Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya

We have determined the ice-surface velocities of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, during the period November 2016 – November 2017, using intensity offset-tracking of Sentinel-1 synthetic-aperture radar images. We used the average of 54 pairs of weekly velocities (wi...

Full description

Bibliographic Details
Published in:Espacio Tiempo y Forma. Serie VI, Geografía
Main Authors: P. Sánchez-Gámez, F. Navarro J., J. Dowdeswell A., E. De Andrés
Other Authors: This study has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727890 and from Agencia Estatal de Investigación under grant CTM2017-84441-R of the Spanish Estate Plan for R & D. The radio-echo sounding campaign was funded by grants GR3/9958 and GST/02/2195 to JAD from the UK Natural Environment Research Council. Copernicus Sentinel data 2016–2017 were processed by ESA.
Format: Article in Journal/Newspaper
Language:English
Published: IGRAS 2020
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/779
https://doi.org/10.31857/S2076673420010020
id ftjias:oai:oai.ice.elpub.ru:article/779
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language English
topic Arctic;calving flux;glacier calving;ice cap;ice surface velocity;Severnaya Zemlya
айсберговый сток;Арктика;ледниковый купол;отёл ледников;поверхностная скорость движения ледника;Северная Земля
spellingShingle Arctic;calving flux;glacier calving;ice cap;ice surface velocity;Severnaya Zemlya
айсберговый сток;Арктика;ледниковый купол;отёл ледников;поверхностная скорость движения ледника;Северная Земля
P. Sánchez-Gámez
F. Navarro J.
J. Dowdeswell A.
E. De Andrés
Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya
topic_facet Arctic;calving flux;glacier calving;ice cap;ice surface velocity;Severnaya Zemlya
айсберговый сток;Арктика;ледниковый купол;отёл ледников;поверхностная скорость движения ледника;Северная Земля
description We have determined the ice-surface velocities of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, during the period November 2016 – November 2017, using intensity offset-tracking of Sentinel-1 synthetic-aperture radar images. We used the average of 54 pairs of weekly velocities (with both images in each pair separated by a12-day period) to estimate the mean annual ice discharge from the ice cap. We got an average ice discharge for 2016–2017 of 1,93±0,12 Gt a−1, which is equivalent to −0,35±0,02 m w.e. a−1 over the whole area of the ice cap. The difference from an estimate of ~1,4 Gt a−1 for 2003–2009 can be attributed to the initiation of ice-stream flow in Basin BC sometime between 2002 and 2016. Since the front position changes between both periods have been negligible, ice discharge is equivalent to calving flux. We compare our results for calving flux with those of previous studies and analyse the possible drivers of the changes observed along the last three decades. Since these changes do not appear to have responded to environmental changes, we conclude that the observed changes are likely driven by the intrinsic characteristics of the ice cap governing tidewater glacier dynamics. По 54 парам космических снимков Sentinel‐1, сделанных с ноября 2016 г. по ноябрь 2017 г., определены скорости движения ледникового купола Академии Наук на Северной Земле. На этой основе оценён среднегодовой расход льда в море этого купола (1,93±0,12 Гт/год), установлены основные пути стока льда, проведено сравнение с прежними оценками.
author2 This study has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727890 and from Agencia Estatal de Investigación under grant CTM2017-84441-R of the Spanish Estate Plan for R & D. The radio-echo sounding campaign was funded by grants GR3/9958 and GST/02/2195 to JAD from the UK Natural Environment Research Council. Copernicus Sentinel data 2016–2017 were processed by ESA.
