Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data

Glacier variations over the past centuries are still poorly documented on the southern slope of the Greater Caucasus. In this paper, the change of Chalaati Glacier in the Georgian Caucasus from its maximum extent during the Little Ice Age has been studied. For the first time in the history of glacio...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: L. Tielidze G., O. Solomina N., V. Jomelli, E. Dolgova A., I. Bushueva S., V. Mikhalenko N., R. Brauche, Team ASTER, Л. Тиелидзе Г., О. Соломина Н., В. Джомелли, Е. Долгова А., И. Бушуева С., В. Михаленко Н., Р. Брошэ, Команда АСТЕР
Other Authors: The project is supported by the fundamental scientific research № 0148-2019-0004 and Russian-French (CNRS-PICS) collaborative programs (DECAU, IPAGCAUA) and LIA program DEGLAC. The study from Georgian side was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) YS17_12 . The 10Be measurements were performed at the ASTER AMS national facility (CEREGE. Aix-en-Provence) that is supported by the INSU/CNRS, the ANR through the «Projets thématiques d’excellence» program for the «Equipements d’excellence» ASTER-CEREGE action and IRD. ASTER Team includes Georges Aumaître, Didier L. Bourlès, Karim Keddadouche. We gratefully acknowledge the support of two reviewers, Dmitry Petrakov and anonymous reviewer 2, for detailed comments which clearly enhanced the quality of the paper. Special thanks to Lauren Vargo and Regis Braucher for proofreading the paper. Благодарности., Проект выполнен в рамках Госзадания № 0148-2019-0004 и российско-французского (CNRS-PICS) совместными программами (DECAU, IPAGCAUA) и программой LIA DEGLAC. Исследование с грузинской стороны поддержано Национальным научным фондом Грузии им. Шота Руставели (SRNSFG) YS17_12 . Измерения 10Be проводились на национальном объекте ASTER AMS (CEREGE. Экс-ан-Прованс), который поддерживается INSU/CNRS, ANR в рамках программы «Projets thématiques d'Excellence» для «Equipements d'excellence» ASTER – CEREGE и IRD. В состав команды ASTER входят Жорж Ауматр, Дидье Л. Бурлес, Карим Кеддадуш. Мы благодарны двум рецензентам, Дмитрию Петракову и А.М. Грачеву, за подробные комментарии, которые значительно улучшили качество статьи. Выражаем также благодарность Лорен Варго и Реджису Браухеру за помощь в правке текста.
Format: Article in Journal/Newspaper
Language:English
Published: IGRAS 2020
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/823
https://doi.org/10.31857/S2076673420030052
id ftjias:oai:oai.ice.elpub.ru:article/823
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language English
topic Cosmic Ray Exposure dating;dendrochronology;glacier variation;Greater Caucasus;Little Ice Age
Большой Кавказ;дендрохронология;колебания ледников;космогенные датировки;малый ледниковый период
spellingShingle Cosmic Ray Exposure dating;dendrochronology;glacier variation;Greater Caucasus;Little Ice Age
Большой Кавказ;дендрохронология;колебания ледников;космогенные датировки;малый ледниковый период
L. Tielidze G.
O. Solomina N.
V. Jomelli
E. Dolgova A.
I. Bushueva S.
V. Mikhalenko N.
R. Brauche
Team ASTER
Л. Тиелидзе Г.
О. Соломина Н.
В. Джомелли
Е. Долгова А.
И. Бушуева С.
В. Михаленко Н.
