Response of the Polar Urals glaciers to the modern climate changes

Monitoring of glacier mass balance is usually focused on analysis of middle and large glaciers, so small glaciers on the verge of extinction remain out of the attention of researchers. Studies of glaciers of the Polar Urals, begun in the mid-twentieth century, present in this respect interesting inf...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: G. Nosenko A., A. Muraviev Ya., M. Ivanov N., A. Sinitsky I., V. Kobelev O., S. Nikitin A., Г. Носенко А., А. Муравьев Я., М. Иванов Н., А. Синицкий И., В. Кобелев О., С. Никитин А.
Other Authors: Studies of changes in the size of glaciers on satellite imagery were conducted with the support of the RFBR grant No 18-05-60067 Arctic. Evaluation of the geodetic balance of the Igan glacier was carried out with the support of the RFBR grant No 17-55-80107-BRICS. The logistics of the expedition was carried out with the support of the NP Russian Center for the Development of the Arctic, Salekhard. ArcticDEM was provided by the Polar Geospatial Center under NSF OPP awards 1043681, 1559691 and 1542736. The data from the Sentinel-2 were provided by the European Space Agency. Temperatures and precipitations were obtained using Climate Reanalyzer (http://cci-reanalyzer.org), Climate Change Institute, University of Maine, USA., Исследования изменений размеров ледников по материалам спутниковых съёмок выполнялось при поддержке гранта РФФИ No 1805-60067 Арктика. Оценка геодезического баланса ледника ИГАН проводилась при поддержке гранта РФФИ No 17-55-80107-БРИКС-а. Логистическое обеспечение экспедиционных работ осуществлялось при поддержке НП «Российский Центр освоения Арктики», г. Салехард. ЦМР ArcticDEM предоставлена Полярным геопространственным центром в рамках заказов NSF OPP 1043681, 1559691 и 1542736, а данные с космического аппарата Sentinel-2 были предоставлены Европейским космическим агентством. Материалы о температуре и осадках на район исследований получены с использованием Climate Reanalyzer (http://cci-reanalyzer.org), Институт изменения климата, Университет Мэна, США.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2020
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/784
https://doi.org/10.31857/S2076673420010022
id ftjias:oai:oai.ice.elpub.ru:article/784
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic geodetic mass balance;glacier shrinkage;Polar Urals;satellite imagery
геодезический баланс массы;космические снимки;Полярный Урал;сокращение ледников
spellingShingle geodetic mass balance;glacier shrinkage;Polar Urals;satellite imagery
геодезический баланс массы;космические снимки;Полярный Урал;сокращение ледников
G. Nosenko A.
A. Muraviev Ya.
M. Ivanov N.
A. Sinitsky I.
V. Kobelev O.
S. Nikitin A.
Г. Носенко А.
А. Муравьев Я.
М. Иванов Н.
А. Синицкий И.
В. Кобелев О.
С. Никитин А.
Response of the Polar Urals glaciers to the modern climate changes
topic_facet geodetic mass balance;glacier shrinkage;Polar Urals;satellite imagery
геодезический баланс массы;космические снимки;Полярный Урал;сокращение ледников
description Monitoring of glacier mass balance is usually focused on analysis of middle and large glaciers, so small glaciers on the verge of extinction remain out of the attention of researchers. Studies of glaciers of the Polar Urals, begun in the mid-twentieth century, present in this respect interesting information. The series of observations of them is the longest among other glaciers of the mountainous regions of the Russian mainland in the polar latitudes. New results of quantitative assessment of changes in the size and mass balance of glaciers in this region are presented. To estimate the geodetic balance of the IGAN Glacier, data from photogeodetic surveys of 1963, data of ground-based DGPS surveys of 2008 and 2018 together with a fragment of the digital elevation model (DEM) of the ArcticDEM v3.0 of 2016 were used. Using these data, the DEM of its surface was calculated as of 1963, 2008, and 2018, and the changes in the glacier volume were estimated for the period from 1963 to 2018, during which the glacier had lost 19.7 million m3 of ice, of which 3.2 million m3 were lost in the last decade. The average decrease in the surface height was 18.94±3.22 m, and the maximum – 53.5±1.0 m. In 1963–2008, the specific massbalance was equal to −317±59 mm w.e./year, while in 2008–2018 −336±61 mm/year. Estimation of changes in the size of 30 glaciers of the Polar Urals made from images of the Sentinel-2 satellite had shown that in 2000– 2018 the glaciers lost 2.02 km2 (about 28%) of the area. In comparison with the period of 1953–2000, the average annual rate of reduction of their area doubled and amounted to 0.112 km2/year (1.54%/year). Magnitudes of the reduction of individual glaciers are not identical. Within the selection of 30 glaciers, they vary from 7.1% (the Terentyev Glacier) to 61.1% (the Oleniy Glacier). The analysis of changes in temperature and precipitation in 2000–2018 allows us making the conclusion that the reason for the accelerated reduction of glaciers in the Polar Urals in these years is the rise of ...
