Environmental and climate changes in Antarctica in the Geological Past

In the Cretaceous time, Antarctica was characterized by subtropical and tropical climate. The Early Eocene was warmest in the Antarctic history but this Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica at about 34 Ma ago. There...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: G. Leitchenkov L., Г. Лейченков Л.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/74
https://doi.org/10.15356/2076-6734-2014-4-107-116
id ftjias:oai:oai.ice.elpub.ru:article/74
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Antarctica;climate change;environment;geological and geophysical data;ice sheet
Антарктида;геолого-геофизические данные;изменение климата;ледниковый покров;природная среда
spellingShingle Antarctica;climate change;environment;geological and geophysical data;ice sheet
Антарктида;геолого-геофизические данные;изменение климата;ледниковый покров;природная среда
G. Leitchenkov L.
Г. Лейченков Л.
Environmental and climate changes in Antarctica in the Geological Past
topic_facet Antarctica;climate change;environment;geological and geophysical data;ice sheet
Антарктида;геолого-геофизические данные;изменение климата;ледниковый покров;природная среда
description In the Cretaceous time, Antarctica was characterized by subtropical and tropical climate. The Early Eocene was warmest in the Antarctic history but this Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica at about 34 Ma ago. There is indirect evidence that small ice caps developed within central Antarctica in the Late Eocene (42−34 Ma). From the Early Oligocene to the Middle Miocene (34−13 Ma) ice sheet was wet-based and fluctuated considerably in volume, but about 14 m.y. ago it became dry-based and more stable. Seismic data collected on the East Antarctic margin give valuable information on dynamics of the past ice sheets. These data shows that the sedimentary cover of the western Wilkes Land margin includes a giant (c. 200 000 km2) deep-water fan which formed between c. 43 and 34 Ma ago. The average rate of sedimentation in the central part of fan was 230–250 m/m.y. Active input of terrigenous sediments into deep-water denotes high-energy fluvial system within the Wilkes Land. Emergence of this fluvial system evidences earliest glaciation in the Antarctic interior which fed full-flowing rivers. The thickness of strata deposited during post-Early Oligocene glaciations on the Antarctic margin generally reflects the averaged energy of depositional environments. The thickest sediments (up to 2.0 km, i.e. almost twice more than in other parts of East Antarctic margin) and inferred highest energy are seen in the central Cooperation Sea, on the central Wilkes Land margin and in the D'Urville Sea. The areas with the thickest post-Early Oligocene strata correlate with places where present-day ice discharge is highest, such as via the Lambert, Totten and Mertz/Ninnis Glaciers. The correlation points to high ice (and sediment) flux in the same areas since the Early Oligocene. Даётся обзор изменений климата и природной среды Антарктики в кайнозое с более подробной информацией о гляциальной истории Южного континента. Покровное оледенение в Антарктиде ...
format Article in Journal/Newspaper
author G. Leitchenkov L.
Г. Лейченков Л.
author_facet G. Leitchenkov L.
Г. Лейченков Л.
author_sort G. Leitchenkov L.
title Environmental and climate changes in Antarctica in the Geological Past
title_short Environmental and climate changes in Antarctica in the Geological Past
title_full Environmental and climate changes in Antarctica in the Geological Past
title_fullStr Environmental and climate changes in Antarctica in the Geological Past
title_full_unstemmed Environmental and climate changes in Antarctica in the Geological Past
title_sort environmental and climate changes in antarctica in the geological past
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/74
https://doi.org/10.15356/2076-6734-2014-4-107-116
long_lat ENVELOPE(120.000,120.000,-69.000,-69.000)
ENVELOPE(140.000,140.000,-65.000,-65.000)
ENVELOPE(70.000,70.000,-67.000,-67.000)
geographic Antarctic
The Antarctic
Wilkes Land
D'Urville Sea
Cooperation Sea
geographic_facet Antarctic
The Antarctic
Wilkes Land
D'Urville Sea
Cooperation Sea
genre Annals of Glaciology
Antarc*
Antarctic
Antarctic Science
Antarctica
Cooperation Sea
D'Urville Sea
Ice Sheet
Polar Research
The Cryosphere
Wilkes Land
Антарктида
genre_facet Annals of Glaciology
Antarc*
Antarctic
Antarctic Science
Antarctica
Cooperation Sea
D'Urville Sea
Ice Sheet
Polar Research
The Cryosphere
Wilkes Land
Антарктида
op_source Ice and Snow; Том 54, № 4 (2014); 107-116
Лёд и Снег; Том 54, № 4 (2014); 107-116
2412-3765
2076-6734
10.15356/2076-6734-2014-4
op_relation Лейченков Г.Л., Гусева Ю.Б. Сейсмостратиграфия осадочного чехла индоокеанской акватории Антарктики и реконструкция природной среды в геологическом прошлом // Разведка и охрана недр. 2012. № 8. С. 21–28.
