The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019

Satellite spectrometers operating on the outgoing long-wave IR (thermal) radiation of the Earth and placed in sunsynchronous polar orbits provide a wealth of information about Arctic methane (CH4) year-round, day and night. Their data are unique for estimating methane emissions from the warming Arct...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: L. Yurganov N., Л. Юрганов Н.
Format: Article in Journal/Newspaper
Language:English
Published: IGRAS 2020
Subjects:
Ice
Online Access:https://ice-snow.igras.ru/jour/article/view/820
https://doi.org/10.31857/S2076673420030049
id ftjias:oai:oai.ice.elpub.ru:article/820
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language English
topic Arctic climate;greenhouse gases;methane;satellite data;sea ice
климат Арктики;метан;морской лед;парниковые газы;спутниковые данные
spellingShingle Arctic climate;greenhouse gases;methane;satellite data;sea ice
климат Арктики;метан;морской лед;парниковые газы;спутниковые данные
L. Yurganov N.
Л. Юрганов Н.
The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019
topic_facet Arctic climate;greenhouse gases;methane;satellite data;sea ice
климат Арктики;метан;морской лед;парниковые газы;спутниковые данные
description Satellite spectrometers operating on the outgoing long-wave IR (thermal) radiation of the Earth and placed in sunsynchronous polar orbits provide a wealth of information about Arctic methane (CH4) year-round, day and night. Their data are unique for estimating methane emissions from the warming Arctic, both for land and sea. The article analyzes concentrations of methane obtained by the AIRS spectrometer in conjunction with microwave satellite measurements of sea ice concentration. The data were filtered for cases of sufficiently high temperature contrast in the lower atmosphere. The focus is on the Kara Sea during autumn-early winter season between 2003 and January 2019. This sea underwent dramatic decline in the ice cover. This shelf zone is characterized by huge reserves of oil and natural gas (~90% methane), as well as presence of sub-seabed permafrost and methane hydrates. Seasonal cycle of atmospheric methane has a minimum in early summer and a maximum in early winter. During last 16 years both summer and winter concentrations were increasing, but with different rates. Positive summer trends over the Kara Sea and over Atlantic control area were close one to another. In winter the Kara Sea methane was growing faster than over Atlantic. The methane seasonal cycle amplitude tripled from 2003 to 2019. This phenomenon was considered in terms of growing methane flux from the sea. This high trend was induced by a fast decay of the sea ice in this area with ice concentrations dropped from 95 to 20%. If the current Arctic sea cover would decline further and open water area would grow then further increase of methane concentration over the ocean may be foreseen. Проанализированы ИК спутниковые данные о концентрации метана в слое атмосферы 0–4 км над Карским и Баренцевым морями в сравнении с микроволновыми спутниковыми измерениями ледяного покрова Карского моря. За последние 16 лет амплитуда сезонных вариаций метана над северной частью Карского моря выросла в 3 раза, а площадь поверхности того же района, свободная ...
format Article in Journal/Newspaper
author L. Yurganov N.
Л. Юрганов Н.
author_facet L. Yurganov N.
Л. Юрганов Н.
author_sort L. Yurganov N.
title The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019
title_short The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019
title_full The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019
title_fullStr The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019
title_full_unstemmed The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019
title_sort relationship between methane transport to the atmosphere and the decay of the kara sea ice cover: satellite data for 2003–2019
publisher IGRAS
publishDate 2020
url https://ice-snow.igras.ru/jour/article/view/820
https://doi.org/10.31857/S2076673420030049
geographic Arctic
Kara Sea
geographic_facet Arctic
Kara Sea
genre Arctic
arctic methane
Arctic
Ice
Kara Sea
permafrost
Sea ice
The Cryosphere
genre_facet Arctic
arctic methane
Arctic
Ice
Kara Sea
permafrost
Sea ice
The Cryosphere
op_source Ice and Snow; Том 60, № 3 (2020); 423-430
Лёд и Снег; Том 60, № 3 (2020); 423-430
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/820/528
Hoegh-Guldberg O., Bruno J.F. The impact of climate change on the world’s marine ecosystems. Science. 2010, 328: 1523–1528. doi:10.1126/science.1189930
Comiso J.C., Parkinson C. L., Gersten R., Stock L. Accelerated decline in the Arctic sea ice cover. Geophys. Research Letters. 2008, 35: L01703. doi:10.1029/2007GL031972.