author2 Studies of changes in the size of glaciers on satellite imagery were conducted with the support of the RFBR grant No 18-05-60067 Arctic. Evaluation of the geodetic balance of the Igan glacier was carried out with the support of the RFBR grant No 17-55-80107-BRICS. The logistics of the expedition was carried out with the support of the NP Russian Center for the Development of the Arctic, Salekhard. ArcticDEM was provided by the Polar Geospatial Center under NSF OPP awards 1043681, 1559691 and 1542736. The data from the Sentinel-2 were provided by the European Space Agency. Temperatures and precipitations were obtained using Climate Reanalyzer (http://cci-reanalyzer.org), Climate Change Institute, University of Maine, USA.
Исследования изменений размеров ледников по материалам спутниковых съёмок выполнялось при поддержке гранта РФФИ No 1805-60067 Арктика. Оценка геодезического баланса ледника ИГАН проводилась при поддержке гранта РФФИ No 17-55-80107-БРИКС-а. Логистическое обеспечение экспедиционных работ осуществлялось при поддержке НП «Российский Центр освоения Арктики», г. Салехард. ЦМР ArcticDEM предоставлена Полярным геопространственным центром в рамках заказов NSF OPP 1043681, 1559691 и 1542736, а данные с космического аппарата Sentinel-2 были предоставлены Европейским космическим агентством. Материалы о температуре и осадках на район исследований получены с использованием Climate Reanalyzer (http://cci-reanalyzer.org), Институт изменения климата, Университет Мэна, США.
format Article in Journal/Newspaper
author G. Nosenko A.
A. Muraviev Ya.
M. Ivanov N.
A. Sinitsky I.
V. Kobelev O.
S. Nikitin A.
Г. Носенко А.
А. Муравьев Я.
М. Иванов Н.
А. Синицкий И.
В. Кобелев О.
С. Никитин А.
author_facet G. Nosenko A.
A. Muraviev Ya.
M. Ivanov N.
A. Sinitsky I.
V. Kobelev O.
S. Nikitin A.
Г. Носенко А.
А. Муравьев Я.
М. Иванов Н.
А. Синицкий И.
В. Кобелев О.
С. Никитин А.
author_sort G. Nosenko A.
