Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding

Data of ground-based radio-echo sounding of 16 glaciers located on the Nordenskiold Land, Spitsbergen, carried out in springs of 1999, 2007 and 2010–2013, allowed defining five glaciers as of the cold thermal type while other eleven ones were polythermal glaciers. In the last ones (polythermal) the...

Full description

Bibliographic Details
Published in:Ice and Snow
Main Authors: Yu. Macheret Ya., A. Glazovsky F., I. Lavrentiev I., I. Marchuk O., Ю. Мачерет Я., А. Глазовский Ф., И. Лаврентьев И., И. Марчук О.
Other Authors: This work was supported by the Statе contract № 0148-2019-0004 (АААА-А19119022190172-5). Cartographic work was carried out under the grant RFBR № 18-05-60067, Статья подготовлена по теме Государственного задания № 0148-2019-0004 (АААА-А19-119022190172-5). Картографические работы проводились в рамках гранта РФФИ № 18-05-60067
Format: Article in Journal/Newspaper
Language:Russian
Published: IGRAS 2019
Subjects:
Online Access:https://ice-snow.igras.ru/jour/article/view/557
https://doi.org/10.15356/20766734-2019-2-430
id ftjias:oai:oai.ice.elpub.ru:article/557
record_format openpolar
institution Open Polar
collection Ice and Snow (E-Journal)
op_collection_id ftjias
language Russian
topic cold and temperate ice
glaciers
ground-based radio-echo sounding
Svalbard
ледники
наземное радиозондирование
холодный и тёплый лёд
Шпицберген
spellingShingle cold and temperate ice
glaciers
ground-based radio-echo sounding
Svalbard
ледники
наземное радиозондирование
холодный и тёплый лёд
Шпицберген
Yu. Macheret Ya.
A. Glazovsky F.
I. Lavrentiev I.
I. Marchuk O.
Ю. Мачерет Я.
А. Глазовский Ф.
И. Лаврентьев И.
И. Марчук О.
Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding
topic_facet cold and temperate ice
glaciers
ground-based radio-echo sounding
Svalbard
ледники
наземное радиозондирование
холодный и тёплый лёд
Шпицберген
description Data of ground-based radio-echo sounding of 16 glaciers located on the Nordenskiold Land, Spitsbergen, carried out in springs of 1999, 2007 and 2010–2013, allowed defining five glaciers as of the cold thermal type while other eleven ones were polythermal glaciers. In the last ones (polythermal) the average thickness of the upper layer of cold ice and the bottom layer of temperate ice was equal to 11-66 m and 15-96 m, respectively. The ratio of these thicknesses varies from 0.32 to 2.28, and the volume fraction of temperate ice in the total volume of the glaciers varies from 1 to 74% and changes from 0 to 50% in the ablation zone up to 80% in the accumulation zone. Thickness of cold ice was determined by measured delay time of radar reflections from cold-temperate surface (CTS) while thickness of temperate ice was derived as a difference between the total thickness of the glacier and the thickness of its cold ice. For interpretation of radar reflections from CTS we used the noticeable distinction in character of the radar reflections from the upper and lower thicknesses of glacier: absence of internal reflections (excluding reflections from buried crevasses and glacier wells) from upper cold ice layer and a great number of reflections of hyperbolic form from the lower layer related to strong scattering of radio waves by water inclusions in the temperate ice. According to the measurements, relative power of the radar reflections from CTS is by 5,5–14,2 dB smaller than those from the bedrock, that can be considered as an indicator of smaller water content at CTS; so, the repeated measurements of their relative power can be used for estimation of temporal changes in the water content at these boundaries. In layers of the temperate ice, the series of vertical hyperbolic reflections penetrating the cold ice down to CTS and further to the bedrock were detected. Such reflections are related to buried crevasses and/or the glacier wells and can serve as sources of the water permeating during the melt periods from the ...
author2 This work was supported by the Statе contract № 0148-2019-0004 (АААА-А19119022190172-5). Cartographic work was carried out under the grant RFBR № 18-05-60067
Статья подготовлена по теме Государственного задания № 0148-2019-0004 (АААА-А19-119022190172-5). Картографические работы проводились в рамках гранта РФФИ № 18-05-60067
format Article in Journal/Newspaper
author Yu. Macheret Ya.
