Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp

The new ice core obtained from the NEEM site in the north-western Greenland (77.449˚N, 51.056˚W, 2447 m a.s.l) in 2008–2012 was expected to improve our knowledge about the Last interglacial (also known as the Eemian, ca. 115 to 130 kyr before present). A numerical modeling, the overview of which is...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: O. Rybak O., J. Fürst J., Ph. Huybrechts, О. Рыбак О., Й. Фюрст Я., Ф. Хёбрехтс
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/79
https://doi.org/10.15356/2076-6734-2013-1-16-25
id ftjias:oai:oai.ice.elpub.ru:article/79
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Climatic variations;ice age;ice core;ice flow;ice sheet;isotopic composition of ice;mathematical model
Вариации климата;возраст льда;изотопный состав льда;ледниковый щит;ледяной керн;математическая модель;течение льда
spellingShingle Climatic variations;ice age;ice core;ice flow;ice sheet;isotopic composition of ice;mathematical model
Вариации климата;возраст льда;изотопный состав льда;ледниковый щит;ледяной керн;математическая модель;течение льда
O. Rybak O.
J. Fürst J.
Ph. Huybrechts
О. Рыбак О.
Й. Фюрст Я.
Ф. Хёбрехтс
Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp
topic_facet Climatic variations;ice age;ice core;ice flow;ice sheet;isotopic composition of ice;mathematical model
Вариации климата;возраст льда;изотопный состав льда;ледниковый щит;ледяной керн;математическая модель;течение льда
description The new ice core obtained from the NEEM site in the north-western Greenland (77.449˚N, 51.056˚W, 2447 m a.s.l) in 2008–2012 was expected to improve our knowledge about the Last interglacial (also known as the Eemian, ca. 115 to 130 kyr before present). A numerical modeling, the overview of which is given in this paper, aims at assistance in interpretation of the NEEM ice core. For this purpose, an area of 400 × 400 km was delineated in northwestern Greenland as the domain for the fine-scale model at 2.5 km resolution. Modeled present-day surface velocity was in good agreement with satellite and GPS measurements. The nested ice-sheet model was run over the last two glacial cycles to reconstruct the flow history relevant for interpreting the NEEM ice core. A Lagrangian backtracing procedure was applied to determine the particle trajectories of the ice drilled at the NEEM site. This provides the places of origin at the time of deposition of NEEM ice, from which the ice chronology and non-climatic biases of the records are determined. The latter biases arise from elevation changes of the ice sheet, advection of higher upstream ice, and from latitudinal contrasts in isotopical composition of the ice. These need to be separated from the isotope records to retrieve the climatic signal. In spite of initial expectations, the segment in the NEEM ice core between 2206 m and 2435 m turned out to be heavily disturbed. The presence of high isotope values below 2206 m depth however reveals that there is ice from the previous warm interglacial. Our model locates the EMBED Equation.DSMT4 maximum of the warmest Eemian ice at the right depth (2400 m). On this basis we suggest that the measured contrast between the present and the Eemian EMBED Equation.DSMT4 must be increased by about 1.5 ‰. Most of this non-climatic bias results from upstream advection over an estimated distance of ~175 km. Except for the disturbed section, we are still confident to be able to provide accurate model-based estimates of the ice chronology and ...
format Article in Journal/Newspaper
author O. Rybak O.
J. Fürst J.
Ph. Huybrechts
О. Рыбак О.
Й. Фюрст Я.
Ф. Хёбрехтс
author_facet O. Rybak O.
J. Fürst J.
Ph. Huybrechts
О. Рыбак О.
Й. Фюрст Я.
Ф. Хёбрехтс
author_sort O. Rybak O.
title Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp
title_short Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp
title_full Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp
title_fullStr Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp
title_full_unstemmed Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp
title_sort mathematical modeling of ice flow in the north-western greenland and interpretation of deep drilling data at the neem camp
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/79
https://doi.org/10.15356/2076-6734-2013-1-16-25
geographic Greenland
geographic_facet Greenland
genre Annals of Glaciology
Arctic
Berichte zur Polarforschung
Greenland
ice core
Ice Sheet
Polarforschung
genre_facet Annals of Glaciology
Arctic
Berichte zur Polarforschung
Greenland
ice core
Ice Sheet
Polarforschung
op_source Ice and Snow; Том 53, № 1 (2013); 16-25
Лёд и Снег; Том 53, № 1 (2013); 16-25
2412-3765
2076-6734
10.15356/2076-6734-2013-1
op_relation Kotlyakov V.M., Gordienko F.G. Izotopnaya i gekhimicheskaya glyatsiologiya. Isotope and geochemical glaciology. Leningrad: Hydrometeoizdat, 1982: 288 p. [In Russian].