James R.H., Bousquet P., Bussmann I., Haeckel M., Kipfer R., Leifer I., Niemann H., Ostrovsky I., Piskozub J., Rehder G., Treude T., Vielstadte L., Greinert J. Effects of Climate Change on Methane Emissions from Seafloor Sediments in the Arctic Ocean: A Review. Limnol. Oceanogr. 2016, 61: S283–S299. https://doi.org/10.1002/lno.10307.
Myhre G., Shindell D., Bréon F.-M., Collins W., Fuglestvedt J., Huang J., Koch D. Lamarque J.‑F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T., Zhang H. Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Stocker T.F., Qin D., Plattner G.‑K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. Cambridge University Press, Cambridge, UK, New York, NY, USA, 2013: 659–740.
Shipilov E.V., Murzin R.R. Hydrocarbon deposits of western part of Russian shelf of Arctic—Geology and systematic variations. Petrol. Geol. 2002, 36 (4): 325–347. [Translated from Геология нефти и газа. 2001, 4: 6–19.]
Reeburgh W.S. Oceanic methane biogeochemistry. Chemical Reviews. 2007, 107: 486–513. doi:10.1021/cr050362v.
Petoukhov V., Semenov V.A. A link between reduced Barents Kara sea ice and cold winter extremes over northern continents. Journ. of Geophys. Research. 2010, 115: D21111. doi:10.1029/2009JD013568.
Portnov A., Mienert J., Serov P. Modeling the evolution of climate sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf. Journ. of Geophys. Research. Biogeosciences. 2014, 119 (11): 2082–94. https://doi.org/10.1002/2014JG002685.
Zhang Q., Xiao C., Ding M., Dou T. Reconstruction of autumn sea ice extent changes since AD1289 in the Barents-Kara Sea, Arctic. China Earth Science. 2018, 61: 1279–1291. https://doi.org/10.1007/s11430-017-9196-4.
Rudels B. High latitude ocean convection. In: Flow and Creep in the Solar System: Observations, Modelling and Theory. Eds.: D.B. Stone and S.K. Runcorn. Academic Publishers, Dordrecht., 1993: 323–356.
Gentz T., Damm E., von Deimling J.S., Mau S., McGinnis D.F., Schlüter M. A water column study of methane around gas flares located at the West Spitsbergen continental margin. Continental Shelf Research. 2014, 72: 107–18 . doi:10.1016/j.csr.2013.07.013.
Myhre C.L., Ferré B., Platt S.M., Silyakova A., Hermansen O., Allen G., Pisso I., Schmidbauer N., Stohl A., Pitt J., Jansson P., Greinert J., Percival A.C., Fjaeraa M., O'Shea S.J., Gallagher M., Le Breton M., Bower K., N. Bauguitte S., J.B. Dalsøren S., Vadakkepuliyambatta S., Fisher R.E., Nisbet E.G., Lowry D., Myhre G., Pyle J.A., Cain M., Mienert J. Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophys. Research Letters. 2016, 43: 4624–4631. doi:10.1002/2016GL068999.
Mau S., Romer M., Torres M.E., Bussmann I., Pape T., Damm E., Geprags P., Wintersteller P., Hsu C.W., Loher M., Bohrman G. Widespread Methane Seepage along the Continental Margin off Svalbard–From Bjornoya to Kongsfjorden. Sci. Rep. 2017, 7: 42997:1– 42997:13. https://doi.org/10.1038/srep42997.