A. Glazovsky F.
I. Lavrentiev I.
I. Marchuk O.
Ю. Мачерет Я.
А. Глазовский Ф.
И. Лаврентьев И.
И. Марчук О.
author_facet Yu. Macheret Ya.
A. Glazovsky F.
I. Lavrentiev I.
I. Marchuk O.
Ю. Мачерет Я.
А. Глазовский Ф.
И. Лаврентьев И.
И. Марчук О.
author_sort Yu. Macheret Ya.
title Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding
title_short Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding
title_full Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding
title_fullStr Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding
title_full_unstemmed Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding
title_sort distribution of cold and temperate ice in glaciers on the nordenskiold land, spitsbergen, from ground-based radio-echo sounding
publisher IGRAS
publishDate 2019
url https://ice-snow.igras.ru/jour/article/view/557
https://doi.org/10.15356/20766734-2019-2-430
geographic Svalbard
geographic_facet Svalbard
genre Annals of Glaciology
Antarctic and Alpine Research
Arctic
glacier
Polar Research
Polar Science
Polar Science
Svalbard
The Cryosphere
Spitsbergen
genre_facet Annals of Glaciology
Antarctic and Alpine Research
Arctic
glacier
Polar Research
Polar Science
Polar Science
Svalbard
The Cryosphere
Spitsbergen
op_source Ice and Snow; Том 59, № 2 (2019); 149-166
Лёд и Снег; Том 59, № 2 (2019); 149-166
2412-3765
2076-6734
10.15356/2076-6734-2019-2
op_relation https://ice-snow.igras.ru/jour/article/view/557/310
Duval P. The role of water content on the creep of polycrystalline ice. In: Isotopes and impurities in snow and ice // Proc. of IAHS Publication. 1977. № 118. P.29–33.
Fowler A.C., Larson D.A. On the flow of polythermal glaciers. Part I: model and preliminary analysis // Proc. of the Royal Society of London. 1978. Ser.A. V.363. № 1713. P.217–242.
Hutter K. A mathematical model of polythermal glaciers and ice sheets // Geophys. Astrophys. Fluid Dyn. 1982. V.21. № 3–4. P.201–224.
Fowler A.C. On the transport of moisture in polythermal glaciers // Geophys. Astrophys. Fluid Dyn. 1984. V.28. № 2. P.99–140.
Hutter K., Blatter H., Funk M. A model computation of moisture content in polythermal glaciers // Journ. of Geophys. Research. 1988. 93 (BIO). P.12205–12214.
Blatter H., Hutter K. Polythermal conditions in Arctic glaciers // Journ. of Glaciology. 1991. V.37. № 126. P.261–269.
Hutter K. Thermo-mechanically coupled ice-sheet responsecold, polythermal, temperate // Journ. of Glaciolology. 1993. V.39. № 131. P.65–86.
Aschwanden A., Blatter H. Meltwater production due to strain heating in Storglaciaren, Sweden // Journ. of Geophys. Research. 2005. V.110 (F4). F04024. doi:10.1029/2005JF000328.
Aschwanden A., Blatter H. Mathematical modeling and numerical simulation of polythermal glaciers // Journ. of Geophys. Research. 2009. V.114 (F1). F01027. doi:10.1029/2008JF001028.
Aschwanden A., Bueller E., Khroulev C., Blatter H. An enthalpy formulation for glaciers and ice sheets // Journ. of Glaciology. 2012. V.58. № 209. P.441–457. doi:10.3189/2012JoG11J088441.
Blatter H., Greve R. Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model // Polar Science. 2015. V.9. P.197–207.
Hewitt J., Schoof C. Models for polythermal ice sheets and glaciers // The Cryosphere Discuss. 2016. doi:10.5194/tc-2016-240.
Lapazaran J.J. Otero J., Martin-Espanol A., Navarro F.J. On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors // Journ. of Glaciology. 2016. V.62. № 236. P.1008– 1020. doi:10.1017/jog.2016.93.