format Article in Journal/Newspaper
author P. Sánchez-Gámez
F. Navarro J.
J. Dowdeswell A.
E. De Andrés
author_facet P. Sánchez-Gámez
F. Navarro J.
J. Dowdeswell A.
E. De Andrés
author_sort P. Sánchez-Gámez
title Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_short Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_full Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_fullStr Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_full_unstemmed Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya
title_sort surface velocities and calving flux of the academy of sciences ice cap, severnaya zemlya
publisher IGRAS
publishDate 2020
url https://ice-snow.igras.ru/jour/article/view/779
https://doi.org/10.31857/S2076673420010020
long_lat ENVELOPE(98.000,98.000,79.500,79.500)
geographic Arctic
Severnaya Zemlya
geographic_facet Arctic
Severnaya Zemlya
genre Annals of Glaciology
Antarctic and Alpine Research
Arctic
Arctic
Ice cap
Polar Research
Severnaya Zemlya
Tidewater
Арктика
genre_facet Annals of Glaciology
Antarctic and Alpine Research
Arctic
Arctic
Ice cap
Polar Research
Severnaya Zemlya
Tidewater
Арктика
op_source Ice and Snow; Том 60, № 1 (2020); 19-28
Лёд и Снег; Том 60, № 1 (2020); 19-28
2412-3765
2076-6734
op_relation https://ice-snow.igras.ru/jour/article/view/779/498
Dowdeswell J., Bassford R., Gorman M., Williams M., Glazovsky A., Macheret Y., Shepherd A., Vasilenko Y., Savatyuguin L., Hubberten H., Miller H. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. Journ. of Geophys. Research. 2002, 107: 1–16. doi:10.1029/2000jb000129.
Błaszczyk M., Jania J., Hagen J. Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Polish Polar Research. 2009, 30 (2): 85–142.
Bolch T., Sandberg Sørensen L., Simonsen S.B., Mölg N., Machguth H., Rastner P., Paul F. Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys. Research Letters. 2013, 40: 875–881. doi:10.1002/grl.50270.
Burgess E., Forster R., Larsen C. Flow velocities of Alaskan glaciers. Nature Communications. 2013, 4: 2146. doi:10.1038/ncomms3146.
McNabb R., Hock R., Huss M. Variations in Alaska tidewater glacier frontal ablation, 1985–2013. Journ. of Geophys. Research. 2015, 120 (1): 120–136. doi:10.1002/2014jf003276.
Sánchez-Gámez P., Navarro F.J. Glacier Surface Velocity Retrieval Using D-InSAR and Offset Tracking Techniques Applied to Ascending and Descending Passes of Sentinel-1 Data for Southern Ellesmere Ice Caps, Canadian Arctic. Remote Sensing. 2017, 9 (5): 442. doi:10.3390/rs9050442.
Sánchez-Gámez P., Navarro F.J. Ice discharge error estimates using different cross-sectional area approaches: a case study for the Canadian High Arctic, 2016/17. Journ. of Glaciology. 2018, 64 (246): 595–608. doi:10.1017/jog.2018.48.
De Andrés E., Otero J., Navarro F., Promińska J., Lapazaran J., Walczowski W. A two-dimensional glacier–fjord coupled model applied to estimate submarine melt rates and front position changes of Hansbreen, Svalbard. Journ. of Glaciology. 2018, 64 (247): 745–758, doi:10.1017/jog.2018.61.
Moholdt G., Heid T., Benham T., Dowdeswell J. Dynamic instability of marine-terminating glacier basins of Academy of Sciences Ice Cap, Russian High Arctic. Annals of Glaciology. 2012, 53: 193–201. doi:10.3189/2012aog60a117.
Melkonian A., Willis M., Pritchard M., Stewart A. Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment. 2016, 174: 244–257. doi:10.1016/j.rse.2015.11.001.
Sánchez-Gámez P., Navarro F., Benham T., Glazovsky A., Bassford R., Dowdeswell J. Intraand inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance. Journ. of Glaciology. 2019, 65 (253): 780–797. doi:10.1017/jog.2019.58.
Pfeffer W., Anthony A., Bliss A., Bolch T., Cogley G., Gardner A., Ove Hagen J., Hock R., Kaser G., Kienholz C., Miles E., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B., Rich J., Sharp M., The Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Glaciology. 2014, 60: 537–552. doi:10.3189/2014JoG13J176.
Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journ. of Geophys. Research: Earth Surface. 2012, 117: 1–10. doi:10.1029/2012jf002523.
Matsuo K., Heki K. Current ice loss in small glacier systems of the Arctic islands (Iceland, Svalbard, and the Russian High Arctic) from satellite gravimetry. Terrestrial Atmospheric and Oceanic Sciences. 2013, 24: 657–670. doi:10.3319/tao.2013.02.22.01(tibxs).
Gardner A., Moholdt G., Cogley J., Wouters B., Arendt A., Wahr J., Berthier E., Hock R., Pfeffer W., Kaser G., Ligtenberg S., Bolch T., Sharp M., Ove Hagen J., van den Broeke M., Paul F. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science. 2013, 340: 852–857. doi:10.1126/science.1234532.
Radić V., Bliss A., Beedlow C., Hock R., Miles E., Cogley G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics. 2013, 42: 37–58. doi:10.1007/s00382-013-1719-7.
Huss M., Hock R. A new model for global glacier change and sea-level rise. Frontiers in Earth Science. 2015, 3: 1–22. doi:10.3389/feart.2015.00054.
Moholdt G., Wouters B., Gardner A. Recent mass changes of glaciers in the Russian High Arctic. Geophys. Research Letters. 2012, 39: 1–5. doi:10.1029/2012gl051466.
Wessel P., Smith W. A global, self-consistent, hierarchical, high-resolution shoreline database. Journ. of Geophys. Research. 1996, 101: 8741–8743. doi:10.1029/96JB00104.
Willis M., Melkonian A., Pritchard M. Outlet glacier response to the 2012 collapse of the Matusevich Ice Shelf, Severnaya Zemlya, Russian Arctic. Journ. of Geophys. Research: Earth Surface. 2015, 120: 2040– 2055. doi:10.1002/2015jf003544.
Glazovsky A., Bushueva I., Nosenko G. ‘Slow’ surge of the Vavilov Ice Cap, Severnaya Zemlya. Proc. of the IASC Workshop on the Dynamics and Mass Balance of Arctic Glaciers, Obergurgl, Austria, 23–25 March 2015: 17–18.
Strozzi T., Paul F., Wiesmann A., Schellenberger T., Kääb A. Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sensing. 2017, 9: 947. doi:10.3390/rs9090947.
Dowdeswell J., Williams M. Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery. Journ. of Glaciology. 1997, 43: 489–494. doi:10.3189/S0022143000035097.
Dowdeswell J., Dowdeswell E., Williams M., Glazovsky A. The glaciology of the Russian High Arctic from Landsat imagery. U.S. Geological Survey Professional Paper. 2010, 1386-F: 94–125.
Sharov A., Tyukavina A. Mapping and interpreting glacier changes in Severnaya Zemlya with the aid of differential interferometry and altimetry. Proc. of Fringe 2009 Workshop, Frascati, Italy, 30 November – 4 December 2009, ESA SP-677: 8 p.
Noh M.J., Howat I., Porter C., Willis M., Morin P. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Search space Minimization (SETSM) algorithm from RPCs-based Imagery. AGU Fall Meeting Abstracts. 2016, EP24C-07.
Alexandrov E., Radionov V., Svyashchennikov P. Snow cover thickness and its measurement in Barents and Kara seas. In: Research of climate change and interaction processes between ocean and atmosphere in polar regions. Trudy of the Arctic and Antarctic Research Institute. St. Petersburg, 2003, 446: 99–118. [In Russian].
Bolshiyanov D., Makeyev V. Arkhipelag Severnaya Zemlya: Oledeneniye, Istoriya Razvitiya Prirodnoy Sredy. Severnaya Zemlya Archipelago: Glaciation and Historical Development of the Natural Environment. St. Petersburg: Gidrometeoizdat, 1995: 216 p. [In Russian].