Р. Брошэ
Команда АСТЕР
Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data
topic_facet Cosmic Ray Exposure dating;dendrochronology;glacier variation;Greater Caucasus;Little Ice Age
Большой Кавказ;дендрохронология;колебания ледников;космогенные датировки;малый ледниковый период
description Glacier variations over the past centuries are still poorly documented on the southern slope of the Greater Caucasus. In this paper, the change of Chalaati Glacier in the Georgian Caucasus from its maximum extent during the Little Ice Age has been studied. For the first time in the history of glaciological studies of the Georgian Caucasus, 10Be in situ Cosmic Ray Exposure (CRE) dating was applied. The age of moraines was determined by tree-ring analysis. Lichenometry was also used as a supplementary tool to determine the relative ages of glacial landforms. In addition, the large-scale topographical maps (1887, 1960) were used along with the satellite imagery – Corona, Landsat 5 TM, and Sentinel 2B. Repeated photographs were used to identify the glacier extent in the late XIX and early XX centuries. 10Be CRE ages from the oldest lateral moraine of the Chalaati Glacier suggest that the onset of the Little Ice Age occurred ~0.73±0.04 kyr ago (CE ~1250–1330), while the dendrochronology and lichenometry measurements show that the Chalaati Glacier reached its secondary maximum extent again about CE ~1810. From that time through 2018 the glacier area decreased from 14.9±1.5 km2 to 9.9±0.5 km2 (33.8±7.4% or ~0.16% yr−1), while its length retreated by ~2280 m. The retreat rate was uneven: it peaked between 1940 and 1971 (~22.9 m yr−1), while the rate was slowest in 1910– 1930 (~4.0 m yr−1). The terminus elevation rose from ~1620 m to ~1980 m above sea level in ~1810–2018. Для реконструкции колебаний ледника Чалаати в Грузии использовались космические снимки, старые карты, повторные фотографии, дендрохронология, лихенометрия и анализ космогенных изотопов. Максимальное наступание ледника в начале малого ледникового периода произошло в ~1250–1330 гг., второй максимум, когда ледник достиг почти такой же длины, датируется примерно 1810 г. С этого времени до 2018 г. площадь ледника уменьшилась с 14,9±1,5 до 9,9±0,5 км2 (33,8±7,4%, или ~0,16% год−1), а его длина сократилась на ~2280 м.
author2 The project is supported by the fundamental scientific research № 0148-2019-0004 and Russian-French (CNRS-PICS) collaborative programs (DECAU
IPAGCAUA) and LIA program DEGLAC. The study from Georgian side was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) YS17_12 . The 10Be measurements were performed at the ASTER AMS national facility (CEREGE. Aix-en-Provence) that is supported by the INSU/CNRS, the ANR through the «Projets thématiques d’excellence» program for the «Equipements d’excellence» ASTER-CEREGE action and IRD. ASTER Team includes Georges Aumaître, Didier L. Bourlès, Karim Keddadouche. We gratefully acknowledge the support of two reviewers, Dmitry Petrakov and anonymous reviewer 2, for detailed comments which clearly enhanced the quality of the paper. Special thanks to Lauren Vargo and Regis Braucher for proofreading the paper. Благодарности.
Проект выполнен в рамках Госзадания № 0148-2019-0004 и российско-французского (CNRS-PICS) совместными программами (DECAU
IPAGCAUA) и программой LIA DEGLAC. Исследование с грузинской стороны поддержано Национальным научным фондом Грузии им. Шота Руставели (SRNSFG) YS17_12 . Измерения 10Be проводились на национальном объекте ASTER AMS (CEREGE. Экс-ан-Прованс), который поддерживается INSU/CNRS, ANR в рамках программы «Projets thématiques d'Excellence» для «Equipements d'excellence» ASTER – CEREGE и IRD. В состав команды ASTER входят Жорж Ауматр, Дидье Л. Бурлес, Карим Кеддадуш. Мы благодарны двум рецензентам, Дмитрию Петракову и А.М. Грачеву, за подробные комментарии, которые значительно улучшили качество статьи. Выражаем также благодарность Лорен Варго и Реджису Браухеру за помощь в правке текста.
format Article in Journal/Newspaper
author L. Tielidze G.
O. Solomina N.
V. Jomelli
E. Dolgova A.
I. Bushueva S.
V. Mikhalenko N.
R. Brauche
Team ASTER
Л. Тиелидзе Г.
О. Соломина Н.
В. Джомелли
Е. Долгова А.
И. Бушуева С.
В. Михаленко Н.
Р. Брошэ
Команда АСТЕР
author_facet L. Tielidze G.
O. Solomina N.
V. Jomelli
E. Dolgova A.
I. Bushueva S.
V. Mikhalenko N.
R. Brauche
Team ASTER
Л. Тиелидзе Г.
О. Соломина Н.
В. Джомелли
Е. Долгова А.
И. Бушуева С.
В. Михаленко Н.
Р. Брошэ
Команда АСТЕР
author_sort L. Tielidze G.
title Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data
title_short Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data
title_full Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data
title_fullStr Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data
title_full_unstemmed Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data
title_sort change of chalaati glacier (georgian caucasus) since the little ice age based on dendrochronological and beryllium‑10 data
publisher IGRAS
publishDate 2020
url https://ice-snow.igras.ru/jour/article/view/823
https://doi.org/10.31857/S2076673420030052
genre Antarctic and Alpine Research
Arctic
Arctic and Alpine Research
The Cryosphere
genre_facet Antarctic and Alpine Research
Arctic
Arctic and Alpine Research
The Cryosphere
op_source Ice and Snow; Том 60, № 3 (2020); 453-470
Лёд и Снег; Том 60, № 3 (2020); 453-470
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/823/531
Matthes F.E. Report of the committee on glaciers, 1939– 40. Transactions of the American Geophys. Union. 1940, 1: 396–406. http://glaciers research.pdx.edu/Report-Committee-Glaciers-1939-40.