Barker P.F., Burrell J. The opening of Drake Passage // Marine Geology. 1977. V. 25. P. 15–34.
Barker P.F., Barrett P., Camerlenghi A., Cooper A.K., Davey F., Domack E., Escutia C., Jokat W., O’Brien P. Ice sheet history from Antarctic Continental margin sediments: the ANTOSTRAT approach // Terra Antarctica. 1998. V. 5. № 4. P. 737–760.
Barrett P.J. Cooling a continent // Nature. 2003. V. 421. P. 221–223.
Birkenmajer K., Gazdzicki A., Krajewski K.P., Przybycin A., Solecki A., Tatur A., Yoon H.I. First Cenozoic glaciers in West Antarctica // Polish Polar Research. 2005. V. 26. P. 3–12.
Cooper A.K., O’Brien P.E. Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling // Proc. of the Ocean Drilling Program, Scientific Results / Eds. A.K. Cooper, P.E. O’Brien, C. Richter. College Station. TX, 2004. V. 188. P. 1–42.
Ehrmann W. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics // Palaeogeography, Palaeoclimatology, Palaeoecology. 1998. V. 139. P. 213–231.
Ehrmann W.U., Hambrey M.J., Baldauf J.G., Barron J., Larsen B., MacKensen A., Wise S.W., Zachos J.C. History of Antarctic glaciation: an Indian Ocean perspective // Synthesis of Results from Scientific Drilling in the Indian Ocean / Eds. R.A. Duncan, D.K. Rea, R.B. Kidd, U. von Rad, J.K. Weissel. Geophys. Monograph. AGU, 1992. V. 70. P. 423–446.
Frakes L.A., Matteheews J.L., Crowell J.C. Late Paleozoic Glaciation: Part III, Antarctica // The Geol. Soc. Am. Bull. 1971. V. 82. № 6. P. 1581–1604.
Francis J.E., Ashworth A., Cantrill D.J, Crame J.A., Howe J., Stephens R., Tosolini A.-M., Thorn V. 100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants // Antarctica: A Keystone in a Changing World / Eds. A.K. Cooper, P.J. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise. Proc. X Intern. Symp. Antarctic Earth Sci. National Acad. Press. Washington DC, 2008. P. 19–27.
Fretwell P., Pritchard H.D., Vaughan D.G., Bamber J.L., Barrand N.E., Bell R., Bianchi R.G., Bingham D.D., Blankenship G., Casassa G., Catania D., Callens H., Conway C., Cook A.J., Corr H.F.J., Damaske D., Damm V., Ferraccioli F., Forsberg R, Fujita S., Furukawa T., Gogineni P., Griggs J.A., Hamilton G., Hindmarsh R.C.A., Holmlund P., W. Holt R.W., Jacobel A., Jenkins W., Jokat T., Jordan E.C., King W., Krabill M., Riger-Kusk J., Tinto K., Langley K.A., Leitchenkov G., Luyendyk B.P., Matsuoka K., Nixdorf U., Nogi Y., Nost O.A., Popov S.V., Rignot E., Rippin D., Riviera A., Ross N., Siegert M.J., Shibuya K., Smith A.M., Steinhage D., Studinger M., Sun B., Thomas R.H., Tabacco I., Welch B., Young D.A., Xiangbin C., Zirizzotti A. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica // The Cryosphere. 2013. V. 7. P. 375–393.
Gersonde R., Kyte F.T., Bleil U., Diekmann B., Flores J.A., Gohl K., Grahl G., Hagen R., Kuhn G., Sierro F.J., Voelker D., Abelmann A., Bostwick J.A. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean // Nature. 1997. V. 390. P. 357–363.