title Response of the Polar Urals glaciers to the modern climate changes
title_short Response of the Polar Urals glaciers to the modern climate changes
title_full Response of the Polar Urals glaciers to the modern climate changes
title_fullStr Response of the Polar Urals glaciers to the modern climate changes
title_full_unstemmed Response of the Polar Urals glaciers to the modern climate changes
title_sort response of the polar urals glaciers to the modern climate changes
publisher IGRAS
publishDate 2020
url https://ice-snow.igras.ru/jour/article/view/784
https://doi.org/10.31857/S2076673420010022
long_lat ENVELOPE(73.317,73.317,-52.983,-52.983)
ENVELOPE(87.951,87.951,67.489,67.489)
geographic The Sentinel
Oleniy
geographic_facet The Sentinel
Oleniy
genre Annals of Glaciology
The Cryosphere
Полярный Урал
genre_facet Annals of Glaciology
The Cryosphere
Полярный Урал
op_source Ice and Snow; Том 60, № 1 (2020); 42-57
Лёд и Снег; Том 60, № 1 (2020); 42-57
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/784/505
Rabatel A., Francou B., Soruco A., Gomez J., Cáceres B., Ceballos J.L., Basantes R., Vuille M., Sicart J.-E., Huggel C., Scheel M., Lejeune Y., Arnaud Y., Collet M., Condom T., Consoli G., Favier V., Jomelli V., Galarraga R., Ginot P., Maisincho L., Mendoza J., Ménégoz M., Ramirez E., Ribstein P., Suarez W., Villacis M., Wagnon P. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change // The Cryosphere. 2013. No 7. Р. 81– 102. doi:10.5194/tc-7-81-2013.
Prinz R., Heller A., Ladne M., Nicholson L.I., Kaser G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers // Geosciences. 2018. V. 8. Is. 5. P. 174–188. https://doi.org/10.3390/geosciences8050174.
Электронный ресурс: https://phys.org/news/201007-scientist-indonesia-dying-glacier.html.
López-Moreno J.I., Alonso-González E., Monserrat O., Del Río L.M., Otero J., Lapazaran J., Luzi G., Dematteis N., Serreta A., Rico I., Serrano-Cañadas E., Bartolomé M., Moreno A., Buisan S., Revuelto J. Groundbased remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees // Journ. of Glaciology. 2019. V. 65. No 249. P. 85–100. https://doi.org/10.1017/jog.2018.96
Charalampidis C., Fischer A., Kuhn M., Lambrecht A., Mayer C., Thomaidis K., Weber M. Mass-Budget Anomalies and Geometry Signals of Three Austrian Glaciers // Front. Earth Sci. 2018. V. 6. Is. 218. P. 1–17. doi:10.3389/feart.2018.00218.
Paul F., Kääb A., Maisch M., Kellenberger T., Haeberli W. Rapid disintegration of Alpine glaciers observed with satellite data // Geophys. Research Letters. 2004. V. 31: L21402. doi:10.1029/2004GL020816.
Oerlemans J., Anderson B., Hubbard A., Huybrechts Ph., Johannesson T., Knap W.H., Schmeits M., Stroeven A.P., van de Wal R.S.W., Wallinga J., Zuo Z. Modelling the response of glaciers to climate warming // Climate Dynamics. 1998. V. 14. No 4. P. 267–274.
Debeer C.M., Sharp M.J. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada // Journ. of Glaciology. V. 55. No 192. P. 691–700. doi:10.3189/002214309789470851.
Huss M., Fischer M. Sensitivity of very small glaciers in the Swiss Alps to future climate change // Front. Earth Sci. 2016. V. 4. Is. 34. P. 1–17. doi:10.3389/feart.2016.00034.
Global Glacier Change Bulletin No. 2 (2014–2015) / Eds.: Zemp M., Nussbaumer S.U., Gärtner-Roer I., Huber J., Machguth H., Paul F., Hoelzle M. Zurich: World Glacier Monitoring Service, 2017. 244 p. doi:10.5904/wgms-fog-2017-10.
Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers // Journ. of Glaciology. 2014. V. 60. P. 537– 552. doi:10.3189/2014JoG13J176.
Fischer M., Huss M., Kummert M., Hoelzle M. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps // The Cryosphere. 2016. Is. 10. P. 1279–1295. https://doi.org/10.5194/tc-101279-2016.
Троицкий Л.С., Ходаков В.Г., Михалев В.И., Гуськов А.С., Лебедева И.М., Адаменко В.Н., Живкович Л.А. Оледенение Урала. М.: Наука, 1966. 355 с.
Волошина А.П. Некоторые итоги исследований баланса массы ледников Полярного Урала // МГИ. 1988. Вып. 61. С. 44–51.