Solomina O.N., Bradley R.S., Jomelli V., Geirsdottir A., Kaufman D.S., Koch J., McKay N.P., Masiokas M., Miller G., Nesje A., Nicolussi K., Owen L.A., Putnam A.E., Wanner H., Wiles G., Yang B. Glacier fluctuations during the past 2000 years. Quaternary Science Reviews. 2016, 149: 61–90. https://doi.org/10.1016/j.quascirev.2016.04.008.
Neukom R., Gergis J., Karoly D., Wanner H., Curran M., Elbert J., González-Rouco F., Linsley B.K., Moy A.D., Mundo I., Raible C.C., Steig E., van Ommen T., Vance T., Villalba R., Zinke J., Frank D. Interhemispheric temperature variability over the past millennium. Nature climate change. 2014, 4: 362–367. https://doi.org/10.1038/nclimate2174.
Leclercq P.W., Oerlemans J. Global and hemispheric temperature reconstruction from glacier length fluctuations. Climate Dynamics. 2012, 38: 1065e1079. http://dx.doi.org/10.1007/s00382-011-1145-7.
Bushueva I.S. Kolebaniya lednikov na Tsentralnom i Zapadnom Kavkaze po kartograficheskim, istoricheskim i bioindikatsionnym dannym za poslednie 200 let Fluctuations of glaciers on the Central and Western Caucasus using cartographical, historical and proxy data over the last 200 years). PhD Thesis. 2013. Moscow: Institute of Geography Russian Academy of Sciences, Russia [In Russian].
Solomina O.N., Bushueva I.S., Kuderina T.M., Matskovsky V.V., Kudikov A.V. Holocene history of the Ullukam Glacier. Ice and Snow. 2012, 1 (117): 85–94. https://doi.org/10.15356/2076-6734-2012-1-85-94. [In Russian].
Solomina O.N., Bushueva I., Dolgova E., Jomelli V., Alexandrin M., Mikhalenko V., Matskovsky V. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Global Planetary Change. 2016, 140: 28–58. doi.org/10.1016/j.gloplacha.2016.02.008.
Solomina O.N., Bushueva I.S., Polumieva P.D., Dolgova E.A., Dokukin M.D. History of the Donguz-Orun Glacier from bioindication, historical, cartographic sources and remote sensing data. Ice and Snow. 2018, 58 (4): 448–461. doi.org/10.15356/2076-6734-2018-4-448-461. [In Russian].
Serebryanyi L.R., Golodkovskaya N.A., Orlov A.V., Malyasova E.S., Ilves E.O. Kolebaniya lednikov i protsessy morenonakopleniya na Tsentral’nom Kavkaze. Fluctuations of glaciers and processes of moraines formation in the Central Caucasus. Moscow: Nauka, 1984: 216 p. [In Russian].
Tielidze L.G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery. The Cryosphere. 2016, 10: 713–725. doi.org/10.5194/tc-10-713-2016.
Tielidze L.G. and Wheate R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan). The Cryosphere. 2018, 12: 81–94. https://doi.org/10.5194/tc-12-81-2018.
Tielidze L.G., Bolch T., Wheate R.D., Kutuzov S.S., Lavrentiev I.I., Zemp M. Supra glacial debris cover changes in the Greater Caucasus from 1986 to 2014. The Cryosphere. 2020, 14: 585–598. https://doi.org/10.5194/tc-14-585-2020.
Tielidze L.G. Dynamics of the Glaciers of Georgia. Glaciers of Georgia. Geography of the Physical Environment. Springer, Cham., 2017. doi.org/10.1007/978-3-319-50571-8_5.
Freshfield D.W. The Exploration of the Caucasus. 1896. V. II. Edinburgh: T. and A. Constable, printers to her majesty. London and New York.
Déchy M. von. Kaukasus Reisen und Forschungen im kaukasischen Hochgebirge (Travel and research in the Caucasian high mountains). 1905. Berlin, Band 1: 313–314. [In German].
Rutkovskaya V.A. Sections: Upper Svaneti Glaciers. Transactions of the glacial expeditions. 1936, 5: 404– 448.