Kara A.B, Rochford P.A, Hurlburt H.E. Mixed layer depth variability over the global Ocean. Journ. of Geophys. Research. 2002, 108 (C3). doi:10.1029/2000JC000736.
Yurganov L., Muller-Karger F., Leifer I. Methane increase over the Barents and Kara Seas after the autumn pycnocline breakdown: satellite observations. Adv. Polar Sci. 2019, 30 (4): 382–390. doi:10.13679/j.advps.2019.0024.
Yurganov L.N., Leifer I., Vadakkepuliyambatta S. Evidences of accelerating the increase in the concentration of methane in the atmosphere after 2014: satellite data for the Arctic, Current problems in remote sensing of the Earth from space, 14 (5): 248–258. doi:10.13140/RG.2.2.16613.29927.
Leifer I., Chen F.R., McClimans T., Muller Karger F., Yurganov L. Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara Seas. The Cryosphere. Discussion. 2018. https://doi.org/10.5194/tc-2018-237.
Xiong X., Barnet C., Maddy E., Sweeney C., Liu X., Zhou L., Goldberg M. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). Journ. of Geophys. Research. 2008, 113: G00A01. doi:10.1029/2007JG000500.
Susskind J., Blaisdell J.M., Iredell L. Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: the atmospheric infrared sounder science team version‑6 retrieval algorithm. Journ. of Applied Remote Sensing. 2014, 8 (1): 084994. https://doi.org/10.1117/1.JRS.8.084994.
Yurganov L., Leifer I., Lund-Myhre C. Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data. Current Problems in Remote Sensing of Earth from Space. 2016, 13: 107– 119. doi:10.21046/2070-7401-2016-13-2-107-119.
Cavalieri D.J., Parkinson C.L., Gloersen P., Zwally H.J. Sea Ice Concentrations from Nimbus‑7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996. doi: https://doi.org/10.5067/8GQ8LZQVL0VL.
Holmes C.D., Prather M.J., Søvde O.A., Myhre G. Future methane, hydroxil, and their uncertainties: key climate and emission parameters for future predictions. Atmospheric Chemistry and Physics. 2013, 13: 285–302. https://doi.org/10.5194/acp-13-285-2013.
Stevenson D.S., Zhao A., Naik V., O'Connor F.M., Tilmes S., Zeng G., Murray L.T., Collins W.J., Griffiths P., Shim S., Horowitz L.W., Sentman L., Emmons L. Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmospheric Chemistry and Physics. Discussion. 2020. https://doi.org/10.5194/acp-2019-1219.
Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernikh D., Stubbs Ch., Nicolsky D., Tumskoy V., Gustafsson O. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. National Geosciences. 2013, 7: 64–70. https://doi.org/10.1038/ngeo2007.
Miller C.M., Dickens G.R., Jakobsson M., Johansson C., Koshurnikov A., O’Regan M., Muschitiello F., Stranne C., and Mörth C.‑M. Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations. Biogeosciences. 2017, 14 (12): 2929–2953. https://doi.org/10.5194/bg-14-2929-2017.
Thornton B.F., Prytherch J., Andersson K., Brooks I.M., Salisbury D., Tjernström M., Crill P.M. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Science Advances. 2020, 6 (5): eaay7934. doi:10.1126/sciadv.aay7934.
Kort E.A., Wofsy S.C., Daube B.C., Diao M., Elkins J.W., Gao R.S., Hintsa E.J., Hurst D.F., Jimenez R., Moore F.L., Spackman J.R., Zondlo M.A. Atmospheric observations of Arctic Ocean methane emissions up to 82° north. National Geosciences. 2012, 5: 318–321. https://doi.org/10.1038/ngeo1452.
Anisimov O.A., Zaboikina Y.G., Kokorev V.A., Yurganov L.N. Possible causes of methane release from the East Arctic seas shelf. Led i Sneg. Ice and Snow. 2014, 54 (2): 69–81. https:// doi.org/10.15356/2076-6734-2014-2-69-81. [In Russian].