Цветков Д.Г. 10 лет фотогеодезических работ на ледниках Полярного Урала (Опыт наземной съёмки и составления планов малых ледников с приложением топокарт ледников ИГАН и Обручева в масштабе 1:5000) // МГИ. 1970. Вып. 16. С. 245–257.
Nosenko G., Tsvetkov D. Assessment of glaciers change on Polar Urals from ASTER imagery // Glaciological Data. In: NSIDC. 2003. Report GD-32. P. 80–82.
Zemp M., Frey H., Gärtnerroer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger, Ahlstrøm A.P., Anderson B. Historically unprecedented global glacier decline in the early 21st 312 century // Journ. of Glaciology. 2015. V. 61. Is. 228. P. 745–762. doi:10.3189/2015JoG15J017.
Shahgedanova M., Nosenko G., Bushueva I., Ivanov M. Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia 1950–2008 // Journ. of Glaciology. 2012. V. 58. No 211. Р. 953–964. doi:10.3189/2012JoG11J233.
Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume Changes of Elbrus Glaciers From 1997 to 2017 // Front. Earth Sci. 2019. V. 7. Is. 153. P. 1–16. doi:10.3389/feart.2019.00153.
Каталог ледников СССР. Т. 3. Северный Край. Ч. 3 Урал. Л.: Гидрометеоиздат, 1966. 52 с.
Электронный ресурс: http://ecm.um.maine.edu/reanalysis/monthly_tseries/
Электронный ресурс: SENTINEL 2 Data Quality Report. ESA. Ref. S2-PDGS-MPC-DQR. Is. 41.03/07/2019 https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report.
Porter C., Morin P., Howat I., Noh M.-J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M. Jr., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojesen M. «ArcticDEM», 2018. https://doi.org/10.7910/DVN/OHHUKH, Harvard Dataverse, V1.
Электронный ресурс: https://www.pgc.umn.edu/guides/arcticdem/data-description/.
Инструкция по фотограмметрическим работам при создании топографических карт и планов. М.: Недра, 1974. 23 с.
Fischer A. Comparison of direct and geodetic mass balances on a multi-annual time scale // The Cryosphere. 2011. V. 5. No 1. P. 107–124. doi:10.5194/tc5-107-2011.
Thibert E., Blanc R., Vincent C., Eckert N. Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps // Journ. of Glaciology. 2008. V. 54 (186). P. 522–532. doi:10.3189/002214308785837093.
Arendt A.A., Echelmeyer K.A., Harrison W.D., Lingle C.S., Valentine V.B. Rapid wastage of Alaska glaciers and their contribution to rising sea level // Science. 2002. V. 297. P. 382–386. doi:10.1126/science.1072497.
Cogley J.G. Geodetic and direct mass-balance measurements: comparison and joint analysis // Annals of Glaciology. 2009. V. 50 (50). P. 96–100. doi:10.3189/172756409787769744.
Zemp M., Jansson P., Holmlund P., Gartner-Roer I., Koblet T., Thee P., Haeberli W. Reanalysis of multitemporal aerial images of StorglaciaЁren, Sweden (1959–99). Part 2: Comparison of glaciological and volumetric mass balances // The Cryosphere. 2010. V. 4. No 3. P. 345–357. doi:10.5194/tc-4-345-2010.
Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory // The Cryosphere. 2018. V. 12. P. 81– 94. doi:10.5194/tc-12-81-2018.
