Ice thickness, volume and subglacial relief of Djankuat Glacier (Central Caucasus)

In this paper we present and discuss results of radio-echo sounding and modelling of ice thickness of the Djankuat Glacier. This glacier is the reference one for the Central Caucasus and was earlier studied comprehensively, but direct ice thickness measurements survey were not made so far. In 2012–2...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: I. Lavrentiev I., S. Kutuzov S., D. Petrakov A., G. Popov A., V. Popovnin V., И. Лаврентьев И., С. Кутузов С., Д. Петраков А., Г. Попов А., В. Поповнин В.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/65
https://doi.org/10.15356/2076-6734-2014-4-7-19
_version_ 1828687094848946176
author I. Lavrentiev I.
S. Kutuzov S.
D. Petrakov A.
G. Popov A.
V. Popovnin V.
И. Лаврентьев И.
С. Кутузов С.
Д. Петраков А.
Г. Попов А.
В. Поповнин В.
author_facet I. Lavrentiev I.
S. Kutuzov S.
D. Petrakov A.
G. Popov A.
V. Popovnin V.
И. Лаврентьев И.
С. Кутузов С.
Д. Петраков А.
Г. Попов А.
В. Поповнин В.
author_sort I. Lavrentiev I.
collection Ice and Snow
container_issue 4
container_start_page 7
container_title Ice and Snow
container_volume 128
description In this paper we present and discuss results of radio-echo sounding and modelling of ice thickness of the Djankuat Glacier. This glacier is the reference one for the Central Caucasus and was earlier studied comprehensively, but direct ice thickness measurements survey were not made so far. In 2012–2013, more than 20 km of ice-thickness measurement profiles were obtained using monopulse ground radar VIRL-6 with its central frequency of 20 MHz. Standard error of the ice-thickness measurement was 2.5%. Detailed maps of the ice-thickness and the bedrock topography based on these direct measurements were constructed for the first time. Its average ice-thickness is 31 m with the maximum of 105 m. Djankuat Glacier ice volume is 0.077±0.002 km3 when Djantugan plateau is not taken into account. Ice thickness map was supplemented by results of the ice thickness modelling using the GlabTop model. It was shown that the model reproduces the ice thickness distribution correctly, and a special approach was developed to correct model parameters using ice thickness measurements. Further on, we plan to use corrected GlabTop model for estimation glaciations of the Caucasus as well as to carry out ground radar sounding of the Djantugan plateau. Анализируются результаты радиолокационных измерений и моделирования толщины льда опорного для Центрального Кавказа ледника Джанкуат. Несмотря на всестороннюю изученность, площадная инструментальная съёмка толщины льда на этом леднике до сих пор не проводилась. В 2012–2013 гг. на леднике Джанкуат при помощи моноимпульсного радиолокатора ВИРЛ-6 с центральной частотой 20 МГц пройдено более 20 км профилей, перекрывающих основную часть ледника. Стандартная ошибка измерений составила 2,5% измеряемой величины. Впервые были построены детальные карты толщины льда и подлёдного рельефа ледника, основанные на фактических данных. Максимальная измеренная толщина ледника составляет 105 м при средней толщине 31 м. Объём ледника Джанкуат без учёта Джантуганского плато, согласно данным инструментальных ...
format Article in Journal/Newspaper
genre Annals of Glaciology
The Cryosphere
genre_facet Annals of Glaciology
The Cryosphere
id ftjias:oai:oai.ice.elpub.ru:article/65
institution Open Polar
language Russian
op_collection_id ftjias
op_relation https://ice-snow.igras.ru/jour/article/view/65/38
Aleshin A.S. Experience of seismic studies at the Djankuat Glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1972, 20: 213–215. [In Russian].
Aleshin A.S., Berri B.L., Zhigalin A.D., Ogilvi A.A., Rasul Aga V. Application of geophysical methods to the study of hydrological and structural peculiarities of Djankuat Glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1972, 20: 157–163. [In Russian].
Berri B.L., Golubev G.N., Ogilvi A.A., Ushakova L.A., Ushakov S.A., Sheremet O.G. Application of geophysical methods to the study of the glaciers in Great Caucasus Djankuat and Bashkara. Trudy ZAKNIGMI. Proc. of Transcaucasian Hydrometeorological Institute. 1970, 45 (51): 182–187. [In Russian].
Bogorodsky V.V. Fizicheskie metody issledovaniy lednikov. Physical methods of the glacier study. Leningrad: Gidrometeoizdat. Leningrad: Hydrometeoizdat, 1968: 214 p. [In Russian].