Chatterjee S., Hadi A.S. Influential observations, high leverage points, and outliers in linear regression. Statistic Sciences. 1986, 1: 379–416.
https://ice-snow.igras.ru/jour/article/view/820
doi:10.31857/S2076673420030049
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.31857/S2076673420030049
https://doi.org/10.1126/science.1189930
https://doi.org/10.1029/2007GL031972
https://doi.org/10.1002/lno.10307
https://doi.org/10.1021/cr050362v
https://doi.org/10.1029/2009JD013568
https://doi.org/10
container_title Ice and Snow
container_volume 60
container_issue 3
container_start_page 423
op_container_end_page 430
_version_ 1766301862030475264
spelling ftjias:oai:oai.ice.elpub.ru:article/820 2023-05-15T14:27:49+02:00 The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019 Связь между переносом метана в атмосферу и разрушением ледяного покрова Карского моря: спутниковые данные за 2003–2019 гг. L. Yurganov N. Л. Юрганов Н. 2020-08-12 application/pdf https://ice-snow.igras.ru/jour/article/view/820 https://doi.org/10.31857/S2076673420030049 eng eng IGRAS https://ice-snow.igras.ru/jour/article/view/820/528 Hoegh-Guldberg O., Bruno J.F. The impact of climate change on the world’s marine ecosystems. Science. 2010, 328: 1523–1528. doi:10.1126/science.1189930 Comiso J.C., Parkinson C. L., Gersten R., Stock L. Accelerated decline in the Arctic sea ice cover. Geophys. Research Letters. 2008, 35: L01703. doi:10.1029/2007GL031972. James R.H., Bousquet P., Bussmann I., Haeckel M., Kipfer R., Leifer I., Niemann H., Ostrovsky I., Piskozub J., Rehder G., Treude T., Vielstadte L., Greinert J. Effects of Climate Change on Methane Emissions from Seafloor Sediments in the Arctic Ocean: A Review. Limnol. Oceanogr. 2016, 61: S283–S299. https://doi.org/10.1002/lno.10307. Myhre G., Shindell D., Bréon F.-M., Collins W., Fuglestvedt J., Huang J., Koch D. Lamarque J.‑F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T., Zhang H. Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Stocker T.F., Qin D., Plattner G.‑K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. Cambridge University Press, Cambridge, UK, New York, NY, USA, 2013: 659–740. Shipilov E.V., Murzin R.R. Hydrocarbon deposits of western part of Russian shelf of Arctic—Geology and systematic variations. Petrol. Geol. 2002, 36 (4): 325–347. [Translated from Геология нефти и газа. 2001, 4: 6–19.] Reeburgh W.S. Oceanic methane biogeochemistry. Chemical Reviews. 2007, 107: 486–513. doi:10.1021/cr050362v. Petoukhov V., Semenov V.A. A link between reduced Barents Kara sea ice and cold winter extremes over northern continents. Journ. of Geophys. Research. 2010, 115: D21111. doi:10.1029/2009JD013568. Portnov A., Mienert J., Serov P. Modeling the evolution of climate sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf. Journ. of Geophys. Research. Biogeosciences. 2014, 119 (11): 2082–94. https://doi.org/10.1002/2014JG002685. Zhang Q., Xiao C., Ding M., Dou T. Reconstruction of autumn sea ice extent changes since AD1289 in the Barents-Kara Sea, Arctic. China Earth Science. 2018, 61: 1279–1291. https://doi.org/10.1007/s11430-017-9196-4. Rudels B. High latitude ocean convection. In: Flow and Creep in the Solar System: Observations, Modelling and Theory. Eds.: D.B. Stone and S.K. Runcorn. Academic Publishers, Dordrecht., 1993: 323–356. Gentz T., Damm E., von Deimling J.S., Mau S., McGinnis D.F., Schlüter M. A water column study of methane around gas flares located at the West Spitsbergen continental margin. Continental Shelf Research. 