Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya

We have determined the surface-elevation change rates of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, for two different periods: 2004–2016 and 2012/2013–2016. The former was calculated from differencing of ICESat and ArcticDEM digital elevation models, while the latter was obta...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: F. Navarro J., P. Sánchez-Gámez, A. Glazovsky F., C. Recio-Blitz, А. Глазовский Ф.
Other Authors: This study has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727890 and from Agencia Estatal de Investig- ación under grant CTM2017-84441-R of the Spanish Estate Plan for R & D. Support to AG by the Russian Fund for Basic Research grant 18-05-60109 is also acknowledged. DEMs were provided by the Polar Geospatial Center under NSF OPP awards 1043681, 1559691 and 1542736.
Format: Article in Journal/Newspaper
Language:English
Published: IGRAS 2020
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/781
https://doi.org/10.31857/S2076673420010021
id ftjias:oai:oai.ice.elpub.ru:article/781
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language English
topic Arctic;glacier mass balance;ice cap;ice surface-elevation change;Severnaya Zemlya
Арктика;баланс массы ледника;изменения высоты ледниковой поверхности;ледниковый купол;Северная Земля
spellingShingle Arctic;glacier mass balance;ice cap;ice surface-elevation change;Severnaya Zemlya
Арктика;баланс массы ледника;изменения высоты ледниковой поверхности;ледниковый купол;Северная Земля
F. Navarro J.
P. Sánchez-Gámez
A. Glazovsky F.
C. Recio-Blitz
А. Глазовский Ф.
Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya
topic_facet Arctic;glacier mass balance;ice cap;ice surface-elevation change;Severnaya Zemlya
Арктика;баланс массы ледника;изменения высоты ледниковой поверхности;ледниковый купол;Северная Земля
description We have determined the surface-elevation change rates of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, for two different periods: 2004–2016 and 2012/2013–2016. The former was calculated from differencing of ICESat and ArcticDEM digital elevation models, while the latter was obtained by differencing two sets of ArcticDEM digital elevation models. From these surface-elevation change rates we obtained the geodetic mass balance, which was nearly identical for both periods, at −1,72±0,67 Gt a−1, equivalent to −0,31±0,12 m w.e. a−1 over the whole ice cap area. Using an independent estimate of frontal ablation for 2016−2017 of −1,93±0,12 Gt a−1 (−0,31±0,12 m w.e. a−1), we get an estimate of the climatic mass balance not significantly different from zero, at 0,21±0,68 Gt a−1 (0,04±0,13 m w.e. a−1), which agrees with the near-zero average balance at a decadal scale observed during the last four decades. Making an observationally-based assumption on accumulation rate, we estimate the current total ablation from the ice cap, and its partitioning between frontal ablation, dominated by calving (~54%) and climatic mass balance, mostly surface ablation (~46%). На основе разновременных ЦМР установлены скорости изменения высоты поверхности ледникового купола Академии Наук на Северной Земле за два периода: 2004−2016 и 2012/2013−2016 гг. и определён геодезический баланс его массы (−1,72±0,67 Гт/год). Сделан расчёт климатического баланса массы (0,21±0,68 Гт/год) и полной абляции (−3,18 Гт/год) ледника, где на отёл приходится ≈54%, а на поверхностную абляцию – ≈46%.
author2 This study has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727890 and from Agencia Estatal de Investig- ación under grant CTM2017-84441-R of the Spanish Estate Plan for R & D. Support to AG by the Russian Fund for Basic Research grant 18-05-60109 is also acknowledged. DEMs were provided by the Polar Geospatial Center under NSF OPP awards 1043681, 1559691 and 1542736.
format Article in Journal/Newspaper
author F. Navarro J.
P. Sánchez-Gámez
A. Glazovsky F.
C. Recio-Blitz
А. Глазовский Ф.
author_facet F. Navarro J.