Gersonde R., Censarek B. Middle-Late Miocene Southern Ocean climate development and its implication on Antarctic ice sheet development – Diatom evidence from Atlantic sector ODP Sites: Abstracts, EGU Geophysical Research 06285. 2006. V. 8. SRef-ID: 1607-7962/gra/EGU06-A-06285.
Harwood D.M., Webb P.-N. Recycled marine microfossils from basal debris-ice in ice-free valleys of southern Victoria Land // Antarctic Journ. of the United States. 1986. V. 21. P. 87–88.
Haywood A.M., Smelle J.L., Ashworth A.C., Cantrill D.J., Florindo F., Hambrey M.J., Hill D., Hillenbrand C-D., Hunter S.J., Larter R.D., Lear C.H., Passchier S., Wal R. Middle Miocene to Pliocene History of Antarctica and the Southern Ocean // Antarctic climate evolution. Developments in Earth & Environmental Science / Eds. F. Florindo, M. Siegert. Elsevier, 2009. V. 8. P. 401–463.
Hill D.J., Haywood A.M., Hindmarsh R.C.A., Valdes P.J. Characterizing ice sheets during the Pliocene: evidence from data and models // Deep time perspectives on climate change: Marrying biological Proxis and climate models / Eds. M.A. Williams, J. Haywood, G.D. Schmidt. Micropaleontological Society, Special Publication. London, 2007. P. 517–538.
Joseph L.H., Rea D.K., van der Pluijm B.A., Gleason J.D. Antarctic environmental variability since the late Miocene: ODP Site 745, the East Kerguelen sediment drift // Earth and Planet. Sience Letters. 2002. V. 201. P. 127–142.
Kennett J.P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography // Journ. of Geophys. Research. 1977. V. 82. P. 3843–3859.
Macphail M.K., Truswell E.M. Polynology of site 1166, Pydz Bay, East Antarctica // Proceedings of the Ocean Drilling Program, Scientific Results / Eds. A.K. Cooper, P.E. O’Brien, C. Richter. College Station. TX, 2004. V. 188. P. 1–43.
Miller K.G., Sugarman P.J., Browning J.V., Kominz M.A, Hernandez J.C., Olsson R.K., Wright J.D., Feigenson M.D. Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world // Geology. 2003. V. 31. № 7. P. 585–588.
Miller K.G., Kominz M.A., Browning J.V., Wright J.D., Mountain G.S., Katz M.E., Sugarman P.J., Cramer B.S., Christie-Blick N., Pekar S.F. The Phanerozoic record of global sea-level change // Science. 2005. V. 310. P. 1293–1298.
Naish T., Carter L., Wolff E., Pollard D., Powell R. Late Pliocene-Pleistocene Antarctic climate variability at orbital and suborbital scale: ice sheet ocean and atmospheric interactions // Antarctic Climate Evolution. Developments in Earth & Environmental Science / Eds. F. Florindo, M. Siegert. Elsevier, 2009. V. 8. P. 465–529.
Pearson P.N., Palmer M.R. Atmospheric carbon dioxide concentrations over the past 60 million years // Nature. 2000. V. 406. P. 695–699.
Pekar S.F. When did the icehouse cometh? // Nature. 2008. V. 455. P. 602–603.
Pekar S.F., DeConto R.M. High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica // Palaeogeography, Palaeoclimatology, Palaeoecology. 2006. V. 231. P. 101–109.
Pekar S.F., Christie-Blick N. Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in pCO2 during the Oligocene through early Miocene (34–16 Ma) // Palaeogeography, Palaeoclimatology, Palaeoecology. 2008. V. 260. P. 41–49.
Poole I., Cantrill D., Utescher T. A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and early Tertiary // Palaeogeography, Palaeoclimatology, Palaeoecology. 2005. V. 222. P. 95–121.
Proceedings of the Ocean Drilling Program, Scientific results // Ocean Drilling Program / Eds. J. Barron, B. Larson. College Station. TX, 1991. V. 119. 1003 p.
Rignot E. Mass balance of East Antarctic glaciers and ice shelves from satellite data // Annals of Glaciology. 2002. V. 34. P. 217–227.
Strand K., Passchier S., Näsi J. Implications of quartz grain microtextures for onset of Eocene/Oligocene glaciation in Prydz Bay, ODP Site 1166, Antarctica // Palaeogeography, Palaeoclimatology, Palaeoecology. 2003. V. 198. P. 101–112.