https://ice-snow.igras.ru/jour/article/view/784
doi:10.31857/S2076673420010022
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.31857/S2076673420010022
https://doi.org/10.5194/tc-7-81-2013
https://doi.org/10.3390/geosciences8050174
https://doi.org/10.1017/jog.2018.96
https://doi.org/10.3389/feart.2018.00218
https://doi.org/10.1029/2004GL020816
https:
container_title Ice and Snow
container_volume 60
container_issue 1
container_start_page 42
op_container_end_page 57
_version_ 1766003847187136512
spelling ftjias:oai:oai.ice.elpub.ru:article/784 2023-05-15T13:29:51+02:00 Response of the Polar Urals glaciers to the modern climate changes Реакция ледников Полярного Урала на современные изменения климата G. Nosenko A. A. Muraviev Ya. M. Ivanov N. A. Sinitsky I. V. Kobelev O. S. Nikitin A. Г. Носенко А. А. Муравьев Я. М. Иванов Н. А. Синицкий И. В. Кобелев О. С. Никитин А. Studies of changes in the size of glaciers on satellite imagery were conducted with the support of the RFBR grant No 18-05-60067 Arctic. Evaluation of the geodetic balance of the Igan glacier was carried out with the support of the RFBR grant No 17-55-80107-BRICS. The logistics of the expedition was carried out with the support of the NP Russian Center for the Development of the Arctic, Salekhard. ArcticDEM was provided by the Polar Geospatial Center under NSF OPP awards 1043681, 1559691 and 1542736. The data from the Sentinel-2 were provided by the European Space Agency. Temperatures and precipitations were obtained using Climate Reanalyzer (http://cci-reanalyzer.org), Climate Change Institute, University of Maine, USA. Исследования изменений размеров ледников по материалам спутниковых съёмок выполнялось при поддержке гранта РФФИ No 1805-60067 Арктика. Оценка геодезического баланса ледника ИГАН проводилась при поддержке гранта РФФИ No 17-55-80107-БРИКС-а. Логистическое обеспечение экспедиционных работ осуществлялось при поддержке НП «Российский Центр освоения Арктики», г. Салехард. ЦМР ArcticDEM предоставлена Полярным геопространственным центром в рамках заказов NSF OPP 1043681, 1559691 и 1542736, а данные с космического аппарата Sentinel-2 были предоставлены Европейским космическим агентством. Материалы о температуре и осадках на район исследований получены с использованием Climate Reanalyzer (http://cci-reanalyzer.org), Институт изменения климата, Университет Мэна, США. 2020-04-04 application/pdf https://ice-snow.igras.ru/jour/article/view/784 https://doi.org/10.31857/S2076673420010022 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/784/505 Rabatel A., Francou B., Soruco A., Gomez J., Cáceres B., Ceballos J.L., Basantes R., Vuille M., Sicart J.-E., Huggel C., Scheel M., Lejeune Y., Arnaud Y., Collet M., Condom T., Consoli G., Favier V., Jomelli V., Galarraga R., Ginot P., Maisincho L., Mendoza J., Ménégoz M., Ramirez E., Ribstein P., Suarez W., Villacis M., Wagnon P. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change // The Cryosphere. 2013. No 7. Р. 81– 102. doi:10.5194/tc-7-81-2013. Prinz R., Heller A., Ladne M., Nicholson L.I., Kaser G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers // Geosciences. 2018. V. 8. Is. 5. P. 174–188. https://doi.org/10.3390/geosciences8050174. Электронный ресурс: https://phys.org/news/201007-scientist-indonesia-dying-glacier.html. López-Moreno J.I., Alonso-González E., Monserrat O., Del Río L.M., Otero J., Lapazaran J., Luzi G., Dematteis N., Serreta A., Rico I., Serrano-Cañadas E., Bartolomé M., Moreno A., Buisan S., Revuelto J. Groundbased remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees // Journ. of Glaciology. 