Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf

Salt transport in shelf sediments can affect the state of the submarine permafrost and the thermodynamic stability of hydrates. To estimate the effect of salt transport, we used a model analysis of salinization of underwater sediments. It is assumed that the salininization follows the flooding of th...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: V. Malakhova V., A. Eliseev V., В. Малахова В., А. Елисеев В.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2020
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/839
https://doi.org/10.31857/S2076673420040058
id ftjias:oai:oai.ice.elpub.ru:article/839
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Arctic shelf
freezing temperature
glacial cycles
methane hydrates
salt diffusion
submarine permafrost
арктический шельф
гидраты метана
диффузия соли
ледниковые циклы
субаквальная мерзлота
spellingShingle Arctic shelf
freezing temperature
glacial cycles
methane hydrates
salt diffusion
submarine permafrost
арктический шельф
гидраты метана
диффузия соли
ледниковые циклы
субаквальная мерзлота
V. Malakhova V.
A. Eliseev V.
В. Малахова В.
А. Елисеев В.
Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf
topic_facet Arctic shelf
freezing temperature
glacial cycles
methane hydrates
salt diffusion
submarine permafrost
арктический шельф
гидраты метана
диффузия соли
ледниковые циклы
субаквальная мерзлота
description Salt transport in shelf sediments can affect the state of the submarine permafrost and the thermodynamic stability of hydrates. To estimate the effect of salt transport, we used a model analysis of salinization of underwater sediments. It is assumed that the salininization follows the flooding of the shelf, which accompanies transgression of the ocean during the end of the glaciations of the Quaternary period. We used the model of thermal processes in the bottomset bed, developed in collaboration with the Institute of Numerical Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences and the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Science. The model was augmented by the equation of salt diffusion in the bottom sediments. In calculations with the model, changes in the temperature of the upper surface of bottom sediments and sea level over the past 400 kyr were prescribed (set). It is shown that the combined effect of heat and salinization of bottom sediments during oceanic transgressions (shelf flooding) leads to the sinking of the current upper boundary of the marine permafrost by about 10–25 m below the sea floor, depending on the current depth of the shelf. Accounting for the salt diffusion is necessary to determine the position of the upper boundary of the permafrost, as well as to calculate the rate of its degradation. In particular, salt transport is able to change both the current position and the rate of displacement of the upper permafrost boundary in several times relative to the case of a time-independent freezing temperature. Note, that this effect is insignificant for estimation of the position of the lower permafrost boundary in the bottom sediments of the inner shelf. Lowering the freezing point leads to the fact that frozen rocks on the outer shelf completely thaw at negative temperatures of bottom sediments under the influence of heat and salts in the present period (experiments TF‑2, TFSAL2). The influence of salinity on the ...
format Article in Journal/Newspaper
author V. Malakhova V.
A. Eliseev V.
В. Малахова В.
А. Елисеев В.
author_facet V. Malakhova V.
A. Eliseev V.
В. Малахова В.
А. Елисеев В.
author_sort V. Malakhova V.
title Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf
title_short Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf
title_full Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf
title_fullStr Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf
title_full_unstemmed Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf
title_sort salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the laptev sea shelf
publisher IGRAS
publishDate 2020
url https://ice-snow.igras.ru/jour/article/view/839
https://doi.org/10.31857/S2076673420040058
geographic Arctic
Laptev Sea
geographic_facet Arctic
Laptev Sea
genre Arctic
Arctic
laptev
Laptev Sea
permafrost
Permafrost and Periglacial Processes
Polarforschung
genre_facet Arctic
Arctic
laptev
Laptev Sea
permafrost
Permafrost and Periglacial Processes
Polarforschung
op_source Ice and Snow; Том 60, № 4 (2020); 533-546
Лёд и Снег; Том 60, № 4 (2020); 533-546
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/839/537
Dmitrenko I., Kirillov S., Tremblay L., Kassens H., Anisimov O., Lavrov S., Razumov S., Grigoriev M. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability // Journ. of Geophys. Research. 2011. V. 116. № C10.C10027. https://doi.org/10.1029/2011JC007218.
Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas // Geo-Mar. Letters. 2005. V. 25. № 2–3. P. 167–182. https://doi.org/10.1007/s00367-004-0198-6.
Malakhova V.V., Eliseev A.V. The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles // Global and Planetary Change. 2017. V. 157. P. 18–25. https://doi.org/10.1016/j.gloplacha.2017.08.007.