Глазовский А.Ф., Мачерет Ю.Я. Вода в ледниках. Методы и результаты геофизических и дистанционных исследований. М.: Изд‑во ГЕОС, 2014. 528 с.
Budd W.F. A first model for periodically self-surging glaciers // Journ. of Glaciology. 1975. V.14. № 70. P.3–21.
Fountain. A.G., Walder J.S. Water flow through temperate glaciers // Reviews of Geophysics. 1998. V.36. № 3. P.299–328.
Catania G.A, Neumann T.A., Price S.F. Characterizing englacial drainage in the ablation zone of the Greenland ice sheet // Journ. of Glaciology. 2008. V.54. № 187. P.567–578.
Phillips T., Rajaram H., Steffen K. Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets // Geophys. Research Letters. 2010. V.37. L20503. doi:10.1029/2010GL044397.
RGI Consortium, 2017. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0, Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media. doi: https://doi.org/10.7265/N5-RGI-60.
Мачерет Ю.Я., Божинский А.Н, Глазовский А.Ф., Игнатьева И.Ю, Красс М.С, Константинова Т.Н., Ларина Т.Б., Москалевский М.Ю. Строение, гидротермическое состояние и режим субполярных ледников // Режим и эволюция полярных ледниковых покровов. СПб.: Гидрометеоиздат, 1992. С.48–115.
Bamber J.L. Ice/bed interface and englacial properties of Svalbard ice masses from airborne radio-echo sounding // Journ. of Glaciology. 1989. V.35. № 119. Р.30–37.
Dowdeswell J.A., Drewry D.J., Liestol O., Orheim O. Airborne radio echo sounding of sub-polar glaciers in Spitsbergen // Norsk Polarinstitutte Skrifter. 1984. № 182. P.41.
Murray T., James T.D., Macheret Yu.Ya., Lavrentiev I.I., Glazovsky A.F., Sykes H. Geometric Changes in a tidewater glacier in Svalbard // Arctic, Antarctic and Alpine Research. 2012. V.44. № 3. P.359–367. doi:10.1657/1938-4246-44.3.359.
Navarro F.J., Lapazaran J., Martin-Espanol A., Otero J. Ground-penetrating radar studies in Svalbard aimed to the calculation of the ice volume of its glaciers // Cuadernos de Investigacion Geografica. 2016. V.42. № 2. P.399–414. doi:10.18172/cig.2929.
Кульницкий Л.М., Гофман П.А., Токарев М.Ю. Математическая обработка данных георадиолокации и система RADEXPRO // Разведка и охрана недр. 2001. № 3. С.6–11.
Мачерет Ю.Я. Оценка содержания воды в ледниках по гиперболическим отражениям // МГИ. 2000. Вып.89. С.3–10.
Looyenga H. Dielectric constants of heterogeneous mixture // Physica. 1965. V.31. № 3. P.401–406.
Macheret Yu.Ya., Glazovsky A.F. Estimation of absolute water content in Spitsbergen glaciers from radar sounding data // Polar Research. 2000. V.19. № 2. P.205–216.
Bamber J.L. Enhanced radar scattering from water inclusions in ice // Journ. of Glaciology. 1988. V.34. № 118. P.293–296.
Gacitua G., Urbine J.A., Wilson R., Loriaux T., Hernandez J., Rivera A. 50 MHz helicopter-borne radar data for determination of glacier thermal regime in the central Chilean Andes // Annals of Glaciology. 2015. V.56. № 70. P.93–101. doi:10.3189/2015AoG70A953.
Martin-Espanol A., Vasilenko E.V., Navarro F.J., Otero J., Lapazaran J.J., Lavrentiev I.I., Macheret Y.Y., Machio F. Radio-echo sounding and ice volume estimates of western Nordenskiold Land glaciers, Svalbard // Annals of Glaciology. 2013. V.54. № 64. P.211–217. doi:10.3189/2013AoG64A109.
Василенко Е.В., Глазовский А.Ф., Лаврентьев И.И., Мачерет Ю.Я. Изменение гидротермической структуры ледников Восточный Грёнфьорд и Фритьоф на Шпицбергене // Лёд и Снег. 2014. № 1 (125). С.5–19. doi:10.15356/2076-6734-2014-1-5-19.
