Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings

The magnitude of glacier advances generally increased in the Northern Hemisphere and decreased in the Southern Hemisphere over the Holocene. This trend can be explained be the orbital forcings. The exceptions are in some regions of the high Asia. 10–4 ka BP and during the 1th Century CE to the early...

Full description

Bibliographic Details
Published in:Nova
Main Authors: O. Solomina N., О. Соломина Н.
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2015
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/58
https://doi.org/10.15356/2076-6734-2014-3-81-90
id ftjias:oai:oai.ice.elpub.ru:article/58
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic Аnthropogenic forcings;glacier fluctuations;Holocene;orbital forcing;solar activity;volcanic forcings
Антропогенное воздействие на климат;вулканическая активность;голоцен;колебания ледников;орбитальный сигнал;солнечная активность
spellingShingle Аnthropogenic forcings;glacier fluctuations;Holocene;orbital forcing;solar activity;volcanic forcings
Антропогенное воздействие на климат;вулканическая активность;голоцен;колебания ледников;орбитальный сигнал;солнечная активность
O. Solomina N.
О. Соломина Н.
Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings
topic_facet Аnthropogenic forcings;glacier fluctuations;Holocene;orbital forcing;solar activity;volcanic forcings
Антропогенное воздействие на климат;вулканическая активность;голоцен;колебания ледников;орбитальный сигнал;солнечная активность
description The magnitude of glacier advances generally increased in the Northern Hemisphere and decreased in the Southern Hemisphere over the Holocene. This trend can be explained be the orbital forcings. The exceptions are in some regions of the high Asia. 10–4 ka BP and during the 1th Century CE to the early 13th century CE the glaciers were close by sizes to the modern ones or even smaller. The pattern is confirmed by the upper and Northern tree line advances in the Northern Hemisphere. The period with generally «small glaciers» (5–7 ka) coincides with the lack of the major volcanic eruptions, and with the low solar activity. The Early Holocene moraines cluster in seven groups (from 11.1 to 8.1 ka BP). They coincide with all Early Holocene Bond cycles (11.1, 10.3, 9.4, 8.1 ka) and all major volcanic eruptions (11.0, 9.5–9.7, 9.1–9.3, 8.0–8.1). Due to the coincidence of several eruptions with the Bond cycles (solar minima) it is difficult to distinguish between the solar and volcanic signals in the Early Holocene records. The coupling between the glacial and solar/volcanic forcings in the mid Holocene is less evident, but it become strong again in the last 2 ka (1.4 ka and LIA events). The modern glacier retreat disagrees with the actual orbital forcings and is due to both solar and anthropogenic influence. Glacier variations at the moment do not provide proofs for any cycles or global synchronism through the Holocene. However the lack of such evidences can be also explained by the limitations of these records (discontinuous, incomplete, of low accuracy, showing a mixture of advances triggered by both temperature and precipitation). Амплитуда наступаний ледников в голоцене в Северном полушарии в целом увеличивалась, а в Южном – уменьшалась. Этот тренд объясняется изменениями инсоляции, связанными с орбитальными параметрами Земли. Исключение из этого правила – некоторые районы Центральной Азии, где размеры ледников в голоцене уменьшались. 10–4 тыс. л.н. и в течение первого тысячелетия н.э. (примерно до начала XIII в.) ...
format Article in Journal/Newspaper
author O. Solomina N.
О. Соломина Н.
author_facet O. Solomina N.
О. Соломина Н.
author_sort O. Solomina N.
title Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings
title_short Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings
title_full Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings
title_fullStr Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings
title_full_unstemmed Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings
title_sort holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings
publisher IGRAS
publishDate 2015
url https://ice-snow.igras.ru/jour/article/view/58
https://doi.org/10.15356/2076-6734-2014-3-81-90
genre Antarctic Science
Arctic
Arctic and Alpine Research
genre_facet Antarctic Science
Arctic
Arctic and Alpine Research
op_source Ice and Snow; Том 54, № 3 (2014); 81-90
Лёд и Снег; Том 54, № 3 (2014); 81-90
2412-3765
2076-6734
10.15356/2076-6734-2014-3
op_relation https://ice-snow.igras.ru/jour/article/view/58/32
Ganyushkin D.A. Sovremennoe i drevnee oledenenie gornogo massiva Mongun-Tayga. Modern and ancient glaciation of Mongun-Tayga Mounatin region. LAP, 2012: 278 p. [In Russian].