P. Sánchez-Gámez
A. Glazovsky F.
C. Recio-Blitz
А. Глазовский Ф.
author_sort F. Navarro J.
title Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_short Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_full Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_fullStr Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_full_unstemmed Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_sort surface-elevation changes and mass balance of the academy of sciences ice cap, severnaya zemlya
publisher IGRAS
publishDate 2020
url https://ice-snow.igras.ru/jour/article/view/781
https://doi.org/10.31857/S2076673420010021
long_lat ENVELOPE(98.000,98.000,79.500,79.500)
geographic Arctic
Severnaya Zemlya
geographic_facet Arctic
Severnaya Zemlya
genre Annals of Glaciology
Antarctic and Alpine Research
Arctic
Arctic
Ice cap
Severnaya Zemlya
The Cryosphere
Арктика
genre_facet Annals of Glaciology
Antarctic and Alpine Research
Arctic
Arctic
Ice cap
Severnaya Zemlya
The Cryosphere
Арктика
op_source Ice and Snow; Том 60, № 1 (2020); 29-41
Лёд и Снег; Том 60, № 1 (2020); 29-41
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/781/501
Pfeffer W., Anthony A., Bliss A., Bolch T., Cogley G., Gardner A., Ove Hagen J., Hock R., Kaser G., Kienholz C., Miles E., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B., Rich J., Sharp M., The Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Glaciology. 2014, 60: 537–552. doi:10.3189/2014JoG13J176.
Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journ. of Geophys. Research: Earth Surface. 2012, 117: 1–10. doi:10.1029/2012jf002523.
Hartmann D., Klein Tank A., Rusticucci M., Alexander L., Brönnimann S., Charabi Y., Dentener F., Dlugokencky E., Easterling D., Kaplan A., Soden B., Thorne P., Wild M., Zhai P. Intergovernmental Panel on Climate Change 2013. Observations: Atmosphere and Surface. In: The Physical Science Basis: Working Group I. Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2013: 159–254. doi:10.1017/CBO9781107415324.008.
Gardner A., Moholdt G., Cogley J., Wouters B., Arendt A., Wahr J., Berthier E., Hock R., Pfeffer W., Kaser G., Ligtenberg S., Bolch T., Sharp M., Ove Hagen J., van den Broeke M., Paul F. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science. 2013, 340: 852–857. doi:10.1126/science.1234532.
Radić V., Bliss A., Beedlow C., Hock R., Miles E., Cogley G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics. 2013, 42: 37–58. doi:10.1007/s00382-013-1719-7.
Huss M., Hock R. A new model for global glacier change and sea-level rise. Frontiers in Earth Science. 2015, 3: 1–22. doi:10.3389/feart.2015.00054.
Moholdt G., Wouters B., Gardner A. Recent mass changes of glaciers in the Russian High Arctic. Geophys. Research Letters. 2012, 39: 1–5. doi:10.1029/2012gl051466.
Jacob T., Wahr J., Pfeffer W., Swenson S. Recent contributions of glaciers and ice caps to sea level rise. Nature. 2012, 482: 514–518. doi:10.1038/nature10847.
Matsuo K., Heki K. Current ice loss in small glacier systems of the Arctic islands (Iceland, Svalbard, and the Russian High Arctic) from satellite gravimetry. Terrestrial Atmospheric and Oceanic Sciences. 2013, 24: 657–670. doi:10.3319/tao.2013.02.22.01(tibxs).
Svendsen J., Gataullin V., Mangerud J., Polyak L. The glacial history of the Barents and Kara sea region. In Developments in Quaternary Sciences. Elsevier, 2004:369–378. doi:10.1016/s1571-0866(04)80086-1.
Carr J., Stokes C., Vieli A. Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. Journ. of Glaciology. 2014, 60: 155–170. doi:10.3189/2014jog13j122.
Melkonian A., Willis M., Pritchard M., Stewart A. Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment. 2016, 174: 244–257. doi:10.1016/j.rse.2015.11.001.
Carr J., Bell H., Killick R., Holt T. Exceptional retreat of Novaya Zemlya’s marine-terminating outlet glaciers between 2000 and 2013. The Cryosphere. 2017, 11: 2149–2174. doi:10.5194/tc-11-2149-2017.
Bassford R., Siegert M., Dowdeswell J., Oerlemans J., Glazovsky A., Macheret Y. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. I: climate and mass balance of the Vavilov Ice Cap. Arctic, Antarctic, and Alpine Research. 2006, 38: 1–12. doi:10.1657/1523-0430(2006)038[0001:qtmboi]2.0.co;2.