Vasilenko E.V., Glazovsky A.F., Lavrenriev I.I., Macheret Yu.Ya. Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen glaciers in Svalbard. Led i Sneg. Ice and Snow. 2014, 1 (125): 5–19. [In Russian].
Vasilenko E.V., Glazovsky A.F., Macheret Yu.Ya., Navarro F.X., Sokolov V.G., Shiraiwa T. Georadar VIRL for glacier sounding. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, 94: 225–234. [In Russian].
Voiykovsky K.F. Relationship between ice thickness and angle of its surface. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1997, 83: 155–158. [In Russian].
Voiykovsky K.F., Aleinikov A.A., Volodicheva N.A., Zolotarev E.A., Popovnin V.V., Kharkovets E.G. Monitoring of mountain glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2000, 89: 51–57. [In Russian].
Golubev G.N., Ushakova L.A., Ushakov S.A., Sheremet O.G. Methods and results of gravimetric observations of ice thickness in mountain glaciers Djankuat and Bashkara. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1970, 17: 72–75. [In Russian].
Kutuzov S.S., Lavrentiev I.I., Macheret Yu.Ya., Petrakov D.A. Changes of Marukh Glacier from 1945 until 2011. Led i Sneg. Ice and Snow. 2012, 1 (117): 123–127. [In Russian].
Lavrentiev I.I., Mikhakenko V.N., Kutuzov S.S. Ice thickness and subglacial relief of the West glacier plateau of Elbrus. Led i Sneg. Ice and Snow. 2010, 2 (110):12–18. [In Russian].
Lednik Djankuat. Djankuat Glacier. Leningrad: Hydromateoizdat, 1978: 183 p. [In Russian].
Lednik Marukh. Marukh Glacier. Leningrad: Hydromateoizdat, 1988: 254 p. [In Russian].
Macheret Yu.Ya. Gravimetric method in glaciology. Itogi nauki i tekhniki. Glyatsiologiya. Results of Science and Technology. Glaciology. V. 1. Moscow: VINITI, 1977: 6–40. [In Russian].
Macheret Yu.Ya. Seismic method in glaciology. Itogi nauki i tekhniki. Glyatsiologiya. Results of Science and Technology. Glaciology. V. 1. Moscow: VINITI, 1977: 41–86. [In Russian].
Macheret Yu.Ya. Radiozondirovanie lednikov. Radio sounding of glaciers. Moscow: Nauchnyi mir. Scientific World, 2006: 389 p. [In Russian].
Macheret Yu.Ya., Luchininov V.S. Interpretation of results in the contact radio sounding of warm mountain glaciers. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1973, 22: 45–57. [In Russian].
Macheret Yu.Ya., Berikashvili V.Sh., Vasilenko E.V., Sokolov V.G. Impulse radar for the sounding of glaciers with the optic channel for synchronization and digital processing of signals. Datchiki i sistemy. Sensing Elements and Systems. 2006, 12: 2–8. [In Russian].
Pastukhov V.G. Polnyi massoobmen lednika Djankuat. Total mass-exchange of Djankuat Glacier. Diploma. Geographical Faculty of MSU. 2011: 185 p. [In Russian].
Popovnin V.V., Petrakov D.A. Djankuat Glacier for the last 34 years (1967/68–2000/01). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2005, 98: 167–174. [In Russian].
Sukhanov L.A. Measuring of the thickness of mountain glaciers by radio sounding. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1974, 22: 58–65. [In Russian].
Sukhanov L.A., Morev V.A., Zotikov I.A. Portable ice thermoelectroboring systems. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1974, 23: 234–238. [In Russian].
Arcone S. Numerical studies of the radiation patterns of resistively loaded dipoles. Journ. of Applied Geophysics. 1995, 33: 39–52.
Bolch T., Kulkarni A., Kääb A., Huggel C., Paul F., Cogley J.G., Frey H., Kargel J.S., Fujita K., Scheel M., Bajracharya S., Stoffel M. The State and Fate of Himalayan Glaciers. Science. 2012, 336 (6079): 310–314. doi:10.1126/science.1215828.
Farinotti D., Huss M., Bauder A., Funk M., Truffer M. A method to estimate the ice volume and ice–thickness distribution of alpine glaciers. Journ. of Glaciology. 2009, 55 (191): 422–430.
Fisher A. Calculation of glacier volume from sparse ice–thickness data, applied to Schaufelferner, Austria. Journ. of Glaciology. 2009, 55 (191): 453–460.
Frey H., Machguth H., Huss M., Huggel C., Bajracharya S., Bolch T., Kulkarni A., Linsbauer A., Salzmann N., and Stoffel M. Ice volume estimates for the Himalaya–Karakoram region: evaluating different methods. The Cryosphere Discuss 7. 4813–4854. doi:10.5194/tcd–7–4813–2013, 2013.