Navarro F.J., Sánchez-Gámez P., Glazovsky A.F., RecioBlitz C. Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya. Led i Sneg. Ice and Snow. 2020, 60 (1): 29–41. doi:10.31857/S2076673420010021
Konovalov Y. Inversion for basal friction coefficients with a two-dimensional flow line model using Tikhonov regularization. Research in Geophysics. 2012, 2:11. doi:10.4081/rg.2012.e11.
Konovalov Y., Nagornov O. Two-dimensional prognostic experiments for fast-flowing ice streams from the Academy of Sciences Ice Cap. Journ. of Physics. Conference Series. 2017, 788: 012051. doi:10.1088/17426596/788/1/012051.
Zan F.D., Guarnieri A.M. TOPSAR: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing. 2006, 44 (9): 2352–2360. doi:10.1109/tgrs.2006.873853.
Nagler T., Rott H., Hetzenecker M., Wuite J., Potin P. The Sentinel-1 mission: new opportunities for ice sheet observations. Remote Sensing. 2015, 7: 9371–9389. doi:10.3390/rs70709371.
Strozzi T., Luckman A., Murray T., Wegmuller U., Werner C. Glacier motion estimation using SAR offsettracking procedures. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40: 2384–2391. doi:10.1109/tgrs.2002.805079.
Wegmüller U., Werner, C., Strozzi, T., Wiesmann, A., Othmar, F., Santoro, M. Sentinel-1 support in the GAMMA software. Proceedings of the FRINGE’15: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Frascati, Italy. 2015: 23–27.
Werner C., Wegmüller U., Strozzi T., Wiesmann A. Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images. 2005 IEEE Intern. Geoscience and Remote Sensing Symposium (IGARSS’05). IEEE Intern. Proceedings. 2005, 7: 4803–4805. doi:10.1109/IGARSS.2005.1526747.
Cogley, J., Hock R., Rasmussen L., Arendt A., Bauder A., Braithwaite R., Jansson P., Kaser G., Möller M., Nicholson L., Zemp M. Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 2011: 114 p. doi:10.1017/S0032247411000805.
Cuffey K., Paterson S. The Physics of Glaciers, 4th Ed. Oxford: Butterworth-Heinemann, 2010: 704 p.
Vijay S., Braun M. Seasonal and interannual variability of Columbia Glacier, Alaska (2011–2016): Ice velocity, mass flux, surface elevation and front position. Remote Sensing. 2017, 9: 635. doi:10.3390/rs9060635.
Bader H. Sorge’s law of densification of snow on high polar glaciers. Journ. of Glaciology. 1954, 2: 319–323. doi:10.3189/s0022143000025144.
Opel T., Fritzsche D., Meyer H., Schütt R., Weiler K., Ruth U., Wilhelms F., Fischer H. 115 year ice-core data from Akademii Nauk Ice Cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change. Journ. of Glaciology. 2009, 55: 21–31. doi:10.3189/002214309788609029.
Koerner R. Devon Island Ice Cap: Core stratigraphy and paleoclimate. Science. 1977, 196: 15–18. doi:10.2307/1744032.
Bassford R., Siegert M., Dowdeswell J. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. II: modeling the flow of the Vavilov Ice Cap under the present climate. Arctic, Antarctic, and Alpine Research. 2006, 38: 13–20. doi:10.1657/1523-0430(2006)038[0013:qtmboi]2.0.co;2.
Bassford R., Siegert M., Dowdeswell J., Oerlemans J., Glazovsky A., Macheret Y. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. I: climate and mass balance of the Vavilov Ice Cap. Arctic, Antarctic, and Alpine Research. 2006, 38: 1–12. doi:10.1657/1523-0430(2006)038[0001:qtmboi]2.0.co;2.
Zwally H.J. Surface melt-induced acceleration of Greenland Ice-Sheet Flow. Science. 2002, 297 (5579): 218–222. doi:10.1126/science.1072708.
Sundal A.V. and 5 others. Melt-induced speed-up of Greenland Ice Sheet offset by efficient subglacial drainage. Nature. 2011, 469 (7331): 521–524. doi:10.1038/nature09740.