Bassford R., Siegert M., Dowdeswell J. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. II: modeling the flow of the Vavilov Ice Cap under the present climate. Arctic, Antarctic, and Alpine Research. 2006, 38: 13–20. doi:10.1657/1523-0430(2006)038[0013:qtmboi]2.0.co;2.
Bassford R., Siegert M., Dowdeswell J. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. III: sensitivity of Ice Caps in Severnaya Zemlya to future climate change. Arctic, Antarctic, and Alpine Research. 2006, 38: 21–33. doi:10.1657/1523-0430(2006)038[0021:qtmboi]2.0.co;2.
Zheng W., Pritchard M., Willis M., Tepes Paul., Gourmelen N., Benham T., Dowdeswell J. Accelerating glacier mass loss on Franz Josef Land, Russian Arctic. Remote Sensing of Environment. 2018, 211: 357–375. doi:10.1016/j.rse.2018.04.004.
Sánchez-Gámez P., Navarro F., Benham T., Glazovsky A., Bassford R., Dowdeswell J. Intraand inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance. Journ. of Glaciology. 2019, 65 (253): 780−797. doi:10.1017/jog.2019.58.
Sánchez-Gámez P., Navarro F.J., Dowdeswell J.A., De Andrés E. Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya. Led i Sneg. Ice and Snow. 2020, 60 (1): 19–28. doi:10.31857/S2076673420010020
Alexandrov E., Radionov V., Svyashchennikov P. Snow cover thickness and its measurement in Barents and Kara seas. In: Research of climate change and interaction processes between ocean and atmosphere in polar regions. Trudy of the Arctic and Antarctic Research Institute: St. Petersburg, 2003, 446: 99−118. [In Russian].
Bolshiyanov D., Makeyev V. Arkhipelag Severnaya Zemlya: Oledeneniye, Istoriya Razvitiya Prirodnoy Sredy. Severnaya Zemlya Archipelago: Glaciation and Historical Development of the Natural Environment. St. Petersburg: Gidrometeoizdat, 1995: 216 p. [In Russian].
Zhao M., Ramage J., Semmens K., Obleitner F. Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent. Environmental Research Letters. 2014, 9: 045009. doi:10.1088/1748-9326/9/4/045009.
Dowdeswell J., Bassford R., Gorman M., Williams M., Glazovsky A., Macheret Y., Shepherd A., Vasilenko Y., Savatyuguin L., Hubberten H., Miller H. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. Journ. of Geophys. Research. 2002, 107: 1–16. doi:10.1029/2000jb000129.
Dowdeswell J., Ove Hagen J., Björnsson H., Glazovsky A., Harrison W., Holmlund P., Jania J., Koerner R., Lefauconnier B., Ommanney S., Thomas R. The mass balance of Circum-Arctic glaciers and recent climate change. Quaternary Research. 1997, 48: 1–14. doi:10.1006/qres.1997.1900.
Kalnay E. and 21 others. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society. 1996, 77(3): 437–472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Opel T., Fritzsche D., Meyer H., Schütt R., Weiler K., Ruth U., Wilhelms F., Fischer H. 115 year ice-core data from Akademii Nauk Ice Cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change. Journ. of Glaciology. 2009, 55: 21–31. doi:10.3189/002214309788609029.
Kuhn M. Severnaja automatic weather station data (Severnaja Zemlja). In: The response of Arctic ice mass to climate change (ICEMASS). Third year report (January–December 2000). European Commission, Framework IV, Environment and Climate Research Programme (DG XII), contract ENV4-CT970490. Oslo, University of Oslo. 2000, 7-8–7-14.
Fritzsche D., Schütt R., Meyer H., Miller H., Wilhelms F., Opel T., Savatyugin L. A 275 year ice-core record from Akademii Nauk Ice Cap, Severnaya Zemlya, Russian Arctic. Annals of Glaciology. 2005, 42: 361– 366. doi:10.3189/172756405781812862.
Opel T., Fritzsche D., Meyer H. Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Climate of the Past. 2013, 9: 2379–2389. doi:10.5194/cp-9-2379-2013.
Stroeve J., Serreze M., Holland M., Kay J., Malanik J., Barrett A. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change. 2011, 110: 1005–1027. doi:10.1007/s10584-011-0101-1.