Majorowicz J., Osadetz K., Safanda J. Models of Talik, Permafrost and Gas Hydrate Histories–Beaufort Mackenzie Basin, Canada // Energies. 2015. V. 8. P. 6738–6764.
Tinivella U., Giustiniani M., Marin Moreno H. A quick-look method for initial evaluation of gas hydrate stability below subaqueous permafrost // Geosciences. 2019. V. 9. № 8. P. 329. https://doi.org/10.3390/geosciences9080329.
Chuvilin E., Bukhanov B., Davletshina D., Grebenkin S., Istomin V. Dissociation and Self-Preservation of Gas Hy drates in Permafrost // Geosciences. 2018. V. 8. № 12. P. 431. https://doi.org/10.3390/geosciences8120431.
You K., Flemings P.B., Malinverno A., Collett T.S., Darnell K. Mechanisms of methane hydrate forma tion in geological systems // Reviews of Geophysics. 2019. V. 57. № 4. P. 1146–1196. https://doi.org/10.1029/2018RG000638.
Thornton B.F., Prytherch J., Andersson K., Brooks I. M., Salisbury D., Tjernström M., Crill P.M. Shipborne eddy covariance observations of methane fluxes con strain Arctic sea emissions // Sci. Adv. 2020. V. 6. № 5. P. eaay7934. https://doi.org/10.1126/sciadv.aay7934.
Rachold V., Bolshiyanov D.Yu., Grigoriev M.N., Hubberten H‑W., Junker R., Kunitsky V.V., Merker F., Overduin P., Schneider W. Near-shore Arctic subsea perma frost in transition // EOS. Transaction of Amer. Geophys Union. 2007. V. 88. № 13. P. 149–156. https://doi.org/10.1029/2007EO130001.
Анисимов О.А., Борзенкова И.И., Лавров С.А., Стрельченко Ю.Г. Современная динамика подводной мерзлоты и эмиссия метана на шельфе морей Восточной Арктики // Лёд и Снег. 2012. № 2 (118). С. 97–105.
Разумов С.О., Спектор В.Б., Григорьев М.Н. Модель позднекайнозойской эволюции криолитозоны шельфа западной части моря Лаптевых // Океанология. 2014. Т. 54. № 5. С. 679–693.
Елисеев А.В., Малахова В.В., Аржанов М.М., Голубева Е.Н., Денисов С.Н., Мохов И.И. Изменение границ многолетнемёрзлого слоя и зоны стабильности гидратов метана на арктическом шельфе Евразии в 1950–2100 гг. // ДАН. 2015. Т. 465. № 5. С. 598–603.
Nicolsky D.J., Romanovsky V.E., Romanovskii N.N., Kholodov A.L., Shakhova N.E., Semiletov I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region // Journ. of Geophys. Research: Earth Surface. 2012. V. 117. № F3. F03028.
Overduin P.P., Schneider von Deimling T., Miesner F., Grigoriev M.N., Ruppel C.D., Vasiliev A., Lantuit H., Juhls B., Westermann S. Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP) // Journ. of Geophys. Research: Oceans. 2019. V. 124. № 6. P. 3490– 3507. https://doi.org/10.1029/2018JC014675.
Малахова В.B., Елисеев А.В. Влияние рифтовых зон и термокарстовых озёр на формирование субаквальной мерзлоты и зоны стабильности метаногидратов шельфа моря Лаптевых в плейсто цене // Лёд и Снег. 2018. Т. 58. № 2. С. 231–242. https://doi.org/10.15356/2076-6734-2018-2-231-242.
Brouchkov A. Salt and water transfer in frozen soils induced by gradients of temperature and salt content // Permafrost and Periglacial Processes. 2000. V. 11. № 2. P. 153–160.
Portnov A., Mienert J., Serov P. Modeling the evolution of climate sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf // Journ. of Geophys. Research: Biogeosciences. 2014. V. 119. № 11. P. 2082–2094. https://doi.org/10.1002/2014JG002685.
Yang D., Xu W. Effects of salinity on methane gas hydrate system // Science in China. Series D‑Earth Sciences. 2007. V. 50. P. 1733–1745. https://doi.org/10.1007/s11430-007-0126-5.
Чувилин Е.М., Гребенкин С.И., Сакле М. Влияние влагосодержания на газопроницаемость песчаных пород в мерзлом и талом состояниях // Криосфера Земли. 2016. Т. XX. № 3. С. 71–78.
