey;snow accumulation;ice core Эльбрус;высокочастотное радиозондирование;аккумуляция снега;ледниковый керн info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftjias https://doi.org/10.31857/S2076673422020123 https://doi.org/10.5194/tc-11-469-2017 https://doi.org/10.3402/tellusb.v55i5.16394 https://doi.org/10.1029/2006GL026576 https://doi.org/10.3189/2013JoG12J072 https://doi.org/10.5194/tc-9-1075-2015 htt 2022-12-20T13:29:52Z Cold glaciers in the middle latitudes are considered unique archives of environmental and climate change. However, alpine ice cores are difficult to interpret, since dynamic changes can occur over very short distances. Detailed radar survey can be used to assess the effect of ice inflow from areas with different conditions of snow accumulation on the surface compared to the drilling point on the isotopic and chemical record in the glacier core. The results of radar studies on the Western plateau of Elbrus (Central Caucasus), located at an altitude of 5100–5150 m above sea level, are presented. A high-frequency ground-based radar survey was carried out in the summer of 2017 to assess the spatial and temporal changes in snow accumulation in the upper (near the top area) part of Elbrus. The ZOND 12-e GPR (ground-penetrating radar, Radar Systems, Inc.) with 500 and 300 MHz shielded antennas was used. The receiving time window was set to 100 ns (500 MHz antenna) and 470 ns (300 MHz) to obtain reflection in the depth range of about 10 m and 50 m, respectively. The results of the GPR sounding are confirmed by data on the stratigraphy, density and chemical composition of the snow-firn thickness from a shallow (24 m) borehole. The density profile made it possible to identify peaks and corresponding ice crusts of 1–2 cm thick that formed during warm periods. The internal reflections, clearly visible on the radar profiles up to 50 m deep, are of isochronous origin and have been interpreted as the boundaries of annual and seasonal layers. Detailed maps of the distribution of snow accumulation covering the cold and warm seasons of 2015–2017 have been obtained. The average thickness of seasonal snow cover on the plateau during this period was equal to 2.07 m, with minimum and maximum values of 0.2 and 3.9 m, respectively. The average values of the water storage in seasonal horizons range from 754 to 1126 mm W.E., while the annual accumulation for the 2015/16 and 2016/17 balance years amounted to 2004 and 1874 mm W.E., ... Article in Journal/Newspaper Annals of Glaciology ice core The Cryosphere Ice and Snow (E-Journal) Journal of Geophysical Research: Atmospheres 108 D6