Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar
Results of field investigations of snow-and-firn thickness and ground structures performed with the use of geophysical radar GPR (Ground-Penetrating Radar) are discussed in the paper. Industrial radar GSSI SIR10B (Geophysical Survey Systems, Inc., USA) with «5106» antenna (pulses frequency of 200 MH...
Published in: | Ice and Snow |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | Russian |
Published: |
IGRAS
2015
|
Subjects: | |
Online Access: | https://ice-snow.igras.ru/jour/article/view/73 https://doi.org/10.15356/2076-6734-2014-4-95-106 |
id |
ftjias:oai:oai.ice.elpub.ru:article/73 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Ice and Snow (E-Journal) |
op_collection_id |
ftjias |
language |
Russian |
topic |
East Antarctica;GPR profiling;Progress Station;Vostok Station Восточная Антарктида;георадарное профилирование;станция Восток;станция Прогресс |
spellingShingle |
East Antarctica;GPR profiling;Progress Station;Vostok Station Восточная Антарктида;георадарное профилирование;станция Восток;станция Прогресс S. Popov V. L. Eberlein С. Попов В. Л. Эберляйн Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar |
topic_facet |
East Antarctica;GPR profiling;Progress Station;Vostok Station Восточная Антарктида;георадарное профилирование;станция Восток;станция Прогресс |
description |
Results of field investigations of snow-and-firn thickness and ground structures performed with the use of geophysical radar GPR (Ground-Penetrating Radar) are discussed in the paper. Industrial radar GSSI SIR10B (Geophysical Survey Systems, Inc., USA) with «5106» antenna (pulses frequency of 200 MHz) was used. Its mean wavelength is 1.57±0.18 km. The main purpose of this work was to test this new technique for solution of glaciological and geological problems. The works were done during the austral summer season of 2012–2013 (58th Russian Antarctic Expedition) in the Eastern Antarctica and mainly concentrated in the vicinity of the Lake Vostok, between the Russian stations Vostok and Progress (the Larsemann Hills). The GPR sounding was carried out together with precise geodetic measurements. The electromagnetic wave propagation in the snow-firn layer was analyzed using the data on density obtained from the 5G borehole at the Vostok Station. Investigations near the Vostok Station focused on a huge snow ridge or so-called “megadune” located eastward from the station at a distance of 30 km. About 80 km of the GPR cross-sections were collected there. Eight internal layers were traced. They demonstrated wavy forms with amplitudes of about 10 m high which corresponded to the megadunes. Main result of GPR investigations in the Larsemann Hills was our understanding of the snow-firn and ground structures in this region. The GPR data collected on structures of crevasses near Progress-1, shallow glacier near the Progress-3, and ground not far from Progress-2 are also discussed. Methodological recommendations on using the GPR under conditions of the Eastern Antarctica were developed. Рассматриваются результаты георадарных исследований, проведённых в Восточной Антарктиде в летний полевой сезон 58-й РАЭ (2012/13 гг.). Цель этих работ – изучение строения снежно-фирновой толщи и грунта районов подледникового озера Восток, трассы следования санно-гусеничного похода «Восток – Прогресс» и холмов Ларсеманн (станция Прогресс). ... |
format |
Article in Journal/Newspaper |
author |
S. Popov V. L. Eberlein С. Попов В. Л. Эберляйн |
author_facet |
S. Popov V. L. Eberlein С. Попов В. Л. Эберляйн |
author_sort |
S. Popov V. |
title |
Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar |
title_short |
Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar |
title_full |
Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar |
title_fullStr |
Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar |
title_full_unstemmed |
Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar |
title_sort |