2019. V. 65. No 249. P. 85–100. https://doi.org/10.1017/jog.2018.96 Charalampidis C., Fischer A., Kuhn M., Lambrecht A., Mayer C., Thomaidis K., Weber M. Mass-Budget Anomalies and Geometry Signals of Three Austrian Glaciers // Front. Earth Sci. 2018. V. 6. Is. 218. P. 1–17. doi:10.3389/feart.2018.00218. Paul F., Kääb A., Maisch M., Kellenberger T., Haeberli W. Rapid disintegration of Alpine glaciers observed with satellite data // Geophys. Research Letters. 2004. V. 31: L21402. doi:10.1029/2004GL020816. Oerlemans J., Anderson B., Hubbard A., Huybrechts Ph., Johannesson T., Knap W.H., Schmeits M., Stroeven A.P., van de Wal R.S.W., Wallinga J., Zuo Z. Modelling the response of glaciers to climate warming // Climate Dynamics. 1998. V. 14. No 4. P. 267–274. Debeer C.M., Sharp M.J. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada // Journ. of Glaciology. V. 55. No 192. P. 691–700. doi:10.3189/002214309789470851. Huss M., Fischer M. Sensitivity of very small glaciers in the Swiss Alps to future climate change // Front. Earth Sci. 2016. V. 4. Is. 34. P. 1–17. doi:10.3389/feart.2016.00034. Global Glacier Change Bulletin No. 2 (2014–2015) / Eds.: Zemp M., Nussbaumer S.U., Gärtner-Roer I., Huber J., Machguth H., Paul F., Hoelzle M. Zurich: World Glacier Monitoring Service, 2017. 244 p. doi:10.5904/wgms-fog-2017-10. Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers // Journ. of Glaciology. 2014. V. 60. P. 537– 552. doi:10.3189/2014JoG13J176. Fischer M., Huss M., Kummert M., Hoelzle M. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps // The Cryosphere. 2016. Is. 10. P. 1279–1295. https://doi.org/10.5194/tc-101279-2016. Троицкий Л.С., Ходаков В.Г., Михалев В.И., Гуськов А.С., Лебедева И.М., Адаменко В.Н., Живкович Л.А. Оледенение Урала. М.: Наука, 1966. 355 с. Волошина А.П. Некоторые итоги исследований баланса массы ледников Полярного Урала // МГИ. 1988. Вып. 61. С. 44–51. Цветков Д.Г. 10 лет фотогеодезических работ на ледниках Полярного Урала (Опыт наземной съёмки и составления планов малых ледников с приложением топокарт ледников ИГАН и Обручева в масштабе 1:5000) // МГИ. 1970. Вып. 16. С. 245–257. Nosenko G., Tsvetkov D. Assessment of glaciers change on Polar Urals from ASTER imagery // Glaciological Data. In: NSIDC. 2003. Report GD-32. P. 80–82. Zemp M., Frey H., Gärtnerroer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger, Ahlstrøm A.P., Anderson B. Historically unprecedented global glacier decline in the early 21st 312 century // Journ. of Glaciology. 2015. V. 61. Is. 228. P. 745–762. doi:10.3189/2015JoG15J017. Shahgedanova M., Nosenko G., Bushueva I., Ivanov M. Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia 1950–2008 // Journ. of Glaciology. 2012. V. 58. No 211. Р. 953–964. doi:10.3189/2012JoG11J233. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume Changes of Elbrus Glaciers From 1997 to 2017 // Front. Earth Sci. 2019. V. 7. Is. 153. P. 1–16. doi:10.3389/feart.2019.00153. Каталог ледников СССР. Т. 3. Северный Край. Ч. 3 Урал. Л.: Гидрометеоиздат, 1966. 52 с. Электронный ресурс: http://ecm.um.maine.edu/reanalysis/monthly_tseries/ Электронный ресурс: SENTINEL 2 Data Quality Report. ESA. Ref. S2-PDGS-MPC-DQR. Is. 41.03/07/2019 https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report. Porter C., Morin P., Howat I., Noh M.-J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M. Jr., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojesen M. «ArcticDEM», 2018. https://doi.org/10.7910/DVN/OHHUKH, Harvard Dataverse, V1. Электронный ресурс: https://www.pgc.umn.edu/guides/arcticdem/data-description/. Инструкция по фотограмметрическим работам при создании топографических карт и планов. М.: Недра, 1974. 23 с. Fischer A. Comparison of direct and geodetic mass balances on a multi-annual time scale // The Cryosphere. 2011. V. 5. No 1. P. 107–124. doi:10.5194/tc5-107-2011. Thibert E., Blanc R., Vincent C., Eckert N. Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps // Journ. of Glaciology. 