Галушкин Ю.И., Ситар К.А., Фролов С.В. Формирование и деградация криогенных толщ на Уренгойской и Куюмбинской площадях Сибири. Ч. 1. Применение системы моделирования осадочных бассейнов ГАЛО // Криосфера Земли. 2012. Т. XVI. № 1. С. 3–11.
Moridis G.J. Numerical studies of gas production from methane hydrates // Society of Petroleum Engineers Journ. 2003. V. 32. № 8. P. 359–370.
Bauch H.A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V.V. Chronology of the Holocene transgression at the North Siberian margin // Global and Planetary Change. 2001. V. 31. № 1–4. P. 125–139.
Waelbroeck C., Labeyrie L., Michel E., Duplessy J., McManus J., Lambeck K., Balbon E., Labracherie M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records // Quaternary Science Review. 2002. V. 21. № 1–3. P. 295–305.
Malakhova V.V., Eliseev A.V. Uncertainty in temperature and sea level datasets for the Pleistocene glacial cycles: Implications for thermal state of the subsea sediments // Global and Planetary Change. 2020. V. 192. P. 103249. https://doi.org/10.1016/j.gloplacha.2020.103249.
Petit J., Jouzel J., Raynaud D., Barkov N.I., Barnola J.‑M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarc tica // Nature. 1999. V. 399. P. 429–436.
Golubeva E., Platov G., Malakhova V., Kraineva M., Iakshina D. Modelling the Long-Term and Inter-Annual Vari ability in the Laptev Sea Hydrography and Subsea Perma frost State // Polarforschung, Bremerhaven, Alfred We gener Institute for Polar and Marine Research. 2018. V. 87. № 2. P. 195–210. doi:10.2312/polarforschung.87.2.195.
Davies J.H. Global map of Solid Earth surface heat flow // Geochem. Geophys. Geosystem. 2013. V. 14. № 10. P. 4608–4622.
Фотиев С.M. Современные представления об эволюции криогенных областей Западной и Восточной Сибири в плейстоцене и голоцене (Сообщение 2) // Криосфера Земли. 2006. Т. X. № 2. C. 3–26.
Фартышев А.И. Особенности прибрежно-шельфовой криолитозоны моря Лаптевых. Новосибирск: Наука, 1993. 136 с.
Davie M.K., Zatsepina O.Y., Buffett B.A. Methane solubility in marine hydrate environments // Marine Geology. 2004. V. 203. P. 177–184.
https://ice-snow.igras.ru/jour/article/view/839
doi:10.31857/S2076673420040058
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.31857/S2076673420040058
https://doi.org/10.1029/2011JC007218
https://doi.org/10.1007/s00367-004-0198-6
https://doi.org/10.1016/j.gloplacha.2017.08.007
https://doi.org/10.3390/geosciences9080329
https://doi.org/10.3390/geoscien
container_title Ice and Snow
container_volume 60
container_issue 4
container_start_page 533
op_container_end_page 546
_version_ 1766302348982878208
spelling ftjias:oai:oai.ice.elpub.ru:article/839 2023-05-15T14:28:11+02:00 Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf Влияние диффузии солей на состояние и распространение многолетнемёрзлых пород и зоны стабильности метан-гидратов шельфа моря Лаптевых V. Malakhova V. A. Eliseev V. В. Малахова В. А. Елисеев В. 2020-11-04 application/pdf https://ice-snow.igras.ru/jour/article/view/839 https://doi.org/10.31857/S2076673420040058 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/839/537 Dmitrenko I., Kirillov S., Tremblay L., Kassens H., Anisimov O., Lavrov S., Razumov S., Grigoriev M. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability // Journ. of Geophys. Research. 2011. V. 116. № C10.C10027. https://doi.org/10.1029/2011JC007218. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas // Geo-Mar. Letters. 2005. V. 25. № 2–3. P. 167–182. https://doi.org/10.1007/s00367-004-0198-6. Malakhova V.V., Eliseev A.V. The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles // Global and Planetary Change. 2017. V. 157. P. 18–25. https://doi.org/10.1016/j.gloplacha.2017.08.007. Majorowicz J., Osadetz K., Safanda J. Models of Talik, Permafrost and Gas Hydrate Histories–Beaufort Mackenzie Basin, Canada // Energies. 2015. V. 8. P. 6738–6764. Tinivella U., Giustiniani M., Marin Moreno H. A quick-look method for initial evaluation of gas hydrate stability below subaqueous permafrost // Geosciences. 