2014, 72: 107–18 . doi:10.1016/j.csr.2013.07.013. Myhre C.L., Ferré B., Platt S.M., Silyakova A., Hermansen O., Allen G., Pisso I., Schmidbauer N., Stohl A., Pitt J., Jansson P., Greinert J., Percival A.C., Fjaeraa M., O'Shea S.J., Gallagher M., Le Breton M., Bower K., N. Bauguitte S., J.B. Dalsøren S., Vadakkepuliyambatta S., Fisher R.E., Nisbet E.G., Lowry D., Myhre G., Pyle J.A., Cain M., Mienert J. Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophys. Research Letters. 2016, 43: 4624–4631. doi:10.1002/2016GL068999. Mau S., Romer M., Torres M.E., Bussmann I., Pape T., Damm E., Geprags P., Wintersteller P., Hsu C.W., Loher M., Bohrman G. Widespread Methane Seepage along the Continental Margin off Svalbard–From Bjornoya to Kongsfjorden. Sci. Rep. 2017, 7: 42997:1– 42997:13. https://doi.org/10.1038/srep42997. Kara A.B, Rochford P.A, Hurlburt H.E. Mixed layer depth variability over the global Ocean. Journ. of Geophys. Research. 2002, 108 (C3). doi:10.1029/2000JC000736. Yurganov L., Muller-Karger F., Leifer I. Methane increase over the Barents and Kara Seas after the autumn pycnocline breakdown: satellite observations. Adv. Polar Sci. 2019, 30 (4): 382–390. doi:10.13679/j.advps.2019.0024. Yurganov L.N., Leifer I., Vadakkepuliyambatta S. Evidences of accelerating the increase in the concentration of methane in the atmosphere after 2014: satellite data for the Arctic, Current problems in remote sensing of the Earth from space, 14 (5): 248–258. doi:10.13140/RG.2.2.16613.29927. Leifer I., Chen F.R., McClimans T., Muller Karger F., Yurganov L. Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara Seas. The Cryosphere. Discussion. 2018. https://doi.org/10.5194/tc-2018-237. Xiong X., Barnet C., Maddy E., Sweeney C., Liu X., Zhou L., Goldberg M. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). Journ. of Geophys. Research. 2008, 113: G00A01. doi:10.1029/2007JG000500. Susskind J., Blaisdell J.M., Iredell L. Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: the atmospheric infrared sounder science team version‑6 retrieval algorithm. Journ. of Applied Remote Sensing. 2014, 8 (1): 084994. https://doi.org/10.1117/1.JRS.8.084994. Yurganov L., Leifer I., Lund-Myhre C. Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data. Current Problems in Remote Sensing of Earth from Space. 2016, 13: 107– 119. doi:10.21046/2070-7401-2016-13-2-107-119. Cavalieri D.J., Parkinson C.L., Gloersen P., Zwally H.J. Sea Ice Concentrations from Nimbus‑7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996. doi: https://doi.org/10.5067/8GQ8LZQVL0VL. Holmes C.D., Prather M.J., Søvde O.A., Myhre G. Future methane, hydroxil, and their uncertainties: key climate and emission parameters for future predictions. Atmospheric Chemistry and Physics. 2013, 13: 285–302. https://doi.org/10.5194/acp-13-285-2013. Stevenson D.S., Zhao A., Naik V., O'Connor F.M., Tilmes S., Zeng G., Murray L.T., Collins W.J., Griffiths P., Shim S., Horowitz L.W., Sentman L., Emmons L. Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmospheric Chemistry and Physics. Discussion. 2020. https://doi.org/10.5194/acp-2019-1219. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernikh D., Stubbs Ch., Nicolsky D., Tumskoy V., Gustafsson O. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. National Geosciences. 2013, 7: 64–70. https://doi.org/10.1038/ngeo2007. Miller C.M., Dickens G.R., Jakobsson M., Johansson C., Koshurnikov A., O’Regan M., Muschitiello F., Stranne C., and Mörth C.‑M. Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations. Biogeosciences. 2017, 14 (12): 2929–2953. https://doi.org/10.5194/bg-14-2929-2017. Thornton B.F., Prytherch J., Andersson K., Brooks I.M., Salisbury D., Tjernström M., Crill P.M. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Science Advances. 