investigation of snow-firn thickness and ground in the east antarctica by means of geophysical radar |
publisher |
IGRAS |
publishDate |
2015 |
url |
https://ice-snow.igras.ru/jour/article/view/73 https://doi.org/10.15356/2076-6734-2014-4-95-106 |
long_lat |
ENVELOPE(76.217,76.217,-69.400,-69.400) ENVELOPE(106.000,106.000,-77.500,-77.500) ENVELOPE(106.837,106.837,-78.464,-78.464) ENVELOPE(76.383,76.383,-69.367,-69.367) |
geographic |
Antarctic East Antarctica Austral Larsemann Hills Lake Vostok Vostok Station Progress Station |
geographic_facet |
Antarctic East Antarctica Austral Larsemann Hills Lake Vostok Vostok Station Progress Station |
genre |
Annals of Glaciology Antarc* Antarctic Antarctica Arctic East Antarctica Антарктида |
genre_facet |
Annals of Glaciology Antarc* Antarctic Antarctica Arctic East Antarctica Антарктида |
op_source |
Ice and Snow; Том 54, № 4 (2014); 95-106 Лёд и Снег; Том 54, № 4 (2014); 95-106 2412-3765 2076-6734 10.15356/2076-6734-2014-4 |
op_relation |
Барков Н.И. Результаты исследования скважины и ледяного керна на станции Восток в 1970–1972 гг. // МГИ. 1973. № 22. С. 77–81. Богородский В.В., Бентли Ч.Р., Гудмандсен П. Радиогляциология. Л.: Гидрометеоиздат, 1983. 308 с. Лайонс Р. Цифровая обработка сигналов / Пер. с англ. М.: изд. ООО «Бином-Пресс», 2006. 656 с. Мачерет Ю.Я. Радиозондирование ледников. М.: Научный мир, 2006. 392 с. Попов С.В., Харитонов В.В., Черноглазов Ю.Б. Плотность и удельная аккумуляция снежного покрова южной части подледникового озера Восток (Восточная Антарктида) // МГИ. 2004. № 96. С. 201–206. Попов С.В., Липенков В.Я., Еналиева В.В., Преображенская А.В. Внутриледниковые изохронные поверхности в районе озера Восток, Восточная Антарктида // Проблемы Арктики и Антарктики. 2007. № 76. С. 89–95. Финкельштейн М.И., Карпухин В.И., Кутев В.А., Метелкин В.Н. Подповерхностная радиолокация. М.: Радио и связь, 1994. 216 с. Черноглазов Ю.Б., Попов С.В., Мартьянов В.Л. Проведение аэрофотосъемки на российской станции Прогресс в Восточной Антарктиде в 2004–2005 гг. // МГИ. 2006. № 100. С. 160–164. Annan A.P. GPR-history, trends and future developments // Subsurface Sensing Technologies and Applications. 2002. V. 3. № 4. P. 253–270. doi:10.1023/A:1020657129590. Arcone S.A., Delaney A.J. GPR images of hidden crevasses in Antarctica // Proc. SPIE 4084. 8th Intern. Conf. on Ground Penetrating Radar, 760, April 27. 2000. doi:10.1117/12.383512. Arcone S.A., Chacho E.F., Delaney A.J. Seasonal structure of taliks beneath Arctic streams determined with ground-penetrating radar // PERMAFROST – 7th Intern. Conf. (Proc.), Yellowknife (Canada), Collection Nordicana. 1998. № 55. P. 19–24. Arcone S.A., Kreutz K.J. GPR Reflection Profiles of Clark and Commonwealth Glaciers, Dry Valleys, Antarctica // Annals of Glaciology. 2009. V. 50. № 51. P. 121–129. Brandt O., Kohler J., Luthje M. Spatial mapping of multi-year superimposed ice on the glacier Kongsvegen, Svalbard // Journ. of Glaciology. 2008. V. 54. № 184. P. 73–80. Dunse T., Schuler T.V., Hagen J.O., Eiken T., Brandt O., Høgda K.A. Recent fluctuations in the extent of the firn area of Austfonna, Svalbard, inferred from GPR // Annals of Glaciology. 2009. V. 50. № 50. P. 155–162. Eder K, Reidler C, Mayer C, Leopold M. Crevasse detection in alpine areas using ground penetrating radar as a component for a mountain guide system // The Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. V. XXXVII. Pt. B8. Beijing, 2008. P. 837–841. Ekaykin A.A., Lipenkov V.Y., Petit J.R., Johnsen S., Jouzel J., Masson-Delmotte V. Insights into hydrological regime of Lake Vostok from differential behavior of deuterium and oxygen-18 in accreted ice // Journ. of Geophys. Research. 2010. V. 115. № C05003. P. 1–14. doi:10.1029/2009JC005329. Frezzotti M., Gandolfi S., Urbini S. Snow megadunes in Antarctica: Sedimentary structure and genesis // Jоurn. of Geophys. Research. 2002. V. 107. № D18. 4344. doi:10.1029/2001JD000673. Kanagaratnam P., Gogineni S.P., Ramasami V., Braaten D. A wideband radar for high-resolution mapping of near-surface internal layers in glacial ice // IEEE Transactions on Geoscience and Remote Sensing. 2004. V. 42. № 3. P. 483–490. Liu H., Jezek K., Li B., Zhao Z. Radarsat Antarctic Mapping Project digital elevation model version 2. Boulder, Colorado USA: National Snow and Ice Data Center, Digital media, 2001. Robin G. de Q. Velocity of radio waves in ice by means of interferometric technique // Journ. of Glaciology. 1975. V. 15. № 73. P. 151–159. https://ice-snow.igras.ru/jour/article/view/73 doi:10.15356/2076-6734-2014-4-95-106 |