Tsereteli D. Glacier change in the southern slope of the Greater Caucasus during the last 20–25 years). Works of Georgian National Academy of Sciences (Moambe). 1959, XII (6). [In Georgian].
Tsereteli D., Khazaradze R., Lomtatidze G., Inashvili Sh., Lashkhi T., Kurdghelaidze G., Kalandadze G. and Chekurishvili R. Glaciological observations on the Chalaati and Lechziri Glaciers (Upper Svaneti) in the spring of 1959. Georgian National Academy of Sciences. Works of Vakhushti Institute of Geography. 1962, XVIII: 223–256. [In Georgian].
Shengelia R. Chalaati and Lekhziri glaciers regime in the summer of 1961. Georgian National Academy of Sciences. Works of Vakhushti Institute of Geography. 1964, XX: 233–244. [In Georgian].
Gobejishvili R.G. Present day glaciers of Georgia and evolution of glaciation in the mountains of Eurasia in late Pleistocene and Holocene. PhD. Tbilisi, Institute of Geography, Georgian National Academy of Sciences. 1995: 320 p. [In Georgian].
Podozersky K.I. Glaciers of the Caucasian Range. Zapiski Kavkazskogo otdela Russkogo Geograficheskogo Obshchestva. Proc. of the Caucasian Branch of the Russian Geographical Society. 1911, 29 (1): 200 p. [In Russian].
Klein M.G., Gottdang A., Mous D.J.W., Bourlès D.L., Arnold M., Hamelin B., Aumaître G., Braucher R., Merchel S., Chauvet F. Performance of the HVE 5MV AMS system at CEREGE using an absorber foil for isobar suppression. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2008, 266: 1828–1832. https://doi.org/10.1016/j.nimb.2007.11.077.
Braucher R., Guillou V., Bourlès D.L., Arnold M., Aumaître G., Keddadouche K., Nottoli E. Preparation of ASTER in-house 10Be/9Be standard solutions // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2015, 361: 335–340. https://doi.org/10.1016/j.nimb.2015.06.012.
Chmeleff J., von Blanckenburg F., Kossert K., Jakob D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010, 268: 192–199. https://doi.org/10.1016/j.nimb.2009.09.012.
Martin L.C.P., Blard P.-H., Balco G., Lavé J., Delunel R., Lifton N., Laurent V. The CREp program and the ICE‑D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quaternary Geochronology. 2017, 38: 25–49. https://doi.org/10.1016/j.quageo.2016.11.006.
Young N.E., Schaefer J.M., Briner J.P., Goehring B.M. A 10Be production-rate calibration for the Arctic: A 10Be production-rate calibration for the Arctic. Journ. of Quaternary Science. 2013, 28: 515–526. https://doi.org/10.1002/jqs.2642.
Lal D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planetary Science Letters. 1991, 104: 424–439. https://doi.org/10.1016/0012-821X(91)90220-C.
Stone J.O. Air pressure and cosmogenic isotope production // Journ. of Geophys. Research. 2000, 105: 23753–23759. https://doi.org/10.1029/2000JB900181.
Stokes M.A., Smiley T.L. An Introduction to Tree-Ring Dating. University of Chicago Press. Chicago. 1968, II: 73 p.
Bushueva I.S., Solomina O.N. Kashkatash Glacier fluctuations in the XVII–XI centuries from cartographic, dendrochronological and lichenometric data. Ice and Snow. 2012, 52 (2): 121–130. https://doi.org/10.15356/2076-6734-2012-2-121-130. [In Russian].
Beschel R.E. Flechten als Altersmaßstab rezenter Moränen. Zeitschrift für Gletscherkunde und Geologie. 1950, 1: 152–162 (In German, translated by Barr W., Lichens as a measure of the age of recent moraines. Arctic and Alpine Research. 1973, 5: 303–309).
Osborn G., Menounos B., Ryane C., Riedel J., Clague J.J., Koch J., Clark D., Scott K., Davis P.T. Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington. Quaternary Sciences Review. 2012, 49: 33–51. doi.org/10.1016/j.quascirev.2012.06.004.
Jomelli V., Grancher D., Naveau P., Cooley D. Assessment study of lichenometric methods for dating surfaces. Geomorphology. 2007, 86: 131–143. doi.org/10.1016/j.geomorph.2006.08.010.