Nazarov A.N., Solomina O.N., Myglan V.S. Variations of the Tree Line and Glaciers in the Central and Eastern Altai Regions in the Holocene Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2012, 444 (2): 787–790. [In Russian].
Abbott M.B., Wolfe B.B., Wolfe A.P., Seltzer G.O., Aravena R., Mark B.G., Polissar P.J., Rodbell D.T., Rowe H.D., Vuille M. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology. 2003, 194: 123–138.
Alley R.B., Agustsdottir A.M. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews. 2005, 24: 1123–1149.
Anderson R.K., Miller G.H., Briner J.P., Lifton N.A., De Vogel S.B. A millennial perspective on Arctic warming from 14C in quartz and plants emerging beneath ice caps. Geophys. Research Letters. 2008, 35 (1): L01502.
Antoniades D., Francusa P., Pienitza R., St-Ongec G., Vincenta W.F. Holocene dynamics of the Arctic’s largest ice. Proc. of the National Academy of Sciences of United States of America. 2011, 108 (47): 18899–18904.
Bay R. C., Bramall N. E., Price P. B., Clow G. D., Hawley R. L., Udisti R., Castellano E. Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period. Journ. of Geophys. Research: Atmospheres. 2006, 111: D11. doi:10.1029/2005JD006306
Bond G., Kromer B., Beer J., Muscheler R., Evans M.N., Showers W., Hoffmann S., Lotti-Bond R., Hajdas I., Bonani G. Persistent Solar Inßuence on North Atlantic Climate During the Holocene. Science. 2001, 294: 2130–2135.
Bowerman N.D., Clark D.H. Holocene glaciation of the central Sierra Nevada, California. Quaternary Science Reviews. 2011, 30 (9–10): 1067–1085.
Briner J.P., Davis P.T., Miller G.H. Latest Pleistocene and Holocene glaciation of Baffin Island, Arctic Canada: key patterns and chronologies. Quaternary Science Reviews. 2009, 28: 2075–2087.
Broecker W.S., Kennett J.P., Flower B.P., Teller J.T., Trumboe S., Bonani G., Wölfli W. Routing of meltwater from the Laurentide ice sheet during the Younger Dryas cold episode. Nature. 1989, 341: 318– 321.
Broecker W.S., Bond G., Klas M. A salt oscillator in the glacial North Atlantic? The concept. Paleoceanography. 1990, 5: 469–477.
Clark P.U., Marshall S.J., Clarke G.K.C., Hostetler S.W., Licciardi J.M., Teller J.T. Freshwater forcing of abrupt climate change during the last glaciation. Science. 2001, 293: 283–287.
Debret M., Bout-Roumazeilles V., Grousset F., Desmet M., McManus J. F. , Massei N., D. Sebag D., Petit J.-R., Copard Y., Trentesaux A. The origin of the 1500-year climate cycles in Holocene North-Atlantic records. Climate of the Past. 2007, 3: 569–575.
Denton G.H., Karlen W. Lichenometry: its application to Holocene moraine studies in Southern Alaska and Swedish Lapland. Arctic and Alpine Research. 1973, 5 (4): 347–372.
Domack E., Duran D., Leventer A., Ishman S., Doane S., McCallum S., Amblas D., Ring J., Gilbert R., Prentice M. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature. 2005, 436 (4): 681–685.
Ferris D. G., Cole-Dai J., Reyes A. R., Budner D. M. South Pole ice core record of explosive volcanic eruptions in the first and second millennia A.D. and evidence of a large eruption in the tropics around 535 A.D. Journ. of Geophys. Research: Atmospheres. 2011, 116. № D17. doi:10.1029/2011JD015916
Geirsdóttir A., Miller G.H., Axford Y., Ólafsdóttir S. Holocene and latest Pleistocene 6climate and glacier fluctuations in Iceland. Quaternary Science Reviews. 2009, 28: 2107–2118.