Glacier Mass Balance Bulletin № 10 (2006–2007). Еds. W. Haeberli, I. Gärtner-Roer, M. Hoelzle, F. Paul, M. Zemp. ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich. 2009: 96 p.
Grinsted A. An estimate of global glacier volume. The Cryosphere. 2013, 7: 141–151. doi:10.5194/tc-7-141-2013.
Haeberli W., Hoelzle M. Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology. 1995, 21: 206–212.
Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journ. of Geophys. Research. 2012, 117: F04010.
Hutchinson M.F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journ. of Hydrology. 1989, 106: 211–232.
Li H., Ng F., Li Z., Qin D., Cheng G. An extended «perfectplasticity» method for estimating ice thickness along the flow line of mountain glaciers. Journ. of Geophys. Research. 2012, 117: F01020.
Linsbauer A., Paul F, Haeberli W. Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. Journ. of Geophys. Research. 2012, 117: F03007.
Paterson W.S.B. The Physics of Glaciers. 3rd edition. Butterworth–Heinemann, 1994: 496 p.
Paul F., Linsbauer A. Modeling of glacier bed topography from glacier outlines, central branch lines and a DEM. Intern. Journ. of Geographical Information Science. 2012, 26 (7): 1–18.
Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., Hagen J.-O., Hock R., Kaser G., Kienholz C., Miles E.S., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B.H., Rich J., Sharp M.J. and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Geophys. Research. 2013, submitted.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_source Ice and Snow; Том 54, № 4 (2014); 7-19
Лёд и Снег; Том 54, № 4 (2014); 7-19
2412-3765
2076-6734
10.15356/2076-6734-2014-4
publishDate 2015
publisher IGRAS
record_format openpolar
spelling ftjias:oai:oai.ice.elpub.ru:article/65 2025-04-06T14:32:59+00:00 Ice thickness, volume and subglacial relief of Djankuat Glacier (Central Caucasus) Толщина, объём льда и подлёдный рельеф ледника Джанкуат (Центральный Кавказ) I. Lavrentiev I. S. Kutuzov S. D. Petrakov A. G. Popov A. V. Popovnin V. И. Лаврентьев И. С. Кутузов С. Д. Петраков А. Г. Попов А. В. Поповнин В. 2015-03-27 application/pdf https://ice-snow.igras.ru/jour/article/view/65 https://doi.org/10.15356/2076-6734-2014-4-7-19 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/65/38 Aleshin A.S. Experience of seismic studies at the Djankuat Glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1972, 20: 213–215. [In Russian]. Aleshin A.S., Berri B.L., Zhigalin A.D., Ogilvi A.A., Rasul Aga V. Application of geophysical methods to the study of hydrological and structural peculiarities of Djankuat Glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1972, 20: 157–163. [In Russian]. Berri B.L., Golubev G.N., Ogilvi A.A., Ushakova L.A., Ushakov S.A., Sheremet O.G. Application of geophysical methods to the study of the glaciers in Great Caucasus Djankuat and Bashkara. Trudy ZAKNIGMI. Proc. of Transcaucasian Hydrometeorological Institute. 1970, 45 (51): 182–187. [In Russian]. Bogorodsky V.V. Fizicheskie metody issledovaniy lednikov. Physical methods of the glacier study. Leningrad: Gidrometeoizdat. Leningrad: Hydrometeoizdat, 1968: 214 p. [In Russian]. Vasilenko E.V., Glazovsky A.F., Lavrenriev I.I., Macheret Yu.Ya. Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen glaciers in Svalbard. Led i Sneg. Ice and Snow. 2014, 1 (125): 5–19. [In Russian]. Vasilenko E.V., Glazovsky A.F., Macheret Yu.Ya., Navarro F.X., Sokolov V.G., Shiraiwa T. Georadar VIRL for glacier sounding. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, 94: 225–234. [In Russian]. Voiykovsky K.F. Relationship between ice thickness and angle of its surface. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1997, 83: 155–158. [In Russian]. Voiykovsky K.F., Aleinikov A.A., Volodicheva N.A., Zolotarev E.A., Popovnin V.V., Kharkovets E.G. Monitoring of mountain glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2000, 89: 51–57. [In Russian]. Golubev G.N., Ushakova L.A., Ushakov S.A., Sheremet O.G. Methods and results of gravimetric observations of ice thickness in mountain glaciers Djankuat and Bashkara. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1970, 17: 72–75. [In Russian]. Kutuzov S.S., Lavrentiev I.I., Macheret Yu.Ya., Petrakov D.A. Changes of Marukh Glacier from 1945 until 2011. Led i Sneg. Ice and Snow. 2012, 1 (117): 123–127. [In Russian]. Lavrentiev I.I., Mikhakenko V.N., Kutuzov S.S. Ice thickness and subglacial relief of the West glacier plateau of Elbrus. Led i Sneg. Ice and Snow. 2010, 2 (110):12–18. [In Russian]. Lednik Djankuat. Djankuat Glacier. Leningrad: Hydromateoizdat, 1978: 183 p. [In Russian]. Lednik Marukh. Marukh Glacier. Leningrad: Hydromateoizdat, 1988: 254 p. [In Russian]. Macheret Yu.Ya. Gravimetric method in glaciology. Itogi nauki i tekhniki. Glyatsiologiya. Results of Science and Technology. Glaciology. V. 1. Moscow: VINITI, 1977: 6–40. [In Russian]. Macheret Yu.Ya. Seismic method in glaciology. Itogi nauki i tekhniki. Glyatsiologiya. Results of Science and Technology. Glaciology. V. 1. Moscow: VINITI, 1977: 41–86. [In Russian]. Macheret Yu.Ya. Radiozondirovanie lednikov. Radio sounding of glaciers. Moscow: Nauchnyi mir. Scientific World, 2006: 389 p. [In Russian]. Macheret Yu.Ya., Luchininov V.S. Interpretation of results in the contact radio sounding of warm mountain glaciers. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1973, 22: 45–57. [In Russian]. Macheret Yu.Ya., Berikashvili V.Sh., Vasilenko E.V., Sokolov V.G. Impulse radar for the sounding of glaciers with the optic channel for synchronization and digital processing of signals. Datchiki i sistemy. Sensing Elements and Systems. 2006, 12: 2–8. [In Russian]. Pastukhov V.G. Polnyi massoobmen lednika Djankuat. Total mass-exchange of Djankuat Glacier. Diploma. Geographical Faculty of MSU. 2011: 185 p. [In Russian]. Popovnin V.V., Petrakov D.A. Djankuat Glacier for the last 34 years (1967/68–2000/01). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2005, 98: 167–174. [In Russian]. Sukhanov L.A. Measuring of the thickness of mountain glaciers by radio sounding. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1974, 22: 58–65. [In Russian]. Sukhanov L.A., Morev V.A., Zotikov I.A. Portable ice thermoelectroboring systems. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1974, 23: 234–238. [In Russian]. Arcone S. Numerical studies of the radiation patterns of resistively loaded dipoles. Journ. of Applied Geophysics. 1995, 33: 39–52. Bolch T., Kulkarni A., Kääb A., Huggel C., Paul F., Cogley J.G., Frey H., Kargel J.S., Fujita K., Scheel M., Bajracharya S., Stoffel M. The State and Fate of Himalayan Glaciers. Science. 2012, 336 (6079): 310–314. doi:10.1126/science.1215828. Farinotti D., Huss M., Bauder A., Funk M., Truffer M. A method to estimate the ice volume and ice–thickness distribution of alpine glaciers. Journ. of Glaciology. 2009, 55 (191): 422–430. Fisher A. Calculation of glacier volume from sparse ice–thickness data, applied to Schaufelferner, Austria. Journ. of Glaciology. 2009, 55 (191): 453–460. Frey H., Machguth H., Huss M., Huggel C., Bajracharya S., Bolch T., Kulkarni A., Linsbauer A., Salzmann N., and Stoffel M. Ice volume estimates for the Himalaya–Karakoram region: evaluating different methods. The Cryosphere Discuss 7. 4813–4854. doi:10.5194/tcd–7–4813–2013, 2013. Glacier Mass Balance Bulletin № 10 (2006–2007). Еds. W. Haeberli, I. Gärtner-Roer, M. Hoelzle, F. Paul, M. Zemp. ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich. 2009: 96 p. Grinsted A. An estimate of global glacier volume. The Cryosphere. 2013, 7: 141–151. doi:10.5194/tc-7-141-2013. Haeberli W., Hoelzle M. Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology. 1995, 21: 206–212. Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journ. of Geophys. Research. 2012, 117: F04010. Hutchinson M.F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journ. of Hydrology. 1989, 106: 211–232. Li H., Ng F., Li Z., Qin D., Cheng G. An extended «perfectplasticity» method for estimating ice thickness along the flow line of mountain glaciers. Journ. of Geophys. Research. 2012, 117: F01020. Linsbauer A., Paul F, Haeberli W. Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. Journ. of Geophys. Research. 2012, 117: F03007. Paterson W.S.B. The Physics of Glaciers. 3rd edition. Butterworth–Heinemann, 1994: 496 p. Paul F., Linsbauer A. Modeling of glacier bed topography from glacier outlines, central branch lines and a DEM. Intern. Journ. of Geographical Information Science. 