op_rights |
Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.15356/2076-6734-2014-4-95-106 https://doi.org/10.15356/2076-6734-2014-4 https://doi.org/10.1023/A:1020657129590 https://doi.org/10.1117/12.383512 https://doi.org/10.1029/2009JC005329 https://doi.org/10.1029/2001JD000673 |
container_title |
Ice and Snow |
container_volume |
128 |
container_issue |
4 |
container_start_page |
95 |
_version_ |
1766003455134007296 |
spelling |
ftjias:oai:oai.ice.elpub.ru:article/73 2023-05-15T13:29:50+02:00 Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar Опыт применения георадара для изучения строения снежно-фирновой толщи и грунта Восточной Антарктиды S. Popov V. L. Eberlein С. Попов В. Л. Эберляйн 2015-03-27 https://ice-snow.igras.ru/jour/article/view/73 https://doi.org/10.15356/2076-6734-2014-4-95-106 ru rus IGRAS Барков Н.И. Результаты исследования скважины и ледяного керна на станции Восток в 1970–1972 гг. // МГИ. 1973. № 22. С. 77–81. Богородский В.В., Бентли Ч.Р., Гудмандсен П. Радиогляциология. Л.: Гидрометеоиздат, 1983. 308 с. Лайонс Р. Цифровая обработка сигналов / Пер. с англ. М.: изд. ООО «Бином-Пресс», 2006. 656 с. Мачерет Ю.Я. Радиозондирование ледников. М.: Научный мир, 2006. 392 с. Попов С.В., Харитонов В.В., Черноглазов Ю.Б. Плотность и удельная аккумуляция снежного покрова южной части подледникового озера Восток (Восточная Антарктида) // МГИ. 2004. № 96. С. 201–206. Попов С.В., Липенков В.Я., Еналиева В.В., Преображенская А.В. Внутриледниковые изохронные поверхности в районе озера Восток, Восточная Антарктида // Проблемы Арктики и Антарктики. 2007. № 76. С. 89–95. Финкельштейн М.И., Карпухин В.И., Кутев В.А., Метелкин В.Н. Подповерхностная радиолокация. М.: Радио и связь, 1994. 216 с. Черноглазов Ю.Б., Попов С.В., Мартьянов В.Л. Проведение аэрофотосъемки на российской станции Прогресс в Восточной Антарктиде в 2004–2005 гг. // МГИ. 2006. № 100. С. 160–164. Annan A.P. GPR-history, trends and future developments // Subsurface Sensing Technologies and Applications. 2002. V. 3. № 4. P. 253–270. doi:10.1023/A:1020657129590. Arcone S.A., Delaney A.J. GPR images of hidden crevasses in Antarctica // Proc. SPIE 4084. 8th Intern. Conf. on Ground Penetrating Radar, 760, April 27. 2000. doi:10.1117/12.383512. Arcone S.A., Chacho E.F., Delaney A.J. Seasonal structure of taliks beneath Arctic streams determined with ground-penetrating radar // PERMAFROST – 7th Intern. Conf. (Proc.), Yellowknife (Canada), Collection Nordicana. 1998. № 55. P. 19–24. Arcone S.A., Kreutz K.J. GPR Reflection Profiles of Clark and Commonwealth Glaciers, Dry Valleys, Antarctica // Annals of Glaciology. 2009. V. 50. № 51. P. 121–129. Brandt O., Kohler J., Luthje M. Spatial mapping of multi-year superimposed ice on the glacier Kongsvegen, Svalbard // Journ. of Glaciology. 2008. V. 54. № 184. P. 73–80. Dunse T., Schuler T.V., Hagen J.O., Eiken T., Brandt O., Høgda K.A. Recent fluctuations in the extent of the firn area of Austfonna, Svalbard, inferred from GPR // Annals of Glaciology. 2009. V. 50. № 50. P. 155–162. Eder K, Reidler C, Mayer C, Leopold M. Crevasse detection in alpine areas using ground penetrating radar as a component for a mountain guide system // The Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. V. XXXVII. Pt. B8. Beijing, 2008. P. 837–841. Ekaykin A.A., Lipenkov V.Y., Petit J.R., Johnsen S., Jouzel J., Masson-Delmotte V. Insights into hydrological regime of Lake Vostok from differential behavior of deuterium and oxygen-18 in accreted ice // Journ. of Geophys. Research. 