2020, 6 (5): eaay7934. doi:10.1126/sciadv.aay7934. Kort E.A., Wofsy S.C., Daube B.C., Diao M., Elkins J.W., Gao R.S., Hintsa E.J., Hurst D.F., Jimenez R., Moore F.L., Spackman J.R., Zondlo M.A. Atmospheric observations of Arctic Ocean methane emissions up to 82° north. National Geosciences. 2012, 5: 318–321. https://doi.org/10.1038/ngeo1452. Anisimov O.A., Zaboikina Y.G., Kokorev V.A., Yurganov L.N. Possible causes of methane release from the East Arctic seas shelf. Led i Sneg. Ice and Snow. 2014, 54 (2): 69–81. https:// doi.org/10.15356/2076-6734-2014-2-69-81. [In Russian]. Chatterjee S., Hadi A.S. Influential observations, high leverage points, and outliers in linear regression. Statistic Sciences. 1986, 1: 379–416. https://ice-snow.igras.ru/jour/article/view/820 doi:10.31857/S2076673420030049 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 60, № 3 (2020); 423-430 Лёд и Снег; Том 60, № 3 (2020); 423-430 2412-3765 2076-6734 Arctic climate;greenhouse gases;methane;satellite data;sea ice климат Арктики;метан;морской лед;парниковые газы;спутниковые данные info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjias https://doi.org/10.31857/S2076673420030049 https://doi.org/10.1126/science.1189930 https://doi.org/10.1029/2007GL031972 https://doi.org/10.1002/lno.10307 https://doi.org/10.1021/cr050362v https://doi.org/10.1029/2009JD013568 https://doi.org/10 2022-12-20T13:30:18Z Satellite spectrometers operating on the outgoing long-wave IR (thermal) radiation of the Earth and placed in sunsynchronous polar orbits provide a wealth of information about Arctic methane (CH4) year-round, day and night. Their data are unique for estimating methane emissions from the warming Arctic, both for land and sea. The article analyzes concentrations of methane obtained by the AIRS spectrometer in conjunction with microwave satellite measurements of sea ice concentration. The data were filtered for cases of sufficiently high temperature contrast in the lower atmosphere. The focus is on the Kara Sea during autumn-early winter season between 2003 and January 2019. This sea underwent dramatic decline in the ice cover. This shelf zone is characterized by huge reserves of oil and natural gas (~90% methane), as well as presence of sub-seabed permafrost and methane hydrates. Seasonal cycle of atmospheric methane has a minimum in early summer and a maximum in early winter. During last 16 years both summer and winter concentrations were increasing, but with different rates. Positive summer trends over the Kara Sea and over Atlantic control area were close one to another. In winter the Kara Sea methane was growing faster than over Atlantic. The methane seasonal cycle amplitude tripled from 2003 to 2019. This phenomenon was considered in terms of growing methane flux from the sea. This high trend was induced by a fast decay of the sea ice in this area with ice concentrations dropped from 95 to 20%. If the current Arctic sea cover would decline further and open water area would grow then further increase of methane concentration over the ocean may be foreseen. Проанализированы ИК спутниковые данные о концентрации метана в слое атмосферы 0–4 км над Карским и Баренцевым морями в сравнении с микроволновыми спутниковыми измерениями ледяного покрова Карского моря. За последние 16 лет амплитуда сезонных вариаций метана над северной частью Карского моря выросла в 3 раза, а площадь поверхности того же района, свободная ... Article in Journal/Newspaper Arctic arctic methane Arctic Ice Kara Sea permafrost Sea ice The Cryosphere Ice and Snow (E-Journal) Arctic Kara Sea Ice and Snow 60 3 423 430