Rybak O.O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Pt. 1. Description of model, arrangement of numerical experiments and modern dynamics of ice stream in the vicinity of Kohnen station. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2007, 102: 3–11. [In Russian].
Rybak O.O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Pt. 2. Post-experimental working of data. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2007, 103: 3–10. [In Russian].
Buchardt S.L., Dahl-Jensen D. At what depth is the Eemian layer expected to be found at NEEM? Annals of Glaciology. 2008, 48: 100–103.
Fürst J.J., Rybak O., Goelzer H., De Smedt B., De Groen P., Huybrechts P. Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geoscientific Model Development. 2011, 4: 1133–1149.
GRIP members. Climate instability during the last interglacial period in the GRIP ice core. Nature. 1993, 364: 203–207.
Hindmarsh R.C.A. A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. Journ. of Geophys. Research. 2004, 109 (F1). doi:10.1029/2003JF000065.
Hindmarsh R.C.A., Payne A.J. Time-step limits for stable solutions of the ice-sheet equation. Annals of Glaciology. 1996, 23: 74–85.
Hutter K. Theoretical Glaciology: material science of ice and the mechanics of glaciers and ice sheets. Dordrecht: D. Reidel, 1983: 510 p.
Huybrechts P. The Antarctic ice sheet and environmental change. Berichte zur Polarforschung. 1992, 99: 241 p.
Huybrechts P. Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Annals of Glaciology. 1996, 23: 226–236.
Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews. 2002, 21: 203–231.
Huybrechts P., de Wolde J. The dynamic response of the Greenland and Antarctic Ice Sheets to Multiple-Century climatic warming. Journ. of Climate. 1999, 12:. P. 2169–2188.
Huybrechts P., Rybak O., Pattyn F., Ruth U., Steinhage D. Ice thinning, upstream advection and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Climate of the Past. 2007, 3: 577–589.
Hvidberg C.S., Keller K., Gundestrup N.S. Mass balance and ice flow along the north-northwest ridge of the Greenland ice sheet at NorthGRIP. Annals of Glaciology. 2002, 35: 521–526.
Imbrie J.Z., Hays J.D., Martinson D.G., MacIntyre A., Mix A.C., Morley J.J., Pisias N.G., Prell W.L., Shackelton N.J. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Milankovitch and Climate. Ed. A. Berger, J.Z. Imbrie, J.D. Hays, G. Kukla, B. Saltzman. Dordrecht: D. Reidel, 1984: 269–305.
Janssens I., Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet. Annals of Glaciology. 2000, 31: 133–140.
Joughin I., Smith B., Howat I. M., Scambos T., Moon T. Greenland Flow Variability from Ice-Sheet-Wide Velocity Mapping. Journ. of Glaciology. 2010, 56: 415–430.
Johnsen S.J., Dahl-Jensen D., Gundestrup N., Steffensen J.P., Clausen H.B., Miller H., Masson-Delmotte V., Sveinbjörnsdottir A.E., White J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journ. of Quaternary Science. 2001, 16: 299–307.
Jouzel J., Alley R.B., Cuffey K.M., Dansgaard W., Grootes P., Hoffman G., Johnsen S.J., Koster R.D., Peel D., Shuman C.A., Stievenard M., Stuiver M., White J. Validity of the temperature reconstruction from water isotopes in ice cores. Journ. of Geophys. Research. 1997, 102: 26471–26487.
Leuschen C., Allen C. Gogineni P. Rodriguez F., Paden J., Li. J. IceBridge MCoRDS L3 Gridded Ice Thickness, Surface, and Bottom, 06.05.2011. National Snow and Ice Data Center: Boulder, Colorado USA. [Электронный ресурс] URL http://nsidc.org/data/irmcr3.html
Marshall S.J., Cuffey K.M. Peregrinations of the Greenland Ice Sheet divide through the last glacial cycle: implications for disturbance of central Greenland ice cores. Earth and Planetary Science Letters. 2000, 179: 73–90.
NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature. 2013, 495: 489–494.
North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 2004, 431: 147–151.
Otto-Bliesner B.L., Marshall S.J., Overpeck J.T., Miller G.H., Hu A. CAPE Last Interglacial Project members. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science. 2006, 311: 1751–1753.
Paterson W.S.B. The Physics of Glaciers. Oxford: Elsevier, 1994: 480 p.
Pattyn F. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. Journ. of Geophys. Research. 2003, 108. doi:10.1029/2002JB002329.
Pattyn F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth and Planetary Science Letters. 2010, 295: 451–461.
Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M.E., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399: 429–436.
Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes. Cambridge: Cambridge University Press, 1992: 963 p.
Robin G. de Q. Ice cores and climatic change. Philosophical Transactions of the Royal Society. Ser. B. 1977, 280: 143–168.
Rybak O., Huybrechts P. Sensitivity of the EDML ice core chronology to geothermal heat flux. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2008, 105: 35–40.
Rybak O., Huybrechts P. Ensemble simulations of the minimum configuration of the Greenland ice sheet during the Last Interglacial constrained by ice‐core data. Geophys. Research Abstracts. 2011, 13. EGU2011.
Shapiro N.M., Ritzwoller M. H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth and Planetary Science Letters. 2004, 223: 213–224.
Simpson M.J.R., Milne G.A., Huybrechts P., Long A.J. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews. 2009, 28: 1631–1657.
Steen-Larsen H.C., Masson-Delmotte V., Sjolte J., Johnsen S.J., Vinther B.M., Bréon F.-M., Clausen H.B., Dahl-Jensen D., Falourd S., Fettweis X., Gallée H., Jouzel J., Kageyama M., Lerche H., Minster B., Picard G., Punge H.J., Risi R., Salas D., Schwander J., Steffen K., Sveinbjörnsdóttir A.E. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. Journ. of Geophys. Research. 2011, 116. D06108. doi:10.1029/2010JD014311.
Vinther B.M, Buchardt S.L., Clausen H.B, Dahl-Jensen D., Johnsen S.J., Fisher D.A., Koerner R.M., Raynaud D., Lipenkov V., Andersen K.K., Blunier T., Rasmussen S.O., Steffensen J.P., Svensson A.M. Holocene thinning of the Greenland ice sheet. Nature. 2009, 461: 385–388.
https://ice-snow.igras.ru/jour/article/view/79
doi:10.15356/2076-6734-2013-1-16-25
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2013-1-16-25
https://doi.org/10.15356/2076-6734-2013-1
https://doi.org/10.1029/2003JF000065
https://doi.org/10.1029/2002JB002329
https://doi.org/10.1029/2010JD014311
container_title Ice and Snow
container_volume 121
container_issue 1
container_start_page 16
_version_ 1766003422907072512
spelling ftjias:oai:oai.ice.elpub.ru:article/79 2023-05-15T13:29:49+02:00 Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp Математическое моделирование течения льда в северо-западной части Гренландии и интерпретация данных глубокого бурения на станции NEEM O. Rybak O. J. Fürst J. Ph. Huybrechts О. Рыбак О. Й. Фюрст Я. Ф. Хёбрехтс 2015-03-30 https://ice-snow.igras.ru/jour/article/view/79 https://doi.org/10.15356/2076-6734-2013-1-16-25 ru rus IGRAS Kotlyakov V.M., Gordienko F.G. Izotopnaya i gekhimicheskaya glyatsiologiya. Isotope and geochemical glaciology. Leningrad: Hydrometeoizdat, 1982: 288 p. [In Russian]. Rybak O.O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Pt. 1. Description of model, arrangement of numerical experiments and modern dynamics of ice stream in the vicinity of Kohnen station. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2007, 102: 3–11. [In Russian]. Rybak O.O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Pt. 2. Post-experimental working of data. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2007, 103: 3–10. [In Russian]. Buchardt S.L., Dahl-Jensen D. At what depth is the Eemian layer expected to be found at NEEM? Annals of Glaciology. 2008, 48: 100–103. Fürst J.J., Rybak O., Goelzer H., De Smedt B., De Groen P., Huybrechts P. Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geoscientific Model Development. 