Moon T., Joughin I., Smith B. Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. Journ. of Geophys. Research. Earth. 2015, 120: 818– 833. doi:10.1002/2015jf003494.
Otero J., Navarro F., Lapazaran J., Welty E., Puczko D., Finkelnburg R. Modeling the controls on the front position of a tidewater glacier in Svalbard. Frontiers in Earth Science. 2017, 5:1–11. doi:10.3389/feart.2017.00029.
Serreze M.C., Barry R.G. The Arctic Climate System. Cambridge: Cambridge University Press, 2005: 385 p.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.31857/S2076673420010020
https://doi.org/10.1029/2000jb000129
https://doi.org/10.1002/grl.50270
https://doi.org/10.1038/ncomms3146
https://doi.org/10.1002/2014jf003276
https://doi.org/10.3390/rs9050442
https://doi.org/10.1017
container_title Espacio Tiempo y Forma. Serie VI, Geografía
container_volume 0
container_issue 10
container_start_page 179
_version_ 1766003917643055104
spelling ftjias:oai:oai.ice.elpub.ru:article/779 2023-05-15T13:29:52+02:00 Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya Поверхностные скорости и айсберговый сток ледникового купола Академии Наук на Северной Земле P. Sánchez-Gámez F. Navarro J. J. Dowdeswell A. E. De Andrés This study has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 727890 and from Agencia Estatal de Investigación under grant CTM2017-84441-R of the Spanish Estate Plan for R & D. The radio-echo sounding campaign was funded by grants GR3/9958 and GST/02/2195 to JAD from the UK Natural Environment Research Council. Copernicus Sentinel data 2016–2017 were processed by ESA. 2020-04-04 application/pdf https://ice-snow.igras.ru/jour/article/view/779 https://doi.org/10.31857/S2076673420010020 eng eng IGRAS https://ice-snow.igras.ru/jour/article/view/779/498 Dowdeswell J., Bassford R., Gorman M., Williams M., Glazovsky A., Macheret Y., Shepherd A., Vasilenko Y., Savatyuguin L., Hubberten H., Miller H. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. Journ. of Geophys. Research. 2002, 107: 1–16. doi:10.1029/2000jb000129. Błaszczyk M., Jania J., Hagen J. Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Polish Polar Research. 2009, 30 (2): 85–142. Bolch T., Sandberg Sørensen L., Simonsen S.B., Mölg N., Machguth H., Rastner P., Paul F. Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys. Research Letters. 2013, 40: 875–881. doi:10.1002/grl.50270. Burgess E., Forster R., Larsen C. Flow velocities of Alaskan glaciers. Nature Communications. 2013, 4: 2146. doi:10.1038/ncomms3146. McNabb R., Hock R., Huss M. Variations in Alaska tidewater glacier frontal ablation, 1985–2013. Journ. of Geophys. Research. 2015, 120 (1): 120–136. doi:10.1002/2014jf003276. Sánchez-Gámez P., Navarro F.J. Glacier Surface Velocity Retrieval Using D-InSAR and Offset Tracking Techniques Applied to Ascending and Descending Passes of Sentinel-1 Data for Southern Ellesmere Ice Caps, Canadian Arctic. Remote Sensing. 2017, 9 (5): 442. doi:10.3390/rs9050442. Sánchez-Gámez P., Navarro F.J. Ice discharge error estimates using different cross-sectional area approaches: a case study for the Canadian High Arctic, 2016/17. Journ. of Glaciology. 2018, 64 (246): 595–608. doi:10.1017/jog.2018.48. De Andrés E., Otero J., Navarro F., Promińska J., Lapazaran J., Walczowski W. A two-dimensional glacier–fjord coupled model applied to estimate submarine melt rates and front position changes of Hansbreen, Svalbard. Journ. of Glaciology. 2018, 64 (247): 745–758, doi:10.1017/jog.2018.61. Moholdt G., Heid T., Benham T., Dowdeswell J. Dynamic instability of marine-terminating glacier basins of Academy of Sciences Ice Cap, Russian High Arctic. Annals of Glaciology. 