Naveau P., Jomelli V., Cooley D., Grancher D. Rabatel A. Modelling uncertainties in lichenometry studies with an application: The Tropical Andes (Charquini Glacier in Bolivia). Arctic, Antarctic and Alpine Research. 2007, 39: 277–288. https://doi.org/10.1657/1523-0430(2007)39[277:MUILS]2.0.CO;2.
Granshaw F.D., Fountain A.G. Glacier change (1958– 1998) in the North Cascades National Park Complex, Washington, USA. Journ. of Glaciology. 2006, 52: 251–256. doi:10.3189/172756506781828782.
Innes J.L. Lichenometry. Progress in Physical Geography. 1985, 9 (2): 187–254.
Popovnin V.V., Rezepkin A.A., Tielidze L.G. Superficial moraine expansion on the Djankuat Glacier snout over the direct glaciological monitoring period. Earth Cryosphere. 2015, XIX (1): 79–87.
Holzhauser H., Magny M., Zumbühl H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene. 2005, 15 (6): 789–801. https://doi.org/10.1191/0959683605hl853ra.
Le Roy M., Nicolussi K., Deline P., Astrade L., Edouard J.L., Miramont C., Arnaud F. Calendar-dated glacier variations in the Western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quaternary Sciences Review. 2015, 108: 1–22. https://doi.org/10.1016/j.quascirev.2014.10.033.
Zumbühl H.J., Steiner D., Nussbaumer S.U. 19th century glacier representations and fluctuations in the central and western European Alps: an interdisciplinary approach. Glob. Planetary Changes. 2008, 60 (1): 42–57. https://doi.org/10.1016/j.gloplacha.2006.08.005.
https://ice-snow.igras.ru/jour/article/view/823
doi:10.31857/S2076673420030052
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.31857/S2076673420030052
https://doi.org/10.1016/j.quascirev.2016.04.008
https://doi.org/10.1038/nclimate2174
https://doi.org/10.1007/s00382-011-1145-7
https://doi.org/10.15356/2076-6734-2012-1-85-94
https://doi.org/10.1016/j.g
container_title Ice and Snow
container_volume 60
container_issue 3
container_start_page 453
op_container_end_page 470
_version_ 1766287034178076672
spelling ftjias:oai:oai.ice.elpub.ru:article/823 2023-05-15T14:14:43+02:00 Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data Изменения ледника Чалаати (Грузинский Кавказ) с малого ледникового периода по данным космогенных изотопов (10Be) и дендрохронологии L. Tielidze G. O. Solomina N. V. Jomelli E. Dolgova A. I. Bushueva S. V. Mikhalenko N. R. Brauche Team ASTER Л. Тиелидзе Г. О. Соломина Н. В. Джомелли Е. Долгова А. И. Бушуева С. В. Михаленко Н. Р. Брошэ Команда АСТЕР The project is supported by the fundamental scientific research № 0148-2019-0004 and Russian-French (CNRS-PICS) collaborative programs (DECAU IPAGCAUA) and LIA program DEGLAC. The study from Georgian side was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) YS17_12 . The 10Be measurements were performed at the ASTER AMS national facility (CEREGE. Aix-en-Provence) that is supported by the INSU/CNRS, the ANR through the «Projets thématiques d’excellence» program for the «Equipements d’excellence» ASTER-CEREGE action and IRD. ASTER Team includes Georges Aumaître, Didier L. Bourlès, Karim Keddadouche. We gratefully acknowledge the support of two reviewers, Dmitry Petrakov and anonymous reviewer 2, for detailed comments which clearly enhanced the quality of the paper. Special thanks to Lauren Vargo and Regis Braucher for proofreading the paper. Благодарности. Проект выполнен в рамках Госзадания № 0148-2019-0004 и российско-французского (CNRS-PICS) совместными программами (DECAU IPAGCAUA) и программой LIA DEGLAC. Исследование с грузинской стороны поддержано Национальным научным фондом Грузии им. Шота Руставели (SRNSFG) YS17_12 . Измерения 10Be проводились на национальном объекте ASTER AMS (CEREGE. Экс-ан-Прованс), который поддерживается INSU/CNRS, ANR в рамках программы «Projets thématiques d'Excellence» для «Equipements d'excellence» ASTER – CEREGE и IRD. В состав команды ASTER входят Жорж Ауматр, Дидье Л. Бурлес, Карим Кеддадуш. Мы благодарны двум рецензентам, Дмитрию Петракову и А.