2011, 4: 1133–1149. GRIP members. Climate instability during the last interglacial period in the GRIP ice core. Nature. 1993, 364: 203–207. Hindmarsh R.C.A. A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. Journ. of Geophys. Research. 2004, 109 (F1). doi:10.1029/2003JF000065. Hindmarsh R.C.A., Payne A.J. Time-step limits for stable solutions of the ice-sheet equation. Annals of Glaciology. 1996, 23: 74–85. Hutter K. Theoretical Glaciology: material science of ice and the mechanics of glaciers and ice sheets. Dordrecht: D. Reidel, 1983: 510 p. Huybrechts P. The Antarctic ice sheet and environmental change. Berichte zur Polarforschung. 1992, 99: 241 p. Huybrechts P. Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Annals of Glaciology. 1996, 23: 226–236. Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews. 2002, 21: 203–231. Huybrechts P., de Wolde J. The dynamic response of the Greenland and Antarctic Ice Sheets to Multiple-Century climatic warming. Journ. of Climate. 1999, 12:. P. 2169–2188. Huybrechts P., Rybak O., Pattyn F., Ruth U., Steinhage D. Ice thinning, upstream advection and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Climate of the Past. 2007, 3: 577–589. Hvidberg C.S., Keller K., Gundestrup N.S. Mass balance and ice flow along the north-northwest ridge of the Greenland ice sheet at NorthGRIP. Annals of Glaciology. 2002, 35: 521–526. Imbrie J.Z., Hays J.D., Martinson D.G., MacIntyre A., Mix A.C., Morley J.J., Pisias N.G., Prell W.L., Shackelton N.J. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Milankovitch and Climate. Ed. A. Berger, J.Z. Imbrie, J.D. Hays, G. Kukla, B. Saltzman. Dordrecht: D. Reidel, 1984: 269–305. Janssens I., Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet. Annals of Glaciology. 2000, 31: 133–140. Joughin I., Smith B., Howat I. M., Scambos T., Moon T. Greenland Flow Variability from Ice-Sheet-Wide Velocity Mapping. Journ. of Glaciology. 2010, 56: 415–430. Johnsen S.J., Dahl-Jensen D., Gundestrup N., Steffensen J.P., Clausen H.B., Miller H., Masson-Delmotte V., Sveinbjörnsdottir A.E., White J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journ. of Quaternary Science. 2001, 16: 299–307. Jouzel J., Alley R.B., Cuffey K.M., Dansgaard W., Grootes P., Hoffman G., Johnsen S.J., Koster R.D., Peel D., Shuman C.A., Stievenard M., Stuiver M., White J. Validity of the temperature reconstruction from water isotopes in ice cores. Journ. of Geophys. Research. 1997, 102: 26471–26487. Leuschen C., Allen C. Gogineni P. Rodriguez F., Paden J., Li. J. IceBridge MCoRDS L3 Gridded Ice Thickness, Surface, and Bottom, 06.05.2011. National Snow and Ice Data Center: Boulder, Colorado USA. [Электронный ресурс] URL http://nsidc.org/data/irmcr3.html Marshall S.J., Cuffey K.M. Peregrinations of the Greenland Ice Sheet divide through the last glacial cycle: implications for disturbance of central Greenland ice cores. Earth and Planetary Science Letters. 2000, 179: 73–90. NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature. 2013, 495: 489–494. North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 2004, 431: 147–151. Otto-Bliesner B.L., Marshall S.J., Overpeck J.T., Miller G.H., Hu A. CAPE Last Interglacial Project members. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science. 2006, 311: 1751–1753. Paterson W.S.B. The Physics of Glaciers. Oxford: Elsevier, 1994: 480 p. Pattyn F. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. Journ. of Geophys. Research. 2003, 108. doi:10.1029/2002JB002329. Pattyn F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth and Planetary Science Letters. 2010, 295: 451–461. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M.E., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399: 429–436. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes. Cambridge: Cambridge University Press, 1992: 963 p. Robin G. de Q. Ice cores and climatic change. Philosophical Transactions of the Royal Society. Ser. B. 1977, 280: 143–168. Rybak O., Huybrechts P. Sensitivity of the EDML ice core chronology to geothermal heat flux. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2008, 105: 35–40. Rybak O., Huybrechts P. Ensemble simulations of the minimum configuration of the Greenland ice sheet during the Last Interglacial constrained by ice‐core data. Geophys. Research Abstracts. 2011, 13. EGU2011. Shapiro N.M., Ritzwoller M. H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth and Planetary Science Letters. 2004, 223: 213–224. Simpson M.J.R., Milne G.A., Huybrechts P., Long A.J. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews. 2009, 28: 1631–1657. Steen-Larsen H.C., Masson-Delmotte V., Sjolte J., Johnsen S.J., Vinther B.M., Bréon F.-M., Clausen H.B., Dahl-Jensen D., Falourd S., Fettweis X., Gallée H., Jouzel J., Kageyama M., Lerche H., Minster B., Picard G., Punge H.J., Risi R., Salas D., Schwander J., Steffen K., Sveinbjörnsdóttir A.E. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. Journ. of Geophys. Research. 2011, 116. D06108. doi:10.1029/2010JD014311. Vinther B.M, Buchardt S.L., Clausen H.B, Dahl-Jensen D., Johnsen S.J., Fisher D.A., Koerner R.M., Raynaud D., Lipenkov V., Andersen K.K., Blunier T., Rasmussen S.O., Steffensen J.P., Svensson A.M. Holocene thinning of the Greenland ice sheet. Nature. 2009, 461: 385–388. https://ice-snow.igras.ru/jour/article/view/79 doi:10.15356/2076-6734-2013-1-16-25 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 53, № 1 (2013); 16-25 Лёд и Снег; Том 53, № 1 (2013); 16-25 2412-3765 2076-6734 10.15356/2076-6734-2013-1 Climatic variations;ice age;ice core;ice flow;ice sheet;isotopic composition of ice;mathematical model Вариации климата;возраст льда;изотопный состав льда;ледниковый щит;ледяной керн;математическая модель;течение льда info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2013-1-16-25 https://doi.org/10.15356/2076-6734-2013-1 https://doi.org/10.1029/2003JF000065 https://doi.org/10.1029/2002JB002329 https://doi.org/10.1029/2010JD014311 2022-12-20T13:30:26Z The new ice core obtained from the NEEM site in the north-western Greenland (77.449˚N, 51.056˚W, 2447 m a.s.l) in 2008–2012 was expected to improve our knowledge about the Last interglacial (also known as the Eemian, ca. 115 to 130 kyr before present). A numerical modeling, the overview of which is given in this paper, aims at assistance in interpretation of the NEEM ice core. For this purpose, an area of 400 × 400 km was delineated in northwestern Greenland as the domain for the fine-scale model at 2.5 km resolution. Modeled present-day surface velocity was in good agreement with satellite and GPS measurements. The nested ice-sheet model was run over the last two glacial cycles to reconstruct the flow history relevant for interpreting the NEEM ice core. A Lagrangian backtracing procedure was applied to determine the particle trajectories of the ice drilled at the NEEM site. This provides the places of origin at the time of deposition of NEEM ice, from which the ice chronology and non-climatic biases of the records are determined. The latter biases arise from elevation changes of the ice sheet, advection of higher upstream ice, and from latitudinal contrasts in isotopical composition of the ice. These need to be separated from the isotope records to retrieve the climatic signal. In spite of initial expectations, the segment in the NEEM ice core between 2206 m and 2435 m turned out to be heavily disturbed. The presence of high isotope values below 2206 m depth however reveals that there is ice from the previous warm interglacial. Our model locates the EMBED Equation.DSMT4 maximum of the warmest Eemian ice at the right depth (2400 m). On this basis we suggest that the measured contrast between the present and the Eemian EMBED Equation.DSMT4 must be increased by about 1.5 ‰. Most of this non-climatic bias results from upstream advection over an estimated distance of ~175 km. Except for the disturbed section, we are still confident to be able to provide accurate model-based estimates of the ice chronology and ... Article in Journal/Newspaper Annals of Glaciology Arctic Berichte zur Polarforschung Greenland ice core Ice Sheet Polarforschung Ice and Snow (E-Journal) Greenland Ice and Snow 121 1 16