Tripati A., Backman J., Elderfield H., Ferretti P. Eocene bipolar glaciation associated with global carbon cycle changes // Nature. 2005. V. 43. P. 341–346.
Whitehead J.M., Quilty P.G., Mckelvey B.C., O’Brien P.E. A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben–Prydz Bay region, East Antarctica // Antarctic Science. 2006. V. 18. № 1. P. 83–99.
Zachos J., Pagani M., Sloan L., Thomas E., Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present // Science. 2001. V. 292. P. 686–693.
https://ice-snow.igras.ru/jour/article/view/74
doi:10.15356/2076-6734-2014-4-107-116
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2014-4-107-116
https://doi.org/10.15356/2076-6734-2014-4
container_title Ice and Snow
container_volume 128
container_issue 4
container_start_page 107
_version_ 1766003877625200640
spelling ftjias:oai:oai.ice.elpub.ru:article/74 2023-05-15T13:29:51+02:00 Environmental and climate changes in Antarctica in the Geological Past Изменения климата и природной среды Антарктики в геологическом прошлом G. Leitchenkov L. Г. Лейченков Л. 2015-03-27 https://ice-snow.igras.ru/jour/article/view/74 https://doi.org/10.15356/2076-6734-2014-4-107-116 ru rus IGRAS Лейченков Г.Л., Гусева Ю.Б. Сейсмостратиграфия осадочного чехла индоокеанской акватории Антарктики и реконструкция природной среды в геологическом прошлом // Разведка и охрана недр. 2012. № 8. С. 21–28. Barker P.F., Burrell J. The opening of Drake Passage // Marine Geology. 1977. V. 25. P. 15–34. Barker P.F., Barrett P., Camerlenghi A., Cooper A.K., Davey F., Domack E., Escutia C., Jokat W., O’Brien P. Ice sheet history from Antarctic Continental margin sediments: the ANTOSTRAT approach // Terra Antarctica. 1998. V. 5. № 4. P. 737–760. Barrett P.J. Cooling a continent // Nature. 2003. V. 421. P. 221–223. Birkenmajer K., Gazdzicki A., Krajewski K.P., Przybycin A., Solecki A., Tatur A., Yoon H.I. First Cenozoic glaciers in West Antarctica // Polish Polar Research. 2005. V. 26. P. 3–12. Cooper A.K., O’Brien P.E. Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling // Proc. of the Ocean Drilling Program, Scientific Results / Eds. A.K. Cooper, P.E. O’Brien, C. Richter. College Station. TX, 2004. V. 188. P. 1–42. Ehrmann W. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics // Palaeogeography, Palaeoclimatology, Palaeoecology. 1998. V. 139. P. 213–231. Ehrmann W.U., Hambrey M.J., Baldauf J.G., Barron J., Larsen B., MacKensen A., Wise S.W., Zachos J.C. History of Antarctic glaciation: an Indian Ocean perspective // Synthesis of Results from Scientific Drilling in the Indian Ocean / Eds. R.A. Duncan, D.K. Rea, R.B. Kidd, U. von Rad, J.K. Weissel. Geophys. Monograph. AGU, 1992. V. 70. P. 423–446. Frakes L.A., Matteheews J.L., Crowell J.C. Late Paleozoic Glaciation: Part III, Antarctica // The Geol. Soc. Am. Bull. 1971. V. 82. № 6. P. 1581–1604. Francis J.E., Ashworth A., Cantrill D.J, Crame J.A., Howe J., Stephens R., Tosolini A.-M., Thorn V. 100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants // Antarctica: A Keystone in a Changing World / Eds. A.K. Cooper, P.J. Barrett, H. Stagg, B. Storey, E. Stump, W. Wise. Proc. X Intern. Symp. Antarctic Earth Sci. National Acad. Press. Washington DC, 2008. P. 19–27. Fretwell P., Pritchard H.D., Vaughan D.G., Bamber J.L., Barrand N.E., Bell R., Bianchi R.G., Bingham D.D., Blankenship G., Casassa G., Catania D., Callens H., Conway C., Cook A.J., Corr H.F.J., Damaske D., Damm V., Ferraccioli F., Forsberg R, Fujita S., Furukawa T., Gogineni P., Griggs J.A., Hamilton G., Hindmarsh R.C.A., Holmlund P., W. Holt R.W., Jacobel A., Jenkins W., Jokat T., Jordan E.C., King W., Krabill M., Riger-Kusk J., Tinto K., Langley K.A., Leitchenkov G., Luyendyk B.P., Matsuoka K., Nixdorf U., Nogi Y., Nost O.A., Popov S.V., Rignot E., Rippin D., Riviera A., Ross N., Siegert M.J., Shibuya K., Smith A.M., Steinhage D., Studinger M., Sun B., Thomas R.H., Tabacco I., Welch B., Young D.A., Xiangbin C., Zirizzotti A. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica // The Cryosphere. 2013. V. 7. P. 375–393. Gersonde R., Kyte F.T., Bleil U., Diekmann B., Flores J.A., Gohl K., Grahl G., Hagen R., Kuhn G., Sierro F.J., Voelker D., Abelmann A., Bostwick J.A. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean // Nature. 1997. V. 390. P. 357–363. Gersonde R., Censarek B. Middle-Late Miocene Southern Ocean climate development and its implication on Antarctic ice sheet development – Diatom evidence from Atlantic sector ODP Sites: Abstracts, EGU Geophysical Research 06285. 2006. V. 8. SRef-ID: 1607-7962/gra/EGU06-A-06285. Harwood D.M., Webb P.-N. Recycled marine microfossils from basal debris-ice in ice-free valleys of southern Victoria Land // Antarctic Journ. of the United States. 1986. V. 21. P. 87–88. Haywood A.M., Smelle J.L., Ashworth A.C., Cantrill D.J., Florindo F., Hambrey M.J., Hill D., Hillenbrand C-D., Hunter S.J., Larter R.D., Lear C.H., Passchier S., Wal R. Middle Miocene to Pliocene History of Antarctica and the Southern Ocean // Antarctic climate evolution. Developments in Earth & Environmental Science / Eds. F. Florindo, M. Siegert. Elsevier, 2009. V. 8. P. 401–463. Hill D.J., Haywood A.M., Hindmarsh R.C.A., Valdes P.J. Characterizing ice sheets during the Pliocene: evidence from data and models // Deep time perspectives on climate change: Marrying biological Proxis and climate models / Eds. M.A. Williams, J. Haywood, G.D. Schmidt. Micropaleontological Society, Special Publication. London, 2007. P. 517–538. Joseph L.H., Rea D.K., van der Pluijm B.A., Gleason J.D. Antarctic environmental variability since the late Miocene: ODP Site 745, the East Kerguelen sediment drift // Earth and Planet. Sience Letters. 2002. V. 201. P. 127–142. Kennett J.P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography // Journ. of Geophys. Research. 1977. V. 82. P. 3843–3859. Macphail M.K., Truswell E.M. Polynology of site 1166, Pydz Bay, East Antarctica // Proceedings of the Ocean Drilling Program, Scientific Results / Eds. A.K. Cooper, P.E. O’Brien, C. Richter. College Station. TX, 2004. V. 188. P. 1–43. Miller K.G., Sugarman P.J., Browning J.V., Kominz M.A, Hernandez J.C., Olsson R.K., Wright J.D., Feigenson M.D. Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world // Geology. 2003. V. 31. № 7. P. 585–588. Miller K.G., Kominz M.A., Browning J.V., Wright J.D., Mountain G.S., Katz M.E., Sugarman P.J., Cramer B.S., Christie-Blick N., Pekar S.F. The Phanerozoic record of global sea-level change // Science. 2005. V. 310. P. 1293–1298. Naish T., Carter L., Wolff E., Pollard D., Powell R. Late Pliocene-Pleistocene Antarctic climate variability at orbital and suborbital scale: ice sheet ocean and atmospheric interactions // Antarctic Climate Evolution. Developments in Earth & Environmental Science / Eds. F. Florindo, M. Siegert. Elsevier, 2009. V. 8. P. 465–529. Pearson P.N., Palmer M.R. Atmospheric carbon dioxide concentrations over the past 60 million years // Nature. 2000. V. 406. P. 695–699. Pekar S.F. When did the icehouse cometh? // Nature. 2008. V. 455. P. 602–603. Pekar S.F., DeConto R.M. High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica // Palaeogeography, Palaeoclimatology, Palaeoecology. 2006. V. 231. P. 101–109. Pekar S.F., Christie-Blick N. Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in pCO2 during the Oligocene through early Miocene (34–16 Ma) // Palaeogeography, Palaeoclimatology, Palaeoecology. 2008. V. 260. P. 41–49. Poole I., Cantrill D., Utescher T. A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and early Tertiary // Palaeogeography, Palaeoclimatology, Palaeoecology. 2005. V. 222. P. 95–121. Proceedings of the Ocean Drilling Program, Scientific results // Ocean Drilling Program / Eds. J. Barron, B. Larson. College Station. TX, 1991. V. 119. 