2012, 53: 193–201. doi:10.3189/2012aog60a117. Melkonian A., Willis M., Pritchard M., Stewart A. Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment. 2016, 174: 244–257. doi:10.1016/j.rse.2015.11.001. Sánchez-Gámez P., Navarro F., Benham T., Glazovsky A., Bassford R., Dowdeswell J. Intraand inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance. Journ. of Glaciology. 2019, 65 (253): 780–797. doi:10.1017/jog.2019.58. Pfeffer W., Anthony A., Bliss A., Bolch T., Cogley G., Gardner A., Ove Hagen J., Hock R., Kaser G., Kienholz C., Miles E., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B., Rich J., Sharp M., The Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Glaciology. 2014, 60: 537–552. doi:10.3189/2014JoG13J176. Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journ. of Geophys. Research: Earth Surface. 2012, 117: 1–10. doi:10.1029/2012jf002523. Matsuo K., Heki K. Current ice loss in small glacier systems of the Arctic islands (Iceland, Svalbard, and the Russian High Arctic) from satellite gravimetry. Terrestrial Atmospheric and Oceanic Sciences. 2013, 24: 657–670. doi:10.3319/tao.2013.02.22.01(tibxs). Gardner A., Moholdt G., Cogley J., Wouters B., Arendt A., Wahr J., Berthier E., Hock R., Pfeffer W., Kaser G., Ligtenberg S., Bolch T., Sharp M., Ove Hagen J., van den Broeke M., Paul F. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science. 2013, 340: 852–857. doi:10.1126/science.1234532. Radić V., Bliss A., Beedlow C., Hock R., Miles E., Cogley G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics. 2013, 42: 37–58. doi:10.1007/s00382-013-1719-7. Huss M., Hock R. A new model for global glacier change and sea-level rise. Frontiers in Earth Science. 2015, 3: 1–22. doi:10.3389/feart.2015.00054. Moholdt G., Wouters B., Gardner A. Recent mass changes of glaciers in the Russian High Arctic. Geophys. Research Letters. 2012, 39: 1–5. doi:10.1029/2012gl051466. Wessel P., Smith W. A global, self-consistent, hierarchical, high-resolution shoreline database. Journ. of Geophys. Research. 1996, 101: 8741–8743. doi:10.1029/96JB00104. Willis M., Melkonian A., Pritchard M. Outlet glacier response to the 2012 collapse of the Matusevich Ice Shelf, Severnaya Zemlya, Russian Arctic. Journ. of Geophys. Research: Earth Surface. 2015, 120: 2040– 2055. doi:10.1002/2015jf003544. Glazovsky A., Bushueva I., Nosenko G. ‘Slow’ surge of the Vavilov Ice Cap, Severnaya Zemlya. Proc. of the IASC Workshop on the Dynamics and Mass Balance of Arctic Glaciers, Obergurgl, Austria, 23–25 March 2015: 17–18. Strozzi T., Paul F., Wiesmann A., Schellenberger T., Kääb A. Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sensing. 2017, 9: 947. doi:10.3390/rs9090947. Dowdeswell J., Williams M. Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery. Journ. of Glaciology. 1997, 43: 489–494. doi:10.3189/S0022143000035097. Dowdeswell J., Dowdeswell E., Williams M., Glazovsky A. The glaciology of the Russian High Arctic from Landsat imagery. U.S. Geological Survey Professional Paper. 2010, 1386-F: 94–125. Sharov A., Tyukavina A. Mapping and interpreting glacier changes in Severnaya Zemlya with the aid of differential interferometry and altimetry. Proc. of Fringe 2009 Workshop, Frascati, Italy, 30 November – 4 December 2009, ESA SP-677: 8 p. Noh M.J., Howat I., Porter C., Willis M., Morin P. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Search space Minimization (SETSM) algorithm from RPCs-based Imagery. AGU Fall Meeting Abstracts. 