Glasser N.F., Clemmens S., Schnabel C., Fenton C.R., McHargue L. Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic 10Be dating. Quaternary Science Reviews. 2009, 28: 3448–3458.
Goehring B.M., Vacco D.A., Alley R.B., Schaefer J.M. Holocene dynamics of the Rhone Glacier, Switzerland, deduced from ice flow models and cosmogenic nuclides.Earth and Planetary Science Letters. 2012, 351–352: 27–35.
Grove J. M. Little ice ages: ancient and modern. New York, Routledge, 2004: 402 p.
Hall B.L, Denton G.H. Holocene history of the Wilson Piedmont Glacier along the southern Scott Coast, Antarctica. The Holocene. 2002, 12 (5): 619–627.
Hjort C., Bently M.J., Ingolfsson О. Holocene and pre-Holocene temporary disappearance of the George VI Ice Shelf, Antarctic Peninsula Antarctic. Science. 2001, 13 (3): 296–301.
Hodgson D.A. First synchronous retreat of ice shelves marks a new phase of polar deglaciation. Proc. of the National Academy of Sciences of United States of America. 2011, 108 (47): 18859–18860.
Holzhauser H., Magny M., Zumbuehl H.J. Glacier and lake-level variations in west-central Europe over the last 3500 . The Holocene. 2005, 15: 789–801.
Hormes A., Muller B.U. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene. 2001, 11 (3): 255–265.
Ivy-Ochs S., Kerschner H., Maisch M., Christl M., Kubik P.W., Schluechter C. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews. 2009, 28: 2137–2149.
Joerin U.E., Nicolussi K., Fischer A., Stocker T.F., Schlüchter C. Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quaternary Science Reviews. 2008, 27: 337–350.
Jomelli V., Khodri M., Favier V., Brunstein D., Ledru M.-P., Wagnon P., Blard P.-H., Sicart J.-E., Braucher R., Grancher D., Bourlès D., Braconnot P., Vuille M. Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature. 2011, 474: 196–199.
Kelly M.A., Lowell T.V. Fluctuations of local glaciers in Greenland during latest Pleistocene and Holocene time. Quaternary Science Reviews. 2009, 28: 2088–2106.
Kirkbride M.P., Dugmore A.J. Responses of mountain ice caps in central Iceland to Holocene climate change. Quaternary Science Reviews. 2006, 25 (13–14): 1692–1707.
Koch J., Clague J.J. Are insolation and sunspot activity the primary drivers of global Holocene glacier fluctuations? Pages Newsletter. 2006, 14 (3): 20–21.
Larsen N.K., Kjær K.H., Olsen J., Funder S., Kjeldsen K.K., Nørgaard-Pedersen N. Restricted impact of Holocene climate variations on the southern Greenland Ice Sheet. Quaternary Science Reviews. 2011, 30 (21–22): 3171–3180.
Larsen D.J., Miller G.H., Geirsdóttir A., Ólafsdóttir S. Non-linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland. Quaternary Science Reviews. 2012, 39: 14–25.
Licciardi J.M., Schaefer J.M., Taggart J.R., Lund D.C. Holocene Glacier Fluctuations in the Peruvian Andes Indicate Northern Climate Linkages. Science. 2009, 325: 1677–1679. doi:10.1126/science.1175010
Luckman B.H., Wilson R.J.S. Summer temperature in the Canadian Rockies during the last millennium – a revised record. Climate Dynamics. 2005, 24: 131–144.
Mann M.E., Zhang Z., Rutherford S., Bradley R.S., Hughes M.K., Shindell D., Ammann C., Faluvegi G., Ni. F. Global signatures and dynamical origins of the «Little Ice Age» and «Medieval Climate Anomal». Science. 2009, 326: 1256–1260.
Mark B.G, Seltzer G.O Rates of deglaciation during the Last Glaciation and Holocene in the Cordillera Vilcanota-Quelccaya Ice Cap Region, Southeastern Peru. Quaternary Research. 2002, 57 (3): 287–298.
Matthews J.A., Dresser P.Q. Holocene glacier variation chronology of the Smorstabbtinden massif, Jotunheimen, southern Norway, and the recognition of century- to millennial-scale European Neoglacial events .The Holocene. 2008, 18: 181–201.