Hansen J., Ruedy R., Sato M., Lo K. Global surface temperature change. Reviews of Geophysics. 2010, 48: RG4004. doi:10.1029/2010rg000345.
Moholdt G., Heid T., Benham T., Dowdeswell J. Dynamic instability of marine-terminating glacier basins of Academy of Sciences Ice Cap, Russian High Arctic. Annals of Glaciology. 2012, 53: 193–201. doi:10.3189/2012aog60a117.
Zwally H.J., Schutz R., Hancock D., Dimarzio J. GLAS/ICEsat L2 Global Land Surface Altimetry Data (HDF5), Version 34. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. 2014. doi:10.5067/ICESAT/GLAS/DATA211.
Zwally H.J., Schutz B., Abdalati W., James A., Bentley C., Bernner A., Bufton J., Dezio J., Hancock D., Harding D., Herring T., Minster B., Quinn K., Palm S., Spinhirne J., Thomas R. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. Journ. of Geodynamics. 2002, 34: 405–445. doi:10.1016/s02643707(02)00042-x.
Porter C., Morin P., Howat I., Noh M., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K.,Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D'Souza C., Cummens P., Laurier F., Bojesen M. ArcticDEM. Harvard Dataverse, V1. 2018. doi:10.7910/DVN/OHHUKH.
Noh MJ., Howat I. Automated stereo-photogrammetric DEM generation at high latitudes: surface extraction with TIN-based search-space minimization (SETSM) validation and demonstration over glaciated regions. GIScience & Remote Sensing. 2015, 52: 198– 217. doi:10.1080/15481603.2015.1008621.
Noh M.J., Howat I., Porter C., Willis M., Morin P. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Search space Minimization (SETSM) algorithm from RPCs-based Imagery. AGU Fall Meeting Abstracts. 2016: EP24C-07.
Bader H. Sorge’s law of densification of snow on high polar glaciers. Journ. of Glaciology. 1954, 2: 319–323. doi:10.3189/s0022143000025144.
Cogley, J., Hock R., Rasmussen L., Arendt A., Bauder A., Braithwaite R., Jansson P., Kaser G., Möller M., Nicholson L., Zemp M. Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 2011: 114 p. doi:10.1017/S0032247411000805.
Barkov N.I. New data on the structure and development of the Vavilov Ice Dome, Severnaya Zemlya. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1992, 75: 35–41. [In Russian].
Rennermalm A., Smith L., Stroeve J., Chu V. Does sea ice influence Greenland ice sheet surface-melt? Environmental Research Letters. 2009, 4: 024011. doi:10.1088/1748-9326/4/2/024011.
Serreze M., Barrett A., Stroeve J. Recent changes in tropospheric water vapor over the arctic as assessed from radiosondes and atmospheric reanalyses. Journ. of Geophys. Research: Atmospheres. 2012, 117: 1–21. doi:10.1029/2011jd017421.
Francis J. The where and when of wetter and drier: disappearing Arctic sea ice plays a role. Environmental Research Letters. 2013, 8: 1002. doi:10.1088/17489326/8/4/041002.
Fritzsche D., Wilhelms F., Savatyugin L., Pinglot J., Meyer H., Hubberten H., Miller H. A new deep ice core from Akademii Nauk Ice Cap, Severnaya Zemlya, Eurasian Arctic: first results. Annals of Glaciology. 2002, 35: 25–28. doi:10.3189/172756402781816645.
Zagorodnov V.S., Klementyev O.L., Nikiforov N.N., Nikolaëv V.I., Savatyugin L.M., Sasunkevich V.A. Hydrothermal regime and ice formation in the central part of the Akademiya Nauk glacier, Severnaya Zemlya. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1990, 70: 36–43. [In Russian].
Klementyev O., Korotkov I., Nikolaev V. Glaciological studies on the ice domes of Severnaya Zemlya in 1987−1988. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1988, 63: 25–26. [In Russian].
Kotlyakov V., Zagorodnov V., Nikolayev V. Drilling on ice caps in the Soviet Arctic and on Svalbard and prospects of ice core treatment, in Arctic research: Advances and prospects. Proc. of the Conference of Arctic and Nordic Countries on Coordination of Research in the Arctic. Leningrad, December 1988. 1990, 2: 5–18.