Lapazaran J.J., Otero J., Martin-Espanol A., Navarro F.J. On the errors involved in ice-thickness estimates II: Errors in digital elevation models of ice thickness // Journ. of Glaciology. 2016б. V.62. № 236. P.1021–1029. doi:10.1017/jog.2016.94.
Martin-Espanol A., Lapazaran J.J., Otero J., Navarro F.J. On the errors involved in ice-thickness estimates III: Error in volume // Journ. of Glaciology. 2016. V.62. № 236. P.1030–1036. doi:10.1017/jog.2016.95.
Лаврентьев И.И., Мачерет Ю.Я., Холмлунд П., Глазовский А.Ф. Гидротермическая структура и подледниковая дренажная сеть ледника Тавле на Шпицбергене // Лёд и Снег. 2011. № 3 (115). С.41–46.
Wu N.F.L. Jackknife, bootstrap and other resampling methods in regression analysis (with discussions) // Annals of Statistics. 1986. V.14. P.1261–1350.
Лаврентьев И.И., Глазовский А.Ф., Мачерет., Ю.Я., Мацковский В.В., Муравьев А.Я. Запасы льда в ледниках на Земле Норденшельда, Шпицберген, и их изменения за последние десятилетия // Лёд и Снег. 2019. № 1 (59). С.23–38. doi:10.15356/20766734-2019-1-23-38.
Gong Y., Zwinger T., Astrom J., Altena B., Schellenberger T., Gladstone R., Moore J.C. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap // The Cryosphere. 2018. V.12. Р.1563–1577. https:// doi.org/10.5194/tc-12-1563-2018.
Гохман В.В. Распространение и условия формирования наледей на Шпицбергене // МГИ. 1987. Вып.60. С.68–76.
Журавлев А.Б., Боброва Л.И., Мачерет Ю.Я. Радиолокационные измерения на полярном леднике с зимним стоком // МГИ. 1993. Вып.46. С.143–149.
Музылёв С.В., Мачерет Ю.Я., Морозов Е.Г., Лаврентьев И.И., Марченко А.В. Колебания ледяного покрова и давления в морской воде вблизи фронта ледника Туна на Шпицбергене // Лёд и Снег. 2013. № 4 (124). С.119–124.
Błaszczyk M., Jania J.A., Hagen J.O. Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes // Polish Polar Research. 2009. V.30. № 2. P.85–142.
Marchenko A.V., Morozov E.G., Marchenko N.A. Supercooling of seawater near the glacier front in a fjord // Earth Science Research. 2017. V.6. № 1. P.97–108.
https://ice-snow.igras.ru/jour/article/view/557
doi:10.15356/20766734-2019-2-430
op_rights Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access).
op_rightsnorm CC-BY
op_doi https://doi.org/10.15356/20766734-2019-2-430
https://doi.org/10.15356/2076-6734-2019-2
https://doi.org/10.1029/2005JF000328
https://doi.org/10.1029/2008JF001028
https://doi.org/10.3189/2012JoG11J088441
https://doi.org/10.5194/tc-2016-240
https
container_title Ice and Snow
container_volume 59
container_issue 2
container_start_page 149
op_container_end_page 166
_version_ 1766003694296367104
spelling ftjias:oai:oai.ice.elpub.ru:article/557 2023-05-15T13:29:51+02:00 Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding Распределение холодного и тёплого льда в ледниках на Земле Норденшельда (Шпицберген) по данным наземного радиозондирования Yu. Macheret Ya. A. Glazovsky F. I. Lavrentiev I. I. Marchuk O. Ю. Мачерет Я. А. Глазовский Ф. И. Лаврентьев И. И. Марчук О. This work was supported by the Statе contract № 0148-2019-0004 (АААА-А19119022190172-5). Cartographic work was carried out under the grant RFBR № 18-05-60067 Статья подготовлена по теме Государственного задания № 0148-2019-0004 (АААА-А19-119022190172-5). Картографические работы проводились в рамках гранта РФФИ № 18-05-60067 2019-06-10 application/pdf https://ice-snow.igras.ru/jour/article/view/557 https://doi.org/10.15356/20766734-2019-2-430 rus rus IGRAS https://ice-snow.igras.ru/jour/article/view/557/310 Duval P. The role of water content on the creep of polycrystalline ice. In: Isotopes and impurities in snow and ice // Proc. of IAHS Publication. 