Mayewski P.A., Rohling E.E., Stager J.C., Karlén W., Maasch K.A., Meeker L.D., Meyerson E.-A., Gasse F., van Kreveld S., Holmgren K., Lee-Thorp J., Rosqvist G., Rack F., Staubwasser M., Schneider R.R., Steig E.J. Holocene climate variability. Quaternary Research. 2004, 62: 243–255.
Menounos B., Osborn G., Clague J., Luckman B. Latest Pleistocene and Holocene glacier fluctuations in western Canada. Quaternary Science Reviews. 2009, 28 (21–22): 2049–2074.
Miller G.H. Variations in lichen growth from direct measurements: preliminary curves for Alectoria minuscula from eastern Baffin Island, N. W. T., Canada. Arctic and Alpine Research. 1973, 5: 333–339.
Miller G.H., Wolfe A.P., Sauer P.E., Nesje A. Holocene glaciation and climate evolution of Baffin Island, Arctic Canada. Quaternary Science Reviews. 2005, 24 (14–15): 1703–1721.
Miller G.H., Geirsdóttir A., Zhong Y., Larsen D.Y., Otto-Bliesner B.L., Holland M.M., Bailey D.A., Refsnider K.A., Lehman S.J, Southon J.R., Anderson C., Björnsson H., Thordarson T. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Research Letters. 2012, 39 (2). doi:10.1029/2011GL050168
Nesje A. Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quaternary Science Reviews. 2009, 28: 2119–2136.
Nicolussi K., Patzelt G. Discovery of early-Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. The Holocene. 2000, 10 (2): 191–199.
Nussbaumer S.U., Steinhilber F., Trachsel M., Breitenmoser P., Beer J., Blass A., Grosjean M., Hafner A., Holzhauser H.P., Wanner H., Zumbühl H.J. Alpine climate during the Holocene: a comparison between records of glaciers, lake sediments and solar activity. Journ. of Quaternary Science. 2011, 26 (7): 703–713.
Porter S.C., Denton G.H. Chronology of Neoglaciation in the North American cordillera. American Journ. of Science. 1967, 265: 177–210.
Porter S.C. Onset of Neoglaciation in the Southern Hemisphere. Journ. of Quaternary Science. 2000, 15 (4): 395–408.
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/2076-6734-2014-3-81-90
https://doi.org/10.15356/2076-6734-2014-3
https://doi.org/10.1029/2005JD006306
https://doi.org/10.1029/2011JD015916
https://doi.org/10.1126/science.1175010
https://doi.org/10.1029/2011GL050168
ht
container_title Nova
container_volume 16
container_issue 30
container_start_page 37
op_container_end_page 58
_version_ 1766287256354553856
spelling ftjias:oai:oai.ice.elpub.ru:article/58 2023-05-15T14:14:53+02:00 Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings Колебания ледников в голоцене и возможное влияние на них орбитального сигнала, солнечной и вулканической активности и антропогенного воздействия O. Solomina N. О. Соломина Н. 2015-03-27 application/pdf https://ice-snow.igras.ru/jour/article/view/58 https://doi.org/10.15356/2076-6734-2014-3-81-90 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/58/32 Ganyushkin D.A. Sovremennoe i drevnee oledenenie gornogo massiva Mongun-Tayga. Modern and ancient glaciation of Mongun-Tayga Mounatin region. LAP, 2012: 278 p. [In Russian]. Nazarov A.N., Solomina O.N., Myglan V.S. Variations of the Tree Line and Glaciers in the Central and Eastern Altai Regions in the Holocene Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2012, 444 (2): 787–790. [In Russian]. Abbott M.B., Wolfe B.B., Wolfe A.P., Seltzer G.O., Aravena R., Mark B.G., Polissar P.J., Rodbell D.T., Rowe H.D., Vuille M. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology. 2003, 194: 123–138. Alley R.B., Agustsdottir A.M. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews. 2005, 24: 1123–1149. Anderson R.K., Miller G.H., Briner J.P., Lifton N.A., De Vogel S.B. A millennial perspective on Arctic warming from 14C in quartz and plants emerging beneath ice caps. Geophys. Research Letters. 