2019. V. 9. № 8. P. 329. https://doi.org/10.3390/geosciences9080329. Chuvilin E., Bukhanov B., Davletshina D., Grebenkin S., Istomin V. Dissociation and Self-Preservation of Gas Hy drates in Permafrost // Geosciences. 2018. V. 8. № 12. P. 431. https://doi.org/10.3390/geosciences8120431. You K., Flemings P.B., Malinverno A., Collett T.S., Darnell K. Mechanisms of methane hydrate forma tion in geological systems // Reviews of Geophysics. 2019. V. 57. № 4. P. 1146–1196. https://doi.org/10.1029/2018RG000638. Thornton B.F., Prytherch J., Andersson K., Brooks I. M., Salisbury D., Tjernström M., Crill P.M. Shipborne eddy covariance observations of methane fluxes con strain Arctic sea emissions // Sci. Adv. 2020. V. 6. № 5. P. eaay7934. https://doi.org/10.1126/sciadv.aay7934. Rachold V., Bolshiyanov D.Yu., Grigoriev M.N., Hubberten H‑W., Junker R., Kunitsky V.V., Merker F., Overduin P., Schneider W. Near-shore Arctic subsea perma frost in transition // EOS. Transaction of Amer. Geophys Union. 2007. V. 88. № 13. P. 149–156. https://doi.org/10.1029/2007EO130001. Анисимов О.А., Борзенкова И.И., Лавров С.А., Стрельченко Ю.Г. Современная динамика подводной мерзлоты и эмиссия метана на шельфе морей Восточной Арктики // Лёд и Снег. 2012. № 2 (118). С. 97–105. Разумов С.О., Спектор В.Б., Григорьев М.Н. Модель позднекайнозойской эволюции криолитозоны шельфа западной части моря Лаптевых // Океанология. 2014. Т. 54. № 5. С. 679–693. Елисеев А.В., Малахова В.В., Аржанов М.М., Голубева Е.Н., Денисов С.Н., Мохов И.И. Изменение границ многолетнемёрзлого слоя и зоны стабильности гидратов метана на арктическом шельфе Евразии в 1950–2100 гг. // ДАН. 2015. Т. 465. № 5. С. 598–603. Nicolsky D.J., Romanovsky V.E., Romanovskii N.N., Kholodov A.L., Shakhova N.E., Semiletov I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region // Journ. of Geophys. Research: Earth Surface. 2012. V. 117. № F3. F03028. Overduin P.P., Schneider von Deimling T., Miesner F., Grigoriev M.N., Ruppel C.D., Vasiliev A., Lantuit H., Juhls B., Westermann S. Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP) // Journ. of Geophys. Research: Oceans. 2019. V. 124. № 6. P. 3490– 3507. https://doi.org/10.1029/2018JC014675. Малахова В.B., Елисеев А.В. Влияние рифтовых зон и термокарстовых озёр на формирование субаквальной мерзлоты и зоны стабильности метаногидратов шельфа моря Лаптевых в плейсто цене // Лёд и Снег. 2018. Т. 58. № 2. С. 231–242. https://doi.org/10.15356/2076-6734-2018-2-231-242. Brouchkov A. Salt and water transfer in frozen soils induced by gradients of temperature and salt content // Permafrost and Periglacial Processes. 2000. V. 11. № 2. P. 153–160. Portnov A., Mienert J., Serov P. Modeling the evolution of climate sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf // Journ. of Geophys. Research: Biogeosciences. 2014. V. 119. № 11. P. 2082–2094. https://doi.org/10.1002/2014JG002685. Yang D., Xu W. Effects of salinity on methane gas hydrate system // Science in China. Series D‑Earth Sciences. 2007. V. 50. P. 1733–1745. https://doi.org/10.1007/s11430-007-0126-5. Чувилин Е.М., Гребенкин С.И., Сакле М. Влияние влагосодержания на газопроницаемость песчаных пород в мерзлом и талом состояниях // Криосфера Земли. 2016. Т. XX. № 3. С. 71–78. Галушкин Ю.И., Ситар К.А., Фролов С.В. Формирование и деградация криогенных толщ на Уренгойской и Куюмбинской площадях Сибири. Ч. 1. Применение системы моделирования осадочных бассейнов ГАЛО // Криосфера Земли. 2012. Т. XVI. № 1. С. 3–11. Moridis G.J. Numerical studies of gas production from methane hydrates // Society of Petroleum Engineers Journ. 2003. V. 32. № 8. P. 359–370. Bauch H.A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V.V. Chronology of the Holocene transgression at the North Siberian margin // Global and Planetary Change. 2001. V. 31. № 1–4. P. 125–139. Waelbroeck C., Labeyrie L., Michel E., Duplessy J., McManus J., Lambeck K., Balbon E., Labracherie M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records // Quaternary Science Review. 2002. V. 21. № 1–3. P. 295–305. Malakhova V.V., Eliseev A.V. Uncertainty in temperature and sea level datasets for the Pleistocene glacial cycles: Implications for thermal state of the subsea sediments // Global and Planetary Change. 