М. Грачеву, за подробные комментарии, которые значительно улучшили качество статьи. Выражаем также благодарность Лорен Варго и Реджису Браухеру за помощь в правке текста. 2020-08-12 application/pdf https://ice-snow.igras.ru/jour/article/view/823 https://doi.org/10.31857/S2076673420030052 eng eng IGRAS https://ice-snow.igras.ru/jour/article/view/823/531 Matthes F.E. Report of the committee on glaciers, 1939– 40. Transactions of the American Geophys. Union. 1940, 1: 396–406. http://glaciers research.pdx.edu/Report-Committee-Glaciers-1939-40. Solomina O.N., Bradley R.S., Jomelli V., Geirsdottir A., Kaufman D.S., Koch J., McKay N.P., Masiokas M., Miller G., Nesje A., Nicolussi K., Owen L.A., Putnam A.E., Wanner H., Wiles G., Yang B. Glacier fluctuations during the past 2000 years. Quaternary Science Reviews. 2016, 149: 61–90. https://doi.org/10.1016/j.quascirev.2016.04.008. Neukom R., Gergis J., Karoly D., Wanner H., Curran M., Elbert J., González-Rouco F., Linsley B.K., Moy A.D., Mundo I., Raible C.C., Steig E., van Ommen T., Vance T., Villalba R., Zinke J., Frank D. Interhemispheric temperature variability over the past millennium. Nature climate change. 2014, 4: 362–367. https://doi.org/10.1038/nclimate2174. Leclercq P.W., Oerlemans J. Global and hemispheric temperature reconstruction from glacier length fluctuations. Climate Dynamics. 2012, 38: 1065e1079. http://dx.doi.org/10.1007/s00382-011-1145-7. Bushueva I.S. Kolebaniya lednikov na Tsentralnom i Zapadnom Kavkaze po kartograficheskim, istoricheskim i bioindikatsionnym dannym za poslednie 200 let Fluctuations of glaciers on the Central and Western Caucasus using cartographical, historical and proxy data over the last 200 years). PhD Thesis. 2013. Moscow: Institute of Geography Russian Academy of Sciences, Russia [In Russian]. Solomina O.N., Bushueva I.S., Kuderina T.M., Matskovsky V.V., Kudikov A.V. Holocene history of the Ullukam Glacier. Ice and Snow. 2012, 1 (117): 85–94. https://doi.org/10.15356/2076-6734-2012-1-85-94. [In Russian]. Solomina O.N., Bushueva I., Dolgova E., Jomelli V., Alexandrin M., Mikhalenko V., Matskovsky V. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Global Planetary Change. 2016, 140: 28–58. doi.org/10.1016/j.gloplacha.2016.02.008. Solomina O.N., Bushueva I.S., Polumieva P.D., Dolgova E.A., Dokukin M.D. History of the Donguz-Orun Glacier from bioindication, historical, cartographic sources and remote sensing data. Ice and Snow. 2018, 58 (4): 448–461. doi.org/10.15356/2076-6734-2018-4-448-461. [In Russian]. Serebryanyi L.R., Golodkovskaya N.A., Orlov A.V., Malyasova E.S., Ilves E.O. Kolebaniya lednikov i protsessy morenonakopleniya na Tsentral’nom Kavkaze. Fluctuations of glaciers and processes of moraines formation in the Central Caucasus. Moscow: Nauka, 1984: 216 p. [In Russian]. Tielidze L.G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery. The Cryosphere. 2016, 10: 713–725. doi.org/10.5194/tc-10-713-2016. Tielidze L.G. and Wheate R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan). The Cryosphere. 2018, 12: 81–94. https://doi.org/10.5194/tc-12-81-2018. Tielidze L.G., Bolch T., Wheate R.D., Kutuzov S.S., Lavrentiev I.I., Zemp M. Supra glacial debris cover changes in the Greater Caucasus from 1986 to 2014. The Cryosphere. 2020, 14: 585–598. https://doi.org/10.5194/tc-14-585-2020. Tielidze L.G. Dynamics of the Glaciers of Georgia. Glaciers of Georgia. Geography of the Physical Environment. Springer, Cham., 2017. doi.org/10.1007/978-3-319-50571-8_5. Freshfield D.W. The Exploration of the Caucasus. 1896. V. II. Edinburgh: T. and A. Constable, printers to her majesty. London and New York. Déchy M. von. Kaukasus Reisen und Forschungen im kaukasischen Hochgebirge (Travel and research in the Caucasian high mountains). 1905. Berlin, Band 1: 313–314. [In German]. Rutkovskaya V.A. Sections: Upper Svaneti Glaciers. Transactions of the glacial expeditions. 1936, 5: 404– 448. Tsereteli D. Glacier change in the southern slope of the Greater Caucasus during the last 20–25 years). Works of Georgian National Academy of Sciences (Moambe). 