2008, 35 (1): L01502. Antoniades D., Francusa P., Pienitza R., St-Ongec G., Vincenta W.F. Holocene dynamics of the Arctic’s largest ice. Proc. of the National Academy of Sciences of United States of America. 2011, 108 (47): 18899–18904. Bay R. C., Bramall N. E., Price P. B., Clow G. D., Hawley R. L., Udisti R., Castellano E. Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period. Journ. of Geophys. Research: Atmospheres. 2006, 111: D11. doi:10.1029/2005JD006306 Bond G., Kromer B., Beer J., Muscheler R., Evans M.N., Showers W., Hoffmann S., Lotti-Bond R., Hajdas I., Bonani G. Persistent Solar Inßuence on North Atlantic Climate During the Holocene. Science. 2001, 294: 2130–2135. Bowerman N.D., Clark D.H. Holocene glaciation of the central Sierra Nevada, California. Quaternary Science Reviews. 2011, 30 (9–10): 1067–1085. Briner J.P., Davis P.T., Miller G.H. Latest Pleistocene and Holocene glaciation of Baffin Island, Arctic Canada: key patterns and chronologies. Quaternary Science Reviews. 2009, 28: 2075–2087. Broecker W.S., Kennett J.P., Flower B.P., Teller J.T., Trumboe S., Bonani G., Wölfli W. Routing of meltwater from the Laurentide ice sheet during the Younger Dryas cold episode. Nature. 1989, 341: 318– 321. Broecker W.S., Bond G., Klas M. A salt oscillator in the glacial North Atlantic? The concept. Paleoceanography. 1990, 5: 469–477. Clark P.U., Marshall S.J., Clarke G.K.C., Hostetler S.W., Licciardi J.M., Teller J.T. Freshwater forcing of abrupt climate change during the last glaciation. Science. 2001, 293: 283–287. Debret M., Bout-Roumazeilles V., Grousset F., Desmet M., McManus J. F. , Massei N., D. Sebag D., Petit J.-R., Copard Y., Trentesaux A. The origin of the 1500-year climate cycles in Holocene North-Atlantic records. Climate of the Past. 2007, 3: 569–575. Denton G.H., Karlen W. Lichenometry: its application to Holocene moraine studies in Southern Alaska and Swedish Lapland. Arctic and Alpine Research. 1973, 5 (4): 347–372. Domack E., Duran D., Leventer A., Ishman S., Doane S., McCallum S., Amblas D., Ring J., Gilbert R., Prentice M. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature. 2005, 436 (4): 681–685. Ferris D. G., Cole-Dai J., Reyes A. R., Budner D. M. South Pole ice core record of explosive volcanic eruptions in the first and second millennia A.D. and evidence of a large eruption in the tropics around 535 A.D. Journ. of Geophys. Research: Atmospheres. 2011, 116. № D17. doi:10.1029/2011JD015916 Geirsdóttir A., Miller G.H., Axford Y., Ólafsdóttir S. Holocene and latest Pleistocene 6climate and glacier fluctuations in Iceland. Quaternary Science Reviews. 2009, 28: 2107–2118. Glasser N.F., Clemmens S., Schnabel C., Fenton C.R., McHargue L. Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic 10Be dating. Quaternary Science Reviews. 2009, 28: 3448–3458. Goehring B.M., Vacco D.A., Alley R.B., Schaefer J.M. Holocene dynamics of the Rhone Glacier, Switzerland, deduced from ice flow models and cosmogenic nuclides.Earth and Planetary Science Letters. 2012, 351–352: 27–35. Grove J. M. Little ice ages: ancient and modern. New York, Routledge, 2004: 402 p. Hall B.L, Denton G.H. Holocene history of the Wilson Piedmont Glacier along the southern Scott Coast, Antarctica. The Holocene. 2002, 12 (5): 619–627. Hjort C., Bently M.J., Ingolfsson О. Holocene and pre-Holocene temporary disappearance of the George VI Ice Shelf, Antarctic Peninsula Antarctic. Science. 2001, 13 (3): 296–301. Hodgson D.A. First synchronous retreat of ice shelves marks a new phase of polar deglaciation. Proc. of the National Academy of Sciences of United States of America. 2011, 108 (47): 18859–18860. Holzhauser H., Magny M., Zumbuehl H.J. Glacier and lake-level variations in west-central Europe over the last 3500 . The Holocene. 