Bryazgin N.N., Yunak R.I. Air Temperature and Precipitation on Severnaya Zemlya During Ablation and Accumulation Periods. In: Geographical and Glaciological Studies in Polar Countries. St. Petersburg: Gidrometeoizdat, 1988: 70–81. [In Russian].
Dowdeswell J., Benham T., Strozzi T., Hagen J. Iceberg calving flux and mass balance of the Austfonna Ice Cap on Nordaustlandet, Svalbard. Journ. of Geophys. Research. 2008, 113 (F3). doi:10.1029/2007jf000905.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.31857/S2076673420010021
https://doi.org/10.3189/2014JoG13J176
https://doi.org/10.1029/2012jf002523
https://doi.org/10.1017/CBO9781107415324.008
https://doi.org/10.1126/science.1234532
https://doi.org/10.1007/s00382-013-1719-7
container_title Ice and Snow
container_volume 60
container_issue 1
container_start_page 29
op_container_end_page 41
_version_ 1766003723736186880
spelling ftjias:oai:oai.ice.elpub.ru:article/781 2023-05-15T13:29:51+02:00 Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya Изменения высоты поверхности и баланс массы ледникового купола Академии Наук на Северной Земле F. Navarro J. P. Sánchez-Gámez A. Glazovsky F. C. Recio-Blitz А. Глазовский Ф. This study has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727890 and from Agencia Estatal de Investig- ación under grant CTM2017-84441-R of the Spanish Estate Plan for R & D. Support to AG by the Russian Fund for Basic Research grant 18-05-60109 is also acknowledged. DEMs were provided by the Polar Geospatial Center under NSF OPP awards 1043681, 1559691 and 1542736. 2020-04-04 application/pdf https://ice-snow.igras.ru/jour/article/view/781 https://doi.org/10.31857/S2076673420010021 eng eng IGRAS https://ice-snow.igras.ru/jour/article/view/781/501 Pfeffer W., Anthony A., Bliss A., Bolch T., Cogley G., Gardner A., Ove Hagen J., Hock R., Kaser G., Kienholz C., Miles E., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B., Rich J., Sharp M., The Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Glaciology. 2014, 60: 537–552. doi:10.3189/2014JoG13J176. Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journ. of Geophys. Research: Earth Surface. 2012, 117: 1–10. doi:10.1029/2012jf002523. Hartmann D., Klein Tank A., Rusticucci M., Alexander L., Brönnimann S., Charabi Y., Dentener F., Dlugokencky E., Easterling D., Kaplan A., Soden B., Thorne P., Wild M., Zhai P. Intergovernmental Panel on Climate Change 2013. Observations: Atmosphere and Surface. In: The Physical Science Basis: Working Group I. Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2013: 159–254. doi:10.1017/CBO9781107415324.008. Gardner A., Moholdt G., Cogley J., Wouters B., Arendt A., Wahr J., Berthier E., Hock R., Pfeffer W., Kaser G., Ligtenberg S., Bolch T., Sharp M., Ove Hagen J., van den Broeke M., Paul F. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science. 2013, 340: 852–857. doi:10.1126/science.1234532. Radić V., Bliss A., Beedlow C., Hock R., Miles E., Cogley G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics. 2013, 42: 37–58. doi:10.1007/s00382-013-1719-7. Huss M., Hock R. A new model for global glacier change and sea-level rise. Frontiers in Earth Science. 2015, 3: 1–22. doi:10.3389/feart.2015.00054. Moholdt G., Wouters B., Gardner A. Recent mass changes of glaciers in the Russian High Arctic. Geophys. Research Letters. 2012, 39: 1–5. doi:10.1029/2012gl051466. Jacob T., Wahr J., Pfeffer W., Swenson S. Recent contributions of glaciers and ice caps to sea level rise. Nature. 2012, 482: 514–518. doi:10.1038/nature10847. Matsuo K., Heki K. Current ice loss in small glacier systems of the Arctic islands (Iceland, Svalbard, and the Russian High Arctic) from satellite gravimetry. Terrestrial Atmospheric and Oceanic Sciences. 