2020. V. 192. P. 103249. https://doi.org/10.1016/j.gloplacha.2020.103249. Petit J., Jouzel J., Raynaud D., Barkov N.I., Barnola J.‑M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarc tica // Nature. 1999. V. 399. P. 429–436. Golubeva E., Platov G., Malakhova V., Kraineva M., Iakshina D. Modelling the Long-Term and Inter-Annual Vari ability in the Laptev Sea Hydrography and Subsea Perma frost State // Polarforschung, Bremerhaven, Alfred We gener Institute for Polar and Marine Research. 2018. V. 87. № 2. P. 195–210. doi:10.2312/polarforschung.87.2.195. Davies J.H. Global map of Solid Earth surface heat flow // Geochem. Geophys. Geosystem. 2013. V. 14. № 10. P. 4608–4622. Фотиев С.M. Современные представления об эволюции криогенных областей Западной и Восточной Сибири в плейстоцене и голоцене (Сообщение 2) // Криосфера Земли. 2006. Т. X. № 2. C. 3–26. Фартышев А.И. Особенности прибрежно-шельфовой криолитозоны моря Лаптевых. Новосибирск: Наука, 1993. 136 с. Davie M.K., Zatsepina O.Y., Buffett B.A. Methane solubility in marine hydrate environments // Marine Geology. 2004. V. 203. P. 177–184. https://ice-snow.igras.ru/jour/article/view/839 doi:10.31857/S2076673420040058 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 60, № 4 (2020); 533-546 Лёд и Снег; Том 60, № 4 (2020); 533-546 2412-3765 2076-6734 Arctic shelf freezing temperature glacial cycles methane hydrates salt diffusion submarine permafrost арктический шельф гидраты метана диффузия соли ледниковые циклы субаквальная мерзлота info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjias https://doi.org/10.31857/S2076673420040058 https://doi.org/10.1029/2011JC007218 https://doi.org/10.1007/s00367-004-0198-6 https://doi.org/10.1016/j.gloplacha.2017.08.007 https://doi.org/10.3390/geosciences9080329 https://doi.org/10.3390/geoscien 2022-12-20T13:30:09Z Salt transport in shelf sediments can affect the state of the submarine permafrost and the thermodynamic stability of hydrates. To estimate the effect of salt transport, we used a model analysis of salinization of underwater sediments. It is assumed that the salininization follows the flooding of the shelf, which accompanies transgression of the ocean during the end of the glaciations of the Quaternary period. We used the model of thermal processes in the bottomset bed, developed in collaboration with the Institute of Numerical Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences and the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Science. The model was augmented by the equation of salt diffusion in the bottom sediments. In calculations with the model, changes in the temperature of the upper surface of bottom sediments and sea level over the past 400 kyr were prescribed (set). It is shown that the combined effect of heat and salinization of bottom sediments during oceanic transgressions (shelf flooding) leads to the sinking of the current upper boundary of the marine permafrost by about 10–25 m below the sea floor, depending on the current depth of the shelf. Accounting for the salt diffusion is necessary to determine the position of the upper boundary of the permafrost, as well as to calculate the rate of its degradation. In particular, salt transport is able to change both the current position and the rate of displacement of the upper permafrost boundary in several times relative to the case of a time-independent freezing temperature. Note, that this effect is insignificant for estimation of the position of the lower permafrost boundary in the bottom sediments of the inner shelf. Lowering the freezing point leads to the fact that frozen rocks on the outer shelf completely thaw at negative temperatures of bottom sediments under the influence of heat and salts in the present period (experiments TF‑2, TFSAL2). The influence of salinity on the ... Article in Journal/Newspaper Arctic Arctic laptev Laptev Sea permafrost Permafrost and Periglacial Processes Polarforschung Ice and Snow (E-Journal) Arctic Laptev Sea Ice and Snow 60 4 533 546