1003 p. Rignot E. Mass balance of East Antarctic glaciers and ice shelves from satellite data // Annals of Glaciology. 2002. V. 34. P. 217–227. Strand K., Passchier S., Näsi J. Implications of quartz grain microtextures for onset of Eocene/Oligocene glaciation in Prydz Bay, ODP Site 1166, Antarctica // Palaeogeography, Palaeoclimatology, Palaeoecology. 2003. V. 198. P. 101–112. Tripati A., Backman J., Elderfield H., Ferretti P. Eocene bipolar glaciation associated with global carbon cycle changes // Nature. 2005. V. 43. P. 341–346. Whitehead J.M., Quilty P.G., Mckelvey B.C., O’Brien P.E. A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben–Prydz Bay region, East Antarctica // Antarctic Science. 2006. V. 18. № 1. P. 83–99. Zachos J., Pagani M., Sloan L., Thomas E., Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present // Science. 2001. V. 292. P. 686–693. https://ice-snow.igras.ru/jour/article/view/74 doi:10.15356/2076-6734-2014-4-107-116 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 54, № 4 (2014); 107-116 Лёд и Снег; Том 54, № 4 (2014); 107-116 2412-3765 2076-6734 10.15356/2076-6734-2014-4 Antarctica;climate change;environment;geological and geophysical data;ice sheet Антарктида;геолого-геофизические данные;изменение климата;ледниковый покров;природная среда info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2014-4-107-116 https://doi.org/10.15356/2076-6734-2014-4 2022-12-20T13:30:26Z In the Cretaceous time, Antarctica was characterized by subtropical and tropical climate. The Early Eocene was warmest in the Antarctic history but this Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica at about 34 Ma ago. There is indirect evidence that small ice caps developed within central Antarctica in the Late Eocene (42−34 Ma). From the Early Oligocene to the Middle Miocene (34−13 Ma) ice sheet was wet-based and fluctuated considerably in volume, but about 14 m.y. ago it became dry-based and more stable. Seismic data collected on the East Antarctic margin give valuable information on dynamics of the past ice sheets. These data shows that the sedimentary cover of the western Wilkes Land margin includes a giant (c. 200 000 km2) deep-water fan which formed between c. 43 and 34 Ma ago. The average rate of sedimentation in the central part of fan was 230–250 m/m.y. Active input of terrigenous sediments into deep-water denotes high-energy fluvial system within the Wilkes Land. Emergence of this fluvial system evidences earliest glaciation in the Antarctic interior which fed full-flowing rivers. The thickness of strata deposited during post-Early Oligocene glaciations on the Antarctic margin generally reflects the averaged energy of depositional environments. The thickest sediments (up to 2.0 km, i.e. almost twice more than in other parts of East Antarctic margin) and inferred highest energy are seen in the central Cooperation Sea, on the central Wilkes Land margin and in the D'Urville Sea. The areas with the thickest post-Early Oligocene strata correlate with places where present-day ice discharge is highest, such as via the Lambert, Totten and Mertz/Ninnis Glaciers. The correlation points to high ice (and sediment) flux in the same areas since the Early Oligocene. Даётся обзор изменений климата и природной среды Антарктики в кайнозое с более подробной информацией о гляциальной истории Южного континента. Покровное оледенение в Антарктиде ... Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctic Antarctic Science Antarctica Cooperation Sea D'Urville Sea Ice Sheet Polar Research The Cryosphere Wilkes Land Антарктида Ice and Snow (E-Journal) Antarctic The Antarctic Wilkes Land ENVELOPE(120.000,120.000,-69.000,-69.000) D'Urville Sea ENVELOPE(140.000,140.000,-65.000,-65.000) Cooperation Sea ENVELOPE(70.000,70.000,-67.000,-67.000) Ice and Snow 128 4 107