1977. № 118. P.29–33. Fowler A.C., Larson D.A. On the flow of polythermal glaciers. Part I: model and preliminary analysis // Proc. of the Royal Society of London. 1978. Ser.A. V.363. № 1713. P.217–242. Hutter K. A mathematical model of polythermal glaciers and ice sheets // Geophys. Astrophys. Fluid Dyn. 1982. V.21. № 3–4. P.201–224. Fowler A.C. On the transport of moisture in polythermal glaciers // Geophys. Astrophys. Fluid Dyn. 1984. V.28. № 2. P.99–140. Hutter K., Blatter H., Funk M. A model computation of moisture content in polythermal glaciers // Journ. of Geophys. Research. 1988. 93 (BIO). P.12205–12214. Blatter H., Hutter K. Polythermal conditions in Arctic glaciers // Journ. of Glaciology. 1991. V.37. № 126. P.261–269. Hutter K. Thermo-mechanically coupled ice-sheet responsecold, polythermal, temperate // Journ. of Glaciolology. 1993. V.39. № 131. P.65–86. Aschwanden A., Blatter H. Meltwater production due to strain heating in Storglaciaren, Sweden // Journ. of Geophys. Research. 2005. V.110 (F4). F04024. doi:10.1029/2005JF000328. Aschwanden A., Blatter H. Mathematical modeling and numerical simulation of polythermal glaciers // Journ. of Geophys. Research. 2009. V.114 (F1). F01027. doi:10.1029/2008JF001028. Aschwanden A., Bueller E., Khroulev C., Blatter H. An enthalpy formulation for glaciers and ice sheets // Journ. of Glaciology. 2012. V.58. № 209. P.441–457. doi:10.3189/2012JoG11J088441. Blatter H., Greve R. Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model // Polar Science. 2015. V.9. P.197–207. Hewitt J., Schoof C. Models for polythermal ice sheets and glaciers // The Cryosphere Discuss. 2016. doi:10.5194/tc-2016-240. Lapazaran J.J. Otero J., Martin-Espanol A., Navarro F.J. On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors // Journ. of Glaciology. 2016. V.62. № 236. P.1008– 1020. doi:10.1017/jog.2016.93. Глазовский А.Ф., Мачерет Ю.Я. Вода в ледниках. Методы и результаты геофизических и дистанционных исследований. М.: Изд‑во ГЕОС, 2014. 528 с. Budd W.F. A first model for periodically self-surging glaciers // Journ. of Glaciology. 1975. V.14. № 70. P.3–21. Fountain. A.G., Walder J.S. Water flow through temperate glaciers // Reviews of Geophysics. 1998. V.36. № 3. P.299–328. Catania G.A, Neumann T.A., Price S.F. Characterizing englacial drainage in the ablation zone of the Greenland ice sheet // Journ. of Glaciology. 2008. V.54. № 187. P.567–578. Phillips T., Rajaram H., Steffen K. Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets // Geophys. Research Letters. 2010. V.37. L20503. doi:10.1029/2010GL044397. RGI Consortium, 2017. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0, Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media. doi: https://doi.org/10.7265/N5-RGI-60. Мачерет Ю.Я., Божинский А.Н, Глазовский А.Ф., Игнатьева И.Ю, Красс М.С, Константинова Т.Н., Ларина Т.Б., Москалевский М.Ю. Строение, гидротермическое состояние и режим субполярных ледников // Режим и эволюция полярных ледниковых покровов. СПб.: Гидрометеоиздат, 1992. С.48–115. Bamber J.L. Ice/bed interface and englacial properties of Svalbard ice masses from airborne radio-echo sounding // Journ. of Glaciology. 1989. V.35. № 119. Р.30–37. Dowdeswell J.A., Drewry D.J., Liestol O., Orheim O. Airborne radio echo sounding of sub-polar glaciers in Spitsbergen // Norsk Polarinstitutte Skrifter. 1984. № 182. P.41. Murray T., James T.D., Macheret Yu.Ya., Lavrentiev I.I., Glazovsky A.F., Sykes H. Geometric Changes in a tidewater glacier in Svalbard // Arctic, Antarctic and Alpine Research. 