1959, XII (6). [In Georgian]. Tsereteli D., Khazaradze R., Lomtatidze G., Inashvili Sh., Lashkhi T., Kurdghelaidze G., Kalandadze G. and Chekurishvili R. Glaciological observations on the Chalaati and Lechziri Glaciers (Upper Svaneti) in the spring of 1959. Georgian National Academy of Sciences. Works of Vakhushti Institute of Geography. 1962, XVIII: 223–256. [In Georgian]. Shengelia R. Chalaati and Lekhziri glaciers regime in the summer of 1961. Georgian National Academy of Sciences. Works of Vakhushti Institute of Geography. 1964, XX: 233–244. [In Georgian]. Gobejishvili R.G. Present day glaciers of Georgia and evolution of glaciation in the mountains of Eurasia in late Pleistocene and Holocene. PhD. Tbilisi, Institute of Geography, Georgian National Academy of Sciences. 1995: 320 p. [In Georgian]. Podozersky K.I. Glaciers of the Caucasian Range. Zapiski Kavkazskogo otdela Russkogo Geograficheskogo Obshchestva. Proc. of the Caucasian Branch of the Russian Geographical Society. 1911, 29 (1): 200 p. [In Russian]. Klein M.G., Gottdang A., Mous D.J.W., Bourlès D.L., Arnold M., Hamelin B., Aumaître G., Braucher R., Merchel S., Chauvet F. Performance of the HVE 5MV AMS system at CEREGE using an absorber foil for isobar suppression. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2008, 266: 1828–1832. https://doi.org/10.1016/j.nimb.2007.11.077. Braucher R., Guillou V., Bourlès D.L., Arnold M., Aumaître G., Keddadouche K., Nottoli E. Preparation of ASTER in-house 10Be/9Be standard solutions // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2015, 361: 335–340. https://doi.org/10.1016/j.nimb.2015.06.012. Chmeleff J., von Blanckenburg F., Kossert K., Jakob D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010, 268: 192–199. https://doi.org/10.1016/j.nimb.2009.09.012. Martin L.C.P., Blard P.-H., Balco G., Lavé J., Delunel R., Lifton N., Laurent V. The CREp program and the ICE‑D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quaternary Geochronology. 2017, 38: 25–49. https://doi.org/10.1016/j.quageo.2016.11.006. Young N.E., Schaefer J.M., Briner J.P., Goehring B.M. A 10Be production-rate calibration for the Arctic: A 10Be production-rate calibration for the Arctic. Journ. of Quaternary Science. 2013, 28: 515–526. https://doi.org/10.1002/jqs.2642. Lal D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planetary Science Letters. 1991, 104: 424–439. https://doi.org/10.1016/0012-821X(91)90220-C. Stone J.O. Air pressure and cosmogenic isotope production // Journ. of Geophys. Research. 2000, 105: 23753–23759. https://doi.org/10.1029/2000JB900181. Stokes M.A., Smiley T.L. An Introduction to Tree-Ring Dating. University of Chicago Press. Chicago. 1968, II: 73 p. Bushueva I.S., Solomina O.N. Kashkatash Glacier fluctuations in the XVII–XI centuries from cartographic, dendrochronological and lichenometric data. Ice and Snow. 2012, 52 (2): 121–130. https://doi.org/10.15356/2076-6734-2012-2-121-130. [In Russian]. Beschel R.E. Flechten als Altersmaßstab rezenter Moränen. Zeitschrift für Gletscherkunde und Geologie. 1950, 1: 152–162 (In German, translated by Barr W., Lichens as a measure of the age of recent moraines. Arctic and Alpine Research. 1973, 5: 303–309). Osborn G., Menounos B., Ryane C., Riedel J., Clague J.J., Koch J., Clark D., Scott K., Davis P.T. Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington. Quaternary Sciences Review. 2012, 49: 33–51. doi.org/10.1016/j.quascirev.2012.06.004. Jomelli V., Grancher D., Naveau P., Cooley D. Assessment study of lichenometric methods for dating surfaces. Geomorphology. 2007, 86: 131–143. doi.org/10.1016/j.geomorph.2006.08.010. Naveau P., Jomelli V., Cooley D., Grancher D. Rabatel A. Modelling uncertainties in lichenometry studies with an application: The Tropical Andes (Charquini Glacier in Bolivia). Arctic, Antarctic and Alpine Research. 2007, 39: 277–288. https://doi.org/10.1657/1523-0430(2007)39[277:MUILS]2.0.CO;2. Granshaw F.D., Fountain A.G. Glacier change (1958– 1998) in the North Cascades National Park Complex, Washington, USA. Journ. of Glaciology. 