2010. V. 115. № C05003. P. 1–14. doi:10.1029/2009JC005329. Frezzotti M., Gandolfi S., Urbini S. Snow megadunes in Antarctica: Sedimentary structure and genesis // Jоurn. of Geophys. Research. 2002. V. 107. № D18. 4344. doi:10.1029/2001JD000673. Kanagaratnam P., Gogineni S.P., Ramasami V., Braaten D. A wideband radar for high-resolution mapping of near-surface internal layers in glacial ice // IEEE Transactions on Geoscience and Remote Sensing. 2004. V. 42. № 3. P. 483–490. Liu H., Jezek K., Li B., Zhao Z. Radarsat Antarctic Mapping Project digital elevation model version 2. Boulder, Colorado USA: National Snow and Ice Data Center, Digital media, 2001. Robin G. de Q. Velocity of radio waves in ice by means of interferometric technique // Journ. of Glaciology. 1975. V. 15. № 73. P. 151–159. https://ice-snow.igras.ru/jour/article/view/73 doi:10.15356/2076-6734-2014-4-95-106 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 54, № 4 (2014); 95-106 Лёд и Снег; Том 54, № 4 (2014); 95-106 2412-3765 2076-6734 10.15356/2076-6734-2014-4 East Antarctica;GPR profiling;Progress Station;Vostok Station Восточная Антарктида;георадарное профилирование;станция Восток;станция Прогресс info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2014-4-95-106 https://doi.org/10.15356/2076-6734-2014-4 https://doi.org/10.1023/A:1020657129590 https://doi.org/10.1117/12.383512 https://doi.org/10.1029/2009JC005329 https://doi.org/10.1029/2001JD000673 2022-12-20T13:30:18Z Results of field investigations of snow-and-firn thickness and ground structures performed with the use of geophysical radar GPR (Ground-Penetrating Radar) are discussed in the paper. Industrial radar GSSI SIR10B (Geophysical Survey Systems, Inc., USA) with «5106» antenna (pulses frequency of 200 MHz) was used. Its mean wavelength is 1.57±0.18 km. The main purpose of this work was to test this new technique for solution of glaciological and geological problems. The works were done during the austral summer season of 2012–2013 (58th Russian Antarctic Expedition) in the Eastern Antarctica and mainly concentrated in the vicinity of the Lake Vostok, between the Russian stations Vostok and Progress (the Larsemann Hills). The GPR sounding was carried out together with precise geodetic measurements. The electromagnetic wave propagation in the snow-firn layer was analyzed using the data on density obtained from the 5G borehole at the Vostok Station. Investigations near the Vostok Station focused on a huge snow ridge or so-called “megadune” located eastward from the station at a distance of 30 km. About 80 km of the GPR cross-sections were collected there. Eight internal layers were traced. They demonstrated wavy forms with amplitudes of about 10 m high which corresponded to the megadunes. Main result of GPR investigations in the Larsemann Hills was our understanding of the snow-firn and ground structures in this region. The GPR data collected on structures of crevasses near Progress-1, shallow glacier near the Progress-3, and ground not far from Progress-2 are also discussed. Methodological recommendations on using the GPR under conditions of the Eastern Antarctica were developed. Рассматриваются результаты георадарных исследований, проведённых в Восточной Антарктиде в летний полевой сезон 58-й РАЭ (2012/13 гг.). Цель этих работ – изучение строения снежно-фирновой толщи и грунта районов подледникового озера Восток, трассы следования санно-гусеничного похода «Восток – Прогресс» и холмов Ларсеманн (станция Прогресс). ... Article in Journal/Newspaper Annals of Glaciology Antarc* Antarctic Antarctica Arctic East Antarctica Антарктида Ice and Snow (E-Journal) Antarctic East Antarctica Austral Larsemann Hills ENVELOPE(76.217,76.217,-69.400,-69.400) Lake Vostok ENVELOPE(106.000,106.000,-77.500,-77.500) Vostok Station ENVELOPE(106.837,106.837,-78.464,-78.464) Progress Station ENVELOPE(76.383,76.383,-69.367,-69.367) Ice and Snow 128 4 95 |