2012. V.44. № 3. P.359–367. doi:10.1657/1938-4246-44.3.359. Navarro F.J., Lapazaran J., Martin-Espanol A., Otero J. Ground-penetrating radar studies in Svalbard aimed to the calculation of the ice volume of its glaciers // Cuadernos de Investigacion Geografica. 2016. V.42. № 2. P.399–414. doi:10.18172/cig.2929. Кульницкий Л.М., Гофман П.А., Токарев М.Ю. Математическая обработка данных георадиолокации и система RADEXPRO // Разведка и охрана недр. 2001. № 3. С.6–11. Мачерет Ю.Я. Оценка содержания воды в ледниках по гиперболическим отражениям // МГИ. 2000. Вып.89. С.3–10. Looyenga H. Dielectric constants of heterogeneous mixture // Physica. 1965. V.31. № 3. P.401–406. Macheret Yu.Ya., Glazovsky A.F. Estimation of absolute water content in Spitsbergen glaciers from radar sounding data // Polar Research. 2000. V.19. № 2. P.205–216. Bamber J.L. Enhanced radar scattering from water inclusions in ice // Journ. of Glaciology. 1988. V.34. № 118. P.293–296. Gacitua G., Urbine J.A., Wilson R., Loriaux T., Hernandez J., Rivera A. 50 MHz helicopter-borne radar data for determination of glacier thermal regime in the central Chilean Andes // Annals of Glaciology. 2015. V.56. № 70. P.93–101. doi:10.3189/2015AoG70A953. Martin-Espanol A., Vasilenko E.V., Navarro F.J., Otero J., Lapazaran J.J., Lavrentiev I.I., Macheret Y.Y., Machio F. Radio-echo sounding and ice volume estimates of western Nordenskiold Land glaciers, Svalbard // Annals of Glaciology. 2013. V.54. № 64. P.211–217. doi:10.3189/2013AoG64A109. Василенко Е.В., Глазовский А.Ф., Лаврентьев И.И., Мачерет Ю.Я. Изменение гидротермической структуры ледников Восточный Грёнфьорд и Фритьоф на Шпицбергене // Лёд и Снег. 2014. № 1 (125). С.5–19. doi:10.15356/2076-6734-2014-1-5-19. Lapazaran J.J., Otero J., Martin-Espanol A., Navarro F.J. On the errors involved in ice-thickness estimates II: Errors in digital elevation models of ice thickness // Journ. of Glaciology. 2016б. V.62. № 236. P.1021–1029. doi:10.1017/jog.2016.94. Martin-Espanol A., Lapazaran J.J., Otero J., Navarro F.J. On the errors involved in ice-thickness estimates III: Error in volume // Journ. of Glaciology. 2016. V.62. № 236. P.1030–1036. doi:10.1017/jog.2016.95. Лаврентьев И.И., Мачерет Ю.Я., Холмлунд П., Глазовский А.Ф. Гидротермическая структура и подледниковая дренажная сеть ледника Тавле на Шпицбергене // Лёд и Снег. 2011. № 3 (115). С.41–46. Wu N.F.L. Jackknife, bootstrap and other resampling methods in regression analysis (with discussions) // Annals of Statistics. 1986. V.14. P.1261–1350. Лаврентьев И.И., Глазовский А.Ф., Мачерет., Ю.Я., Мацковский В.В., Муравьев А.Я. Запасы льда в ледниках на Земле Норденшельда, Шпицберген, и их изменения за последние десятилетия // Лёд и Снег. 2019. № 1 (59). С.23–38. doi:10.15356/20766734-2019-1-23-38. Gong Y., Zwinger T., Astrom J., Altena B., Schellenberger T., Gladstone R., Moore J.C. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap // The Cryosphere. 2018. V.12. Р.1563–1577. https:// doi.org/10.5194/tc-12-1563-2018. Гохман В.В. Распространение и условия формирования наледей на Шпицбергене // МГИ. 1987. Вып.60. С.68–76. Журавлев А.Б., Боброва Л.И., Мачерет Ю.Я. Радиолокационные измерения на полярном леднике с зимним стоком // МГИ. 1993. Вып.46. С.143–149. Музылёв С.В., Мачерет Ю.Я., Морозов Е.Г., Лаврентьев И.И., Марченко А.В. Колебания ледяного покрова и давления в морской воде вблизи фронта ледника Туна на Шпицбергене // Лёд и Снег. 2013. № 4 (124). С.119–124. Błaszczyk M., Jania J.A., Hagen J.O. Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes // Polish Polar Research. 2009. V.30. № 2. P.85–142. Marchenko A.V., Morozov E.G., Marchenko N.A. Supercooling of seawater near the glacier front in a fjord // Earth Science Research. 2017. V.6. № 1. P.97–108. https://ice-snow.igras.ru/jour/article/view/557 doi:10.15356/20766734-2019-2-430 Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , что позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Редакция журнала будет размещать принятую для публикации статью на сайте журнала до выхода её в свет (после утверждения к печати редколлегией журнала). Авторы также имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). CC-BY Ice and Snow; Том 59, № 2 (2019); 149-166 Лёд и Снег; Том 59, № 2 (2019); 149-166 2412-3765 2076-6734 10.15356/2076-6734-2019-2 cold and temperate ice glaciers ground-based radio-echo sounding Svalbard ледники наземное радиозондирование холодный и тёплый лёд Шпицберген info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftjias https://doi.org/10.15356/20766734-2019-2-430 https://doi.org/10.15356/2076-6734-2019-2 https://doi.org/10.1029/2005JF000328 https://doi.org/10.1029/2008JF001028 https://doi.org/10.3189/2012JoG11J088441 https://doi.org/10.5194/tc-2016-240 https 2022-12-20T13:30:01Z Data of ground-based radio-echo sounding of 16 glaciers located on the Nordenskiold Land, Spitsbergen, carried out in springs of 1999, 2007 and 2010–2013, allowed defining five glaciers as of the cold thermal type while other eleven ones were polythermal glaciers. In the last ones (polythermal) the average thickness of the upper layer of cold ice and the bottom layer of temperate ice was equal to 11-66 m and 15-96 m, respectively. The ratio of these thicknesses varies from 0.32 to 2.28, and the volume fraction of temperate ice in the total volume of the glaciers varies from 1 to 74% and changes from 0 to 50% in the ablation zone up to 80% in the accumulation zone. Thickness of cold ice was determined by measured delay time of radar reflections from cold-temperate surface (CTS) while thickness of temperate ice was derived as a difference between the total thickness of the glacier and the thickness of its cold ice. For interpretation of radar reflections from CTS we used the noticeable distinction in character of the radar reflections from the upper and lower thicknesses of glacier: absence of internal reflections (excluding reflections from buried crevasses and glacier wells) from upper cold ice layer and a great number of reflections of hyperbolic form from the lower layer related to strong scattering of radio waves by water inclusions in the temperate ice. According to the measurements, relative power of the radar reflections from CTS is by 5,5–14,2 dB smaller than those from the bedrock, that can be considered as an indicator of smaller water content at CTS; so, the repeated measurements of their relative power can be used for estimation of temporal changes in the water content at these boundaries. In layers of the temperate ice, the series of vertical hyperbolic reflections penetrating the cold ice down to CTS and further to the bedrock were detected. Such reflections are related to buried crevasses and/or the glacier wells and can serve as sources of the water permeating during the melt periods from the ... Article in Journal/Newspaper Annals of Glaciology Antarctic and Alpine Research Arctic glacier Polar Research Polar Science Polar Science Svalbard The Cryosphere Spitsbergen Ice and Snow (E-Journal) Svalbard Ice and Snow 59 2 149 166