2008. V. 54 (186). P. 522–532. doi:10.3189/002214308785837093. Arendt A.A., Echelmeyer K.A., Harrison W.D., Lingle C.S., Valentine V.B. Rapid wastage of Alaska glaciers and their contribution to rising sea level // Science. 2002. V. 297. P. 382–386. doi:10.1126/science.1072497. Cogley J.G. Geodetic and direct mass-balance measurements: comparison and joint analysis // Annals of Glaciology. 2009. V. 50 (50). P. 96–100. doi:10.3189/172756409787769744. Zemp M., Jansson P., Holmlund P., Gartner-Roer I., Koblet T., Thee P., Haeberli W. Reanalysis of multitemporal aerial images of StorglaciaЁren, Sweden (1959–99). Part 2: Comparison of glaciological and volumetric mass balances // The Cryosphere. 2010. V. 4. No 3. P. 345–357. doi:10.5194/tc-4-345-2010. Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory // The Cryosphere. 2018. V. 12. P. 81– 94. doi:10.5194/tc-12-81-2018. https://ice-snow.igras.ru/jour/article/view/784 doi:10.31857/S2076673420010022 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 60, № 1 (2020); 42-57 Лёд и Снег; Том 60, № 1 (2020); 42-57 2412-3765 2076-6734 geodetic mass balance;glacier shrinkage;Polar Urals;satellite imagery геодезический баланс массы;космические снимки;Полярный Урал;сокращение ледников info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjias https://doi.org/10.31857/S2076673420010022 https://doi.org/10.5194/tc-7-81-2013 https://doi.org/10.3390/geosciences8050174 https://doi.org/10.1017/jog.2018.96 https://doi.org/10.3389/feart.2018.00218 https://doi.org/10.1029/2004GL020816 https: 2022-12-20T13:29:52Z Monitoring of glacier mass balance is usually focused on analysis of middle and large glaciers, so small glaciers on the verge of extinction remain out of the attention of researchers. Studies of glaciers of the Polar Urals, begun in the mid-twentieth century, present in this respect interesting information. The series of observations of them is the longest among other glaciers of the mountainous regions of the Russian mainland in the polar latitudes. New results of quantitative assessment of changes in the size and mass balance of glaciers in this region are presented. To estimate the geodetic balance of the IGAN Glacier, data from photogeodetic surveys of 1963, data of ground-based DGPS surveys of 2008 and 2018 together with a fragment of the digital elevation model (DEM) of the ArcticDEM v3.0 of 2016 were used. Using these data, the DEM of its surface was calculated as of 1963, 2008, and 2018, and the changes in the glacier volume were estimated for the period from 1963 to 2018, during which the glacier had lost 19.7 million m3 of ice, of which 3.2 million m3 were lost in the last decade. The average decrease in the surface height was 18.94±3.22 m, and the maximum – 53.5±1.0 m. In 1963–2008, the specific massbalance was equal to −317±59 mm w.e./year, while in 2008–2018 −336±61 mm/year. Estimation of changes in the size of 30 glaciers of the Polar Urals made from images of the Sentinel-2 satellite had shown that in 2000– 2018 the glaciers lost 2.02 km2 (about 28%) of the area. In comparison with the period of 1953–2000, the average annual rate of reduction of their area doubled and amounted to 0.112 km2/year (1.54%/year). Magnitudes of the reduction of individual glaciers are not identical. Within the selection of 30 glaciers, they vary from 7.1% (the Terentyev Glacier) to 61.1% (the Oleniy Glacier). The analysis of changes in temperature and precipitation in 2000–2018 allows us making the conclusion that the reason for the accelerated reduction of glaciers in the Polar Urals in these years is the rise of ... Article in Journal/Newspaper Annals of Glaciology The Cryosphere Полярный Урал Ice and Snow (E-Journal) The Sentinel ENVELOPE(73.317,73.317,-52.983,-52.983) Oleniy ENVELOPE(87.951,87.951,67.489,67.489) Ice and Snow 60 1 42 57