2016, EP24C-07. Alexandrov E., Radionov V., Svyashchennikov P. Snow cover thickness and its measurement in Barents and Kara seas. In: Research of climate change and interaction processes between ocean and atmosphere in polar regions. Trudy of the Arctic and Antarctic Research Institute. St. Petersburg, 2003, 446: 99–118. [In Russian]. Bolshiyanov D., Makeyev V. Arkhipelag Severnaya Zemlya: Oledeneniye, Istoriya Razvitiya Prirodnoy Sredy. Severnaya Zemlya Archipelago: Glaciation and Historical Development of the Natural Environment. St. Petersburg: Gidrometeoizdat, 1995: 216 p. [In Russian]. Navarro F.J., Sánchez-Gámez P., Glazovsky A.F., RecioBlitz C. Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya. Led i Sneg. Ice and Snow. 2020, 60 (1): 29–41. doi:10.31857/S2076673420010021 Konovalov Y. Inversion for basal friction coefficients with a two-dimensional flow line model using Tikhonov regularization. Research in Geophysics. 2012, 2:11. doi:10.4081/rg.2012.e11. Konovalov Y., Nagornov O. Two-dimensional prognostic experiments for fast-flowing ice streams from the Academy of Sciences Ice Cap. Journ. of Physics. Conference Series. 2017, 788: 012051. doi:10.1088/17426596/788/1/012051. Zan F.D., Guarnieri A.M. TOPSAR: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing. 2006, 44 (9): 2352–2360. doi:10.1109/tgrs.2006.873853. Nagler T., Rott H., Hetzenecker M., Wuite J., Potin P. The Sentinel-1 mission: new opportunities for ice sheet observations. Remote Sensing. 2015, 7: 9371–9389. doi:10.3390/rs70709371. Strozzi T., Luckman A., Murray T., Wegmuller U., Werner C. Glacier motion estimation using SAR offsettracking procedures. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40: 2384–2391. doi:10.1109/tgrs.2002.805079. Wegmüller U., Werner, C., Strozzi, T., Wiesmann, A., Othmar, F., Santoro, M. Sentinel-1 support in the GAMMA software. Proceedings of the FRINGE’15: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Frascati, Italy. 2015: 23–27. Werner C., Wegmüller U., Strozzi T., Wiesmann A. Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images. 2005 IEEE Intern. Geoscience and Remote Sensing Symposium (IGARSS’05). IEEE Intern. Proceedings. 2005, 7: 4803–4805. doi:10.1109/IGARSS.2005.1526747. Cogley, J., Hock R., Rasmussen L., Arendt A., Bauder A., Braithwaite R., Jansson P., Kaser G., Möller M., Nicholson L., Zemp M. Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 2011: 114 p. doi:10.1017/S0032247411000805. Cuffey K., Paterson S. The Physics of Glaciers, 4th Ed. Oxford: Butterworth-Heinemann, 2010: 704 p. Vijay S., Braun M. Seasonal and interannual variability of Columbia Glacier, Alaska (2011–2016): Ice velocity, mass flux, surface elevation and front position. Remote Sensing. 2017, 9: 635. doi:10.3390/rs9060635. Bader H. Sorge’s law of densification of snow on high polar glaciers. Journ. of Glaciology. 1954, 2: 319–323. doi:10.3189/s0022143000025144. Opel T., Fritzsche D., Meyer H., Schütt R., Weiler K., Ruth U., Wilhelms F., Fischer H. 115 year ice-core data from Akademii Nauk Ice Cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change. Journ. of Glaciology. 2009, 55: 21–31. doi:10.3189/002214309788609029. Koerner R. Devon Island Ice Cap: Core stratigraphy and paleoclimate. Science. 1977, 196: 15–18. doi:10.2307/1744032. Bassford R., Siegert M., Dowdeswell J. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. II: modeling the flow of the Vavilov Ice Cap under the present climate. Arctic, Antarctic, and Alpine Research. 2006, 38: 13–20. doi:10.1657/1523-0430(2006)038[0013:qtmboi]2.0.co;2. Bassford R., Siegert M., Dowdeswell J., Oerlemans J., Glazovsky A., Macheret Y. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. I: climate and mass balance of the Vavilov Ice Cap. Arctic, Antarctic, and Alpine Research. 2006, 38: 1–12. doi:10.1657/1523-0430(2006)038[0001:qtmboi]2.0.co;2. Zwally H.J. Surface melt-induced acceleration of Greenland Ice-Sheet Flow. Science. 2002, 297 (5579): 218–222. doi:10.1126/science.1072708. Sundal A.V. and 5 others. Melt-induced speed-up of Greenland Ice Sheet offset by efficient subglacial drainage. Nature. 2011, 469 (7331): 521–524. doi:10.1038/nature09740. Moon T., Joughin I., Smith B. Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. Journ. of Geophys. Research. Earth. 2015, 120: 818– 833. doi:10.1002/2015jf003494. Otero J., Navarro F., Lapazaran J., Welty E., Puczko D., Finkelnburg R. Modeling the controls on the front position of a tidewater glacier in Svalbard. Frontiers in Earth Science. 2017, 5:1–11. doi:10.3389/feart.2017.00029. Serreze M.C., Barry R.G. The Arctic Climate System. Cambridge: Cambridge University Press, 2005: 385 p. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 60, № 1 (2020); 19-28 Лёд и Снег; Том 60, № 1 (2020); 19-28 2412-3765 2076-6734 Arctic;calving flux;glacier calving;ice cap;ice surface velocity;Severnaya Zemlya айсберговый сток;Арктика;ледниковый купол;отёл ледников;поверхностная скорость движения ледника;Северная Земля info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2020 ftjias https://doi.org/10.31857/S2076673420010020 https://doi.org/10.1029/2000jb000129 https://doi.org/10.1002/grl.50270 https://doi.org/10.1038/ncomms3146 https://doi.org/10.1002/2014jf003276 https://doi.org/10.3390/rs9050442 https://doi.org/10.1017 2022-12-20T13:30:01Z We have determined the ice-surface velocities of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, during the period November 2016 – November 2017, using intensity offset-tracking of Sentinel-1 synthetic-aperture radar images. We used the average of 54 pairs of weekly velocities (with both images in each pair separated by a12-day period) to estimate the mean annual ice discharge from the ice cap. We got an average ice discharge for 2016–2017 of 1,93±0,12 Gt a−1, which is equivalent to −0,35±0,02 m w.e. a−1 over the whole area of the ice cap. The difference from an estimate of ~1,4 Gt a−1 for 2003–2009 can be attributed to the initiation of ice-stream flow in Basin BC sometime between 2002 and 2016. Since the front position changes between both periods have been negligible, ice discharge is equivalent to calving flux. We compare our results for calving flux with those of previous studies and analyse the possible drivers of the changes observed along the last three decades. Since these changes do not appear to have responded to environmental changes, we conclude that the observed changes are likely driven by the intrinsic characteristics of the ice cap governing tidewater glacier dynamics. По 54 парам космических снимков Sentinel‐1, сделанных с ноября 2016 г. по ноябрь 2017 г., определены скорости движения ледникового купола Академии Наук на Северной Земле. На этой основе оценён среднегодовой расход льда в море этого купола (1,93±0,12 Гт/год), установлены основные пути стока льда, проведено сравнение с прежними оценками. Article in Journal/Newspaper Annals of Glaciology Antarctic and Alpine Research Arctic Arctic Ice cap Polar Research Severnaya Zemlya Tidewater Арктика Ice and Snow (E-Journal) Arctic Severnaya Zemlya ENVELOPE(98.000,98.000,79.500,79.500) Espacio Tiempo y Forma. Serie VI, Geografía 0 10 179