2005, 15: 789–801. Hormes A., Muller B.U. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene. 2001, 11 (3): 255–265. Ivy-Ochs S., Kerschner H., Maisch M., Christl M., Kubik P.W., Schluechter C. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews. 2009, 28: 2137–2149. Joerin U.E., Nicolussi K., Fischer A., Stocker T.F., Schlüchter C. Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quaternary Science Reviews. 2008, 27: 337–350. Jomelli V., Khodri M., Favier V., Brunstein D., Ledru M.-P., Wagnon P., Blard P.-H., Sicart J.-E., Braucher R., Grancher D., Bourlès D., Braconnot P., Vuille M. Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature. 2011, 474: 196–199. Kelly M.A., Lowell T.V. Fluctuations of local glaciers in Greenland during latest Pleistocene and Holocene time. Quaternary Science Reviews. 2009, 28: 2088–2106. Kirkbride M.P., Dugmore A.J. Responses of mountain ice caps in central Iceland to Holocene climate change. Quaternary Science Reviews. 2006, 25 (13–14): 1692–1707. Koch J., Clague J.J. Are insolation and sunspot activity the primary drivers of global Holocene glacier fluctuations? Pages Newsletter. 2006, 14 (3): 20–21. Larsen N.K., Kjær K.H., Olsen J., Funder S., Kjeldsen K.K., Nørgaard-Pedersen N. Restricted impact of Holocene climate variations on the southern Greenland Ice Sheet. Quaternary Science Reviews. 2011, 30 (21–22): 3171–3180. Larsen D.J., Miller G.H., Geirsdóttir A., Ólafsdóttir S. Non-linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland. Quaternary Science Reviews. 2012, 39: 14–25. Licciardi J.M., Schaefer J.M., Taggart J.R., Lund D.C. Holocene Glacier Fluctuations in the Peruvian Andes Indicate Northern Climate Linkages. Science. 2009, 325: 1677–1679. doi:10.1126/science.1175010 Luckman B.H., Wilson R.J.S. Summer temperature in the Canadian Rockies during the last millennium – a revised record. Climate Dynamics. 2005, 24: 131–144. Mann M.E., Zhang Z., Rutherford S., Bradley R.S., Hughes M.K., Shindell D., Ammann C., Faluvegi G., Ni. F. Global signatures and dynamical origins of the «Little Ice Age» and «Medieval Climate Anomal». Science. 2009, 326: 1256–1260. Mark B.G, Seltzer G.O Rates of deglaciation during the Last Glaciation and Holocene in the Cordillera Vilcanota-Quelccaya Ice Cap Region, Southeastern Peru. Quaternary Research. 2002, 57 (3): 287–298. Matthews J.A., Dresser P.Q. Holocene glacier variation chronology of the Smorstabbtinden massif, Jotunheimen, southern Norway, and the recognition of century- to millennial-scale European Neoglacial events .The Holocene. 2008, 18: 181–201. Mayewski P.A., Rohling E.E., Stager J.C., Karlén W., Maasch K.A., Meeker L.D., Meyerson E.-A., Gasse F., van Kreveld S., Holmgren K., Lee-Thorp J., Rosqvist G., Rack F., Staubwasser M., Schneider R.R., Steig E.J. Holocene climate variability. Quaternary Research. 2004, 62: 243–255. Menounos B., Osborn G., Clague J., Luckman B. Latest Pleistocene and Holocene glacier fluctuations in western Canada. Quaternary Science Reviews. 2009, 28 (21–22): 2049–2074. Miller G.H. Variations in lichen growth from direct measurements: preliminary curves for Alectoria minuscula from eastern Baffin Island, N. W. T., Canada. Arctic and Alpine Research. 1973, 5: 333–339. Miller G.H., Wolfe A.P., Sauer P.E., Nesje A. Holocene glaciation and climate evolution of Baffin Island, Arctic Canada. Quaternary Science Reviews. 2005, 24 (14–15): 1703–1721. Miller G.H., Geirsdóttir A., Zhong Y., Larsen D.Y., Otto-Bliesner B.L., Holland M.M., Bailey D.A., Refsnider K.A., Lehman S.J, Southon J.R., Anderson C., Björnsson H., Thordarson T. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Research Letters. 