2012, 26 (7): 1–18. Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., Hagen J.-O., Hock R., Kaser G., Kienholz C., Miles E.S., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B.H., Rich J., Sharp M.J. and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Geophys. Research. 2013, submitted. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). Ice and Snow; Том 54, № 4 (2014); 7-19 Лёд и Снег; Том 54, № 4 (2014); 7-19 2412-3765 2076-6734 10.15356/2076-6734-2014-4 Caucasus;Djankuat Glacier;glacier volume;ice thickness;radar sounding Кавказ;ледник Джанкуат;объём ледника;радиозондирование;толщина льда info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias 2025-03-10T11:00:05Z In this paper we present and discuss results of radio-echo sounding and modelling of ice thickness of the Djankuat Glacier. This glacier is the reference one for the Central Caucasus and was earlier studied comprehensively, but direct ice thickness measurements survey were not made so far. In 2012–2013, more than 20 km of ice-thickness measurement profiles were obtained using monopulse ground radar VIRL-6 with its central frequency of 20 MHz. Standard error of the ice-thickness measurement was 2.5%. Detailed maps of the ice-thickness and the bedrock topography based on these direct measurements were constructed for the first time. Its average ice-thickness is 31 m with the maximum of 105 m. Djankuat Glacier ice volume is 0.077±0.002 km3 when Djantugan plateau is not taken into account. Ice thickness map was supplemented by results of the ice thickness modelling using the GlabTop model. It was shown that the model reproduces the ice thickness distribution correctly, and a special approach was developed to correct model parameters using ice thickness measurements. Further on, we plan to use corrected GlabTop model for estimation glaciations of the Caucasus as well as to carry out ground radar sounding of the Djantugan plateau. Анализируются результаты радиолокационных измерений и моделирования толщины льда опорного для Центрального Кавказа ледника Джанкуат. Несмотря на всестороннюю изученность, площадная инструментальная съёмка толщины льда на этом леднике до сих пор не проводилась. В 2012–2013 гг. на леднике Джанкуат при помощи моноимпульсного радиолокатора ВИРЛ-6 с центральной частотой 20 МГц пройдено более 20 км профилей, перекрывающих основную часть ледника. Стандартная ошибка измерений составила 2,5% измеряемой величины. Впервые были построены детальные карты толщины льда и подлёдного рельефа ледника, основанные на фактических данных. Максимальная измеренная толщина ледника составляет 105 м при средней толщине 31 м. Объём ледника Джанкуат без учёта Джантуганского плато, согласно данным инструментальных ... Article in Journal/Newspaper Annals of Glaciology The Cryosphere Ice and Snow Ice and Snow 128 4 7
spellingShingle Caucasus;Djankuat Glacier;glacier volume;ice thickness;radar sounding
Кавказ;ледник Джанкуат;объём ледника;радиозондирование;толщина льда
I. Lavrentiev I.
S. Kutuzov S.
D. Petrakov A.
G. Popov A.
V. Popovnin V.
И. Лаврентьев И.
С. Кутузов С.
Д. Петраков А.
Г. Попов А.
В. Поповнин В.
Ice thickness, volume and subglacial relief of Djankuat Glacier (Central Caucasus)
title Ice thickness, volume and subglacial relief of Djankuat Glacier (Central Caucasus)
title_full Ice thickness, volume and subglacial relief of Djankuat Glacier (Central Caucasus)
title_fullStr Ice thickness, volume and subglacial relief of Djankuat Glacier (Central Caucasus)
title_full_unstemmed Ice thickness, volume and subglacial relief of Djankuat Glacier (Central Caucasus)
title_short Ice thickness, volume and subglacial relief of Djankuat Glacier (Central Caucasus)
title_sort ice thickness, volume and subglacial relief of djankuat glacier (central caucasus)
topic Caucasus;Djankuat Glacier;glacier volume;ice thickness;radar sounding
Кавказ;ледник Джанкуат;объём ледника;радиозондирование;толщина льда
topic_facet Caucasus;Djankuat Glacier;glacier volume;ice thickness;radar sounding
Кавказ;ледник Джанкуат;объём ледника;радиозондирование;толщина льда
url https://ice-snow.igras.ru/jour/article/view/65
https://doi.org/10.15356/2076-6734-2014-4-7-19