2006, 52: 251–256. doi:10.3189/172756506781828782. Innes J.L. Lichenometry. Progress in Physical Geography. 1985, 9 (2): 187–254. Popovnin V.V., Rezepkin A.A., Tielidze L.G. Superficial moraine expansion on the Djankuat Glacier snout over the direct glaciological monitoring period. Earth Cryosphere. 2015, XIX (1): 79–87. Holzhauser H., Magny M., Zumbühl H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene. 2005, 15 (6): 789–801. https://doi.org/10.1191/0959683605hl853ra. Le Roy M., Nicolussi K., Deline P., Astrade L., Edouard J.L., Miramont C., Arnaud F. Calendar-dated glacier variations in the Western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quaternary Sciences Review. 2015, 108: 1–22. https://doi.org/10.1016/j.quascirev.2014.10.033. Zumbühl H.J., Steiner D., Nussbaumer S.U. 19th century glacier representations and fluctuations in the central and western European Alps: an interdisciplinary approach. Glob. Planetary Changes. 2008, 60 (1): 42–57. https://doi.org/10.1016/j.gloplacha.2006.08.005. https://ice-snow.igras.ru/jour/article/view/823 doi:10.31857/S2076673420030052 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 60, № 3 (2020); 453-470 Лёд и Снег; Том 60, № 3 (2020); 453-470 2412-3765 2076-6734 Cosmic Ray Exposure dating;dendrochronology;glacier variation;Greater Caucasus;Little Ice Age Большой Кавказ;дендрохронология;колебания ледников;космогенные датировки;малый ледниковый период info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjias https://doi.org/10.31857/S2076673420030052 https://doi.org/10.1016/j.quascirev.2016.04.008 https://doi.org/10.1038/nclimate2174 https://doi.org/10.1007/s00382-011-1145-7 https://doi.org/10.15356/2076-6734-2012-1-85-94 https://doi.org/10.1016/j.g 2022-12-20T13:30:01Z Glacier variations over the past centuries are still poorly documented on the southern slope of the Greater Caucasus. In this paper, the change of Chalaati Glacier in the Georgian Caucasus from its maximum extent during the Little Ice Age has been studied. For the first time in the history of glaciological studies of the Georgian Caucasus, 10Be in situ Cosmic Ray Exposure (CRE) dating was applied. The age of moraines was determined by tree-ring analysis. Lichenometry was also used as a supplementary tool to determine the relative ages of glacial landforms. In addition, the large-scale topographical maps (1887, 1960) were used along with the satellite imagery – Corona, Landsat 5 TM, and Sentinel 2B. Repeated photographs were used to identify the glacier extent in the late XIX and early XX centuries. 10Be CRE ages from the oldest lateral moraine of the Chalaati Glacier suggest that the onset of the Little Ice Age occurred ~0.73±0.04 kyr ago (CE ~1250–1330), while the dendrochronology and lichenometry measurements show that the Chalaati Glacier reached its secondary maximum extent again about CE ~1810. From that time through 2018 the glacier area decreased from 14.9±1.5 km2 to 9.9±0.5 km2 (33.8±7.4% or ~0.16% yr−1), while its length retreated by ~2280 m. The retreat rate was uneven: it peaked between 1940 and 1971 (~22.9 m yr−1), while the rate was slowest in 1910– 1930 (~4.0 m yr−1). The terminus elevation rose from ~1620 m to ~1980 m above sea level in ~1810–2018. Для реконструкции колебаний ледника Чалаати в Грузии использовались космические снимки, старые карты, повторные фотографии, дендрохронология, лихенометрия и анализ космогенных изотопов. Максимальное наступание ледника в начале малого ледникового периода произошло в ~1250–1330 гг., второй максимум, когда ледник достиг почти такой же длины, датируется примерно 1810 г. С этого времени до 2018 г. площадь ледника уменьшилась с 14,9±1,5 до 9,9±0,5 км2 (33,8±7,4%, или ~0,16% год−1), а его длина сократилась на ~2280 м. Article in Journal/Newspaper Antarctic and Alpine Research Arctic Arctic and Alpine Research The Cryosphere Ice and Snow (E-Journal) Ice and Snow 60 3 453 470