2012, 39 (2). doi:10.1029/2011GL050168 Nesje A. Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quaternary Science Reviews. 2009, 28: 2119–2136. Nicolussi K., Patzelt G. Discovery of early-Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. The Holocene. 2000, 10 (2): 191–199. Nussbaumer S.U., Steinhilber F., Trachsel M., Breitenmoser P., Beer J., Blass A., Grosjean M., Hafner A., Holzhauser H.P., Wanner H., Zumbühl H.J. Alpine climate during the Holocene: a comparison between records of glaciers, lake sediments and solar activity. Journ. of Quaternary Science. 2011, 26 (7): 703–713. Porter S.C., Denton G.H. Chronology of Neoglaciation in the North American cordillera. American Journ. of Science. 1967, 265: 177–210. Porter S.C. Onset of Neoglaciation in the Southern Hemisphere. Journ. of Quaternary Science. 2000, 15 (4): 395–408. Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 54, № 3 (2014); 81-90 Лёд и Снег; Том 54, № 3 (2014); 81-90 2412-3765 2076-6734 10.15356/2076-6734-2014-3 Аnthropogenic forcings;glacier fluctuations;Holocene;orbital forcing;solar activity;volcanic forcings Антропогенное воздействие на климат;вулканическая активность;голоцен;колебания ледников;орбитальный сигнал;солнечная активность info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2015 ftjias https://doi.org/10.15356/2076-6734-2014-3-81-90 https://doi.org/10.15356/2076-6734-2014-3 https://doi.org/10.1029/2005JD006306 https://doi.org/10.1029/2011JD015916 https://doi.org/10.1126/science.1175010 https://doi.org/10.1029/2011GL050168 ht 2022-12-20T13:30:26Z The magnitude of glacier advances generally increased in the Northern Hemisphere and decreased in the Southern Hemisphere over the Holocene. This trend can be explained be the orbital forcings. The exceptions are in some regions of the high Asia. 10–4 ka BP and during the 1th Century CE to the early 13th century CE the glaciers were close by sizes to the modern ones or even smaller. The pattern is confirmed by the upper and Northern tree line advances in the Northern Hemisphere. The period with generally «small glaciers» (5–7 ka) coincides with the lack of the major volcanic eruptions, and with the low solar activity. The Early Holocene moraines cluster in seven groups (from 11.1 to 8.1 ka BP). They coincide with all Early Holocene Bond cycles (11.1, 10.3, 9.4, 8.1 ka) and all major volcanic eruptions (11.0, 9.5–9.7, 9.1–9.3, 8.0–8.1). Due to the coincidence of several eruptions with the Bond cycles (solar minima) it is difficult to distinguish between the solar and volcanic signals in the Early Holocene records. The coupling between the glacial and solar/volcanic forcings in the mid Holocene is less evident, but it become strong again in the last 2 ka (1.4 ka and LIA events). The modern glacier retreat disagrees with the actual orbital forcings and is due to both solar and anthropogenic influence. Glacier variations at the moment do not provide proofs for any cycles or global synchronism through the Holocene. However the lack of such evidences can be also explained by the limitations of these records (discontinuous, incomplete, of low accuracy, showing a mixture of advances triggered by both temperature and precipitation). Амплитуда наступаний ледников в голоцене в Северном полушарии в целом увеличивалась, а в Южном – уменьшалась. Этот тренд объясняется изменениями инсоляции, связанными с орбитальными параметрами Земли. Исключение из этого правила – некоторые районы Центральной Азии, где размеры ледников в голоцене уменьшались. 10–4 тыс. л.н. и в течение первого тысячелетия н.э. (примерно до начала XIII в.) ... Article in Journal/Newspaper Antarctic Science Arctic Arctic and Alpine Research Ice and Snow (E-Journal) Nova 16 30 37 58