2013, 24: 657–670. doi:10.3319/tao.2013.02.22.01(tibxs). Svendsen J., Gataullin V., Mangerud J., Polyak L. The glacial history of the Barents and Kara sea region. In Developments in Quaternary Sciences. Elsevier, 2004:369–378. doi:10.1016/s1571-0866(04)80086-1. Carr J., Stokes C., Vieli A. Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. Journ. of Glaciology. 2014, 60: 155–170. doi:10.3189/2014jog13j122. Melkonian A., Willis M., Pritchard M., Stewart A. Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment. 2016, 174: 244–257. doi:10.1016/j.rse.2015.11.001. Carr J., Bell H., Killick R., Holt T. Exceptional retreat of Novaya Zemlya’s marine-terminating outlet glaciers between 2000 and 2013. The Cryosphere. 2017, 11: 2149–2174. doi:10.5194/tc-11-2149-2017. Bassford R., Siegert M., Dowdeswell J., Oerlemans J., Glazovsky A., Macheret Y. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. I: climate and mass balance of the Vavilov Ice Cap. Arctic, Antarctic, and Alpine Research. 2006, 38: 1–12. doi:10.1657/1523-0430(2006)038[0001:qtmboi]2.0.co;2. Bassford R., Siegert M., Dowdeswell J. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. II: modeling the flow of the Vavilov Ice Cap under the present climate. Arctic, Antarctic, and Alpine Research. 2006, 38: 13–20. doi:10.1657/1523-0430(2006)038[0013:qtmboi]2.0.co;2. Bassford R., Siegert M., Dowdeswell J. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. III: sensitivity of Ice Caps in Severnaya Zemlya to future climate change. Arctic, Antarctic, and Alpine Research. 2006, 38: 21–33. doi:10.1657/1523-0430(2006)038[0021:qtmboi]2.0.co;2. Zheng W., Pritchard M., Willis M., Tepes Paul., Gourmelen N., Benham T., Dowdeswell J. Accelerating glacier mass loss on Franz Josef Land, Russian Arctic. Remote Sensing of Environment. 2018, 211: 357–375. doi:10.1016/j.rse.2018.04.004. Sánchez-Gámez P., Navarro F., Benham T., Glazovsky A., Bassford R., Dowdeswell J. Intraand inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance. Journ. of Glaciology. 2019, 65 (253): 780−797. doi:10.1017/jog.2019.58. Sánchez-Gámez P., Navarro F.J., Dowdeswell J.A., De Andrés E. Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya. Led i Sneg. Ice and Snow. 2020, 60 (1): 19–28. doi:10.31857/S2076673420010020 Alexandrov E., Radionov V., Svyashchennikov P. Snow cover thickness and its measurement in Barents and Kara seas. In: Research of climate change and interaction processes between ocean and atmosphere in polar regions. Trudy of the Arctic and Antarctic Research Institute: St. Petersburg, 2003, 446: 99−118. [In Russian]. Bolshiyanov D., Makeyev V. Arkhipelag Severnaya Zemlya: Oledeneniye, Istoriya Razvitiya Prirodnoy Sredy. Severnaya Zemlya Archipelago: Glaciation and Historical Development of the Natural Environment. St. Petersburg: Gidrometeoizdat, 1995: 216 p. [In Russian]. Zhao M., Ramage J., Semmens K., Obleitner F. Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent. Environmental Research Letters. 2014, 9: 045009. doi:10.1088/1748-9326/9/4/045009. Dowdeswell J., Bassford R., Gorman M., Williams M., Glazovsky A., Macheret Y., Shepherd A., Vasilenko Y., Savatyuguin L., Hubberten H., Miller H. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. Journ. of Geophys. Research. 2002, 107: 1–16. doi:10.1029/2000jb000129. Dowdeswell J., Ove Hagen J., Björnsson H., Glazovsky A., Harrison W., Holmlund P., Jania J., Koerner R., Lefauconnier B., Ommanney S., Thomas R. The mass balance of Circum-Arctic glaciers and recent climate change. Quaternary Research. 1997, 48: 1–14. doi:10.1006/qres.1997.1900. Kalnay E. and 21 others. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society. 1996, 77(3): 437–472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. Opel T., Fritzsche D., Meyer H., Schütt R., Weiler K., Ruth U., Wilhelms F., Fischer H. 115 year ice-core data from Akademii Nauk Ice Cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change. Journ. of Glaciology. 2009, 55: 21–31. doi:10.3189/002214309788609029. Kuhn M. Severnaja automatic weather station data (Severnaja Zemlja). In: The response of Arctic ice mass to climate change (ICEMASS). Third year report (January–December 2000). European Commission, Framework IV, Environment and Climate Research Programme (DG XII), contract ENV4-CT970490. Oslo, University of Oslo. 2000, 7-8–7-14. Fritzsche D., Schütt R., Meyer H., Miller H., Wilhelms F., Opel T., Savatyugin L. A 275 year ice-core record from Akademii Nauk Ice Cap, Severnaya Zemlya, Russian Arctic. Annals of Glaciology. 2005, 42: 361– 366. doi:10.3189/172756405781812862. Opel T., Fritzsche D., Meyer H. Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Climate of the Past. 2013, 9: 2379–2389. doi:10.5194/cp-9-2379-2013. Stroeve J., Serreze M., Holland M., Kay J., Malanik J., Barrett A. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change. 2011, 110: 1005–1027. doi:10.1007/s10584-011-0101-1. Hansen J., Ruedy R., Sato M., Lo K. Global surface temperature change. Reviews of Geophysics. 2010, 48: RG4004. doi:10.1029/2010rg000345. Moholdt G., Heid T., Benham T., Dowdeswell J. Dynamic instability of marine-terminating glacier basins of Academy of Sciences Ice Cap, Russian High Arctic. Annals of Glaciology. 2012, 53: 193–201. doi:10.3189/2012aog60a117. Zwally H.J., Schutz R., Hancock D., Dimarzio J. GLAS/ICEsat L2 Global Land Surface Altimetry Data (HDF5), Version 34. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. 2014. doi:10.5067/ICESAT/GLAS/DATA211. Zwally H.J., Schutz B., Abdalati W., James A., Bentley C., Bernner A., Bufton J., Dezio J., Hancock D., Harding D., Herring T., Minster B., Quinn K., Palm S., Spinhirne J., Thomas R. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. Journ. of Geodynamics. 2002, 34: 405–445. doi:10.1016/s02643707(02)00042-x. Porter C., Morin P., Howat I., Noh M., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K.,Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D'Souza C., Cummens P., Laurier F., Bojesen M. ArcticDEM. Harvard Dataverse, V1. 2018. doi:10.7910/DVN/OHHUKH. Noh MJ., Howat I. Automated stereo-photogrammetric DEM generation at high latitudes: surface extraction with TIN-based search-space minimization (SETSM) validation and demonstration over glaciated regions. GIScience & Remote Sensing. 2015, 52: 198– 217. doi:10.1080/15481603.2015.1008621. Noh M.J., Howat I., Porter C., Willis M., Morin P. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Search space Minimization (SETSM) algorithm from RPCs-based Imagery. AGU Fall Meeting Abstracts. 2016: EP24C-07. Bader H. Sorge’s law of densification of snow on high polar glaciers. Journ. of Glaciology. 1954, 2: 319–323. doi:10.3189/s0022143000025144. Cogley, J., Hock R., Rasmussen L., Arendt A., Bauder A., Braithwaite R., Jansson P., Kaser G., Möller M., Nicholson L., Zemp M. Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 2011: 114 p. doi:10.1017/S0032247411000805. Barkov N.I. New data on the structure and development of the Vavilov Ice Dome, Severnaya Zemlya. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1992, 75: 35–41. [In Russian]. Rennermalm A., Smith L., Stroeve J., Chu V. Does sea ice influence Greenland ice sheet surface-melt? Environmental Research Letters. 2009, 4: 024011. doi:10.1088/1748-9326/4/2/024011. Serreze M., Barrett A., Stroeve J. Recent changes in tropospheric water vapor over the arctic as assessed from radiosondes and atmospheric reanalyses. Journ. of Geophys. Research: Atmospheres. 2012, 117: 1–21. doi:10.1029/2011jd017421. Francis J. The where and when of wetter and drier: disappearing Arctic sea ice plays a role. Environmental Research Letters. 2013, 8: 1002. doi:10.1088/17489326/8/4/041002. Fritzsche D., Wilhelms F., Savatyugin L., Pinglot J., Meyer H., Hubberten H., Miller H. A new deep ice core from Akademii Nauk Ice Cap, Severnaya Zemlya, Eurasian Arctic: first results. Annals of Glaciology. 2002, 35: 25–28. doi:10.3189/172756402781816645. Zagorodnov V.S., Klementyev O.L., Nikiforov N.N., Nikolaëv V.I., Savatyugin L.M., Sasunkevich V.A. Hydrothermal regime and ice formation in the central part of the Akademiya Nauk glacier, Severnaya Zemlya. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1990, 70: 36–43. [In Russian]. Klementyev O., Korotkov I., Nikolaev V. Glaciological studies on the ice domes of Severnaya Zemlya in 1987−1988. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1988, 63: 25–26. [In Russian]. Kotlyakov V., Zagorodnov V., Nikolayev V. Drilling on ice caps in the Soviet Arctic and on Svalbard and prospects of ice core treatment, in Arctic research: Advances and prospects. Proc. of the Conference of Arctic and Nordic Countries on Coordination of Research in the Arctic. Leningrad, December 1988. 1990, 2: 5–18. Bryazgin N.N., Yunak R.I. Air Temperature and Precipitation on Severnaya Zemlya During Ablation and Accumulation Periods. In: Geographical and Glaciological Studies in Polar Countries. St. Petersburg: Gidrometeoizdat, 1988: 70–81. [In Russian]. Dowdeswell J., Benham T., Strozzi T., Hagen J. Iceberg calving flux and mass balance of the Austfonna Ice Cap on Nordaustlandet, Svalbard. Journ. of Geophys. Research. 2008, 113 (F3). doi:10.1029/2007jf000905. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 60, № 1 (2020); 29-41 Лёд и Снег; Том 60, № 1 (2020); 29-41 2412-3765 2076-6734 Arctic;glacier mass balance;ice cap;ice surface-elevation change;Severnaya Zemlya Арктика;баланс массы ледника;изменения высоты ледниковой поверхности;ледниковый купол;Северная Земля info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjias https://doi.org/10.31857/S2076673420010021 https://doi.org/10.3189/2014JoG13J176 https://doi.org/10.1029/2012jf002523 https://doi.org/10.1017/CBO9781107415324.008 https://doi.org/10.1126/science.1234532 https://doi.org/10.1007/s00382-013-1719-7 2022-12-20T13:30:18Z We have determined the surface-elevation change rates of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, for two different periods: 2004–2016 and 2012/2013–2016. The former was calculated from differencing of ICESat and ArcticDEM digital elevation models, while the latter was obtained by differencing two sets of ArcticDEM digital elevation models. From these surface-elevation change rates we obtained the geodetic mass balance, which was nearly identical for both periods, at −1,72±0,67 Gt a−1, equivalent to −0,31±0,12 m w.e. a−1 over the whole ice cap area. Using an independent estimate of frontal ablation for 2016−2017 of −1,93±0,12 Gt a−1 (−0,31±0,12 m w.e. a−1), we get an estimate of the climatic mass balance not significantly different from zero, at 0,21±0,68 Gt a−1 (0,04±0,13 m w.e. a−1), which agrees with the near-zero average balance at a decadal scale observed during the last four decades. Making an observationally-based assumption on accumulation rate, we estimate the current total ablation from the ice cap, and its partitioning between frontal ablation, dominated by calving (~54%) and climatic mass balance, mostly surface ablation (~46%). На основе разновременных ЦМР установлены скорости изменения высоты поверхности ледникового купола Академии Наук на Северной Земле за два периода: 2004−2016 и 2012/2013−2016 гг. и определён геодезический баланс его массы (−1,72±0,67 Гт/год). Сделан расчёт климатического баланса массы (0,21±0,68 Гт/год) и полной абляции (−3,18 Гт/год) ледника, где на отёл приходится ≈54%, а на поверхностную абляцию – ≈46%. Article in Journal/Newspaper Annals of Glaciology Antarctic and Alpine Research Arctic Arctic Ice cap Severnaya Zemlya The Cryosphere Арктика Ice and Snow (E-Journal) Arctic Severnaya Zemlya ENVELOPE(98